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The synthesis of four candidate sterecoisomers of cephalosporolide H is described, made possible by a zinc-chelation strategy for

controlling the stereochemistry of oxygenated 5,5-spiroketals. The same strategy likewise enables the first stereocontrolled

synthesis of cephalosporolide E, which is typically isolated and prepared admixed with its spiroketal epimer, cephalosporolide F.

Introduction

The spiroketal moiety is common in natural products of marine,
plant, insect, and bacterial origins [1-11]. The rigidity of the
spiroketal provides defined orientation of pendant functional
groups, and there is a strong correlation between bioactivity and
spiroketal stereochemistry in many natural spiroketals. For
example, cephalostatin and ritterazine feature thermodynami-
cally disfavored spiroketals that are more cytotoxic than their
stereoisomers [12]. Other prominent cytotoxic spiroketals
include spongistatin [7] and norhalichondrin [13,14].

Spiroketal-containing pheromones are especially prominent in
insect communication, with the spiroketal stereochemistry often
relaying important information [15]. For example, the R-enan-
tiomer of the olive-fly sex pheromone is attractive to males,
while the S-enantiomer attracts females (Figure 1). Chalcogran,
a sex pheromone secreted by the male bark beetle, is isolated

from natural sources as a mixture of diastereomers. However,

Byers et al showed that the spiroketal (2R,5R)-isomer induces
the strongest responses from both females and males [16]. In
such cases it is interesting to conjecture that the natural
pheromone signal may include a “time stamp”: release of a
stereodefined, nonthermodynamic and labile spiroketal enables
the detecting insect to gauge the age of the message based on
the integrity of the spiroketal center. To duplicate such commu-
nication (e.g., for insect population control) requires the ability
to prepare specific spiroketal stereoisomers. Anomeric effects
typically guide the stereochemical preferences in 6,6 and 5,6-
spiroketals [7,17-20], whereas 5,5-spiroketal stereochemistry is
more difficult to predict [21] and control [22-25].

This report focuses on 5,5-spiroketal lactones of the
cephalosporolide and related families (Figure 2) [26,27].
Cephalosporolides E and F are co-isolated as a mixture, and

previous syntheses likewise produce these compounds as a mix-
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Figure 1: Pheromone spiroketals.

9.0 §t.0
4 ! (0]
8 7 073 "'2
cephalosporolide E (2) %"~~~ cephalosporolide H (1)
OH

90 3~4u0_,
BN j ):O
8 7 (6] 3“"’2

cephalosporolide F (3)

ANCoM

penisporolide A

penisporolide B

cephalosporolide |

Figure 2: Reported structures of the cephalosporolides and penisporolides.

ture in the absence of methods to control the spiro-center [28-
30]. However, it is quite possible that the microorganism
produces one or the other of these isomers selectively, and that
this material scrambles over time to a thermodynamic mixture.
It is this mixture that is ultimately extracted, and if this conjec-
ture is true, then the natural extract (mixture) would misrepre-
sent the compound as used in the biological system.
Cephalosporolide H, I, and the penisporolides, on the other
hand, were isolated as single isomers [31]. The structures of
these related spiroketals were tentatively proposed based on
NOESY experiments, and by analogy to each other and to the
confirmed structures of cephalosporolide E and F.

Results and Discussion

We recently reported the stereocontrolled synthesis of
cephalosporolide H (reported structure) and its spiroketal
isomer [32]. Our strategy featured the use of zinc salts to
control the spiro-center using either steric biases or chelation,
depending on pendant functionality (Scheme 1). Unfortunately,
neither of the synthetic isomers provided data in complete

agreement with data reported for the natural material.

Here, we report the synthesis of all four possible diastereomers
with respect to C9 and the spiroketal center (C6). Data from this
study allows us to comment on the proposed structure for
cephalosporolide H and, by analogy, cephalosporolide I and the
penisporolides. Expanding on the zinc chelation method,
we investigated a new approach to the synthesis of
cephalosporolide E, which resulted in the first stereocontrolled

assembly of this spiroketal core.

Our synthesis of the reported structure of cephalosporolide H
(1) and its spiroketal isomer (1b) are outlined in Scheme 2. The
synthesis starts from D-pantolactone (4), which was converted
into terminal alkyne 5 [32]. Alkyne S was coupled with (R)-1,2-
epoxynonane to obtain internal alkyne 6, which was submitted
to gold-catalyzed cycloisomerization [33] to afford spiroketals
7a and 7b (the silyl ether is concomitantly hydrolyzed) as a 1:1
mixture of isomers. Exposure of this mixture to zinc chloride
promoted isomerization to provide 7a in >20:1 dr. TEMPO oxi-
dation then completed the synthesis of 1, the reported structure
of cephalosporolide H. The opposite spiroketal isomer 1a was

prepared from 6 by palladium-catalyzed cycloisomerization
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Scheme 1: Stereocontrol of oxygenated 5,5-spiroketals.
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Scheme 2: Synthesis of the reported cephalosporolide H and its spiro isomer.

(steric control), desilylation and TEMPO oxidation. In neither
case did the characterization data match that of the natural
material, and it is worth noting that NOE and NOESY
experiments conducted on both isomers were inconclusive in
attempts to differentiate them: similar NOESY cross-peaks

were observed from both isomers.

We prepared the two remaining core diastereomers by similar
routes (Scheme 3), starting by coupling terminal alkyne 5 with
(5)-1,2 epoxynonane. Gold-catalyzed cycloisomerization (with
desilylation) provided spiroketal diols 10a and 10b in a 32:68
ratio and in 89% total yield. Major spiroketal 10b could be

converted to 10a in 15:1 dr by zinc-catalyzed isomerization.
Both isomers (10a and 10b) were independently subjected to
TEMPO oxidation to afford spiroketal lactones 1b and lec.
Spectroscopic data of 1b and 1¢ were similar to 1a and 1,

respectively.

Attempts to secure an authentic sample and/or copies of orig-
inal NMR spectra for the natural material were unsuccessful,
but two candidates emerged as good fits to the reported data
(Figure 3). Spectroscopic data for 1a and 1b were both nearly
consistent with the data reported for cephalosporolide H,

whereas data for 1 and 1c¢ did not match (see Supporting Infor-
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Scheme 3: Synthesis of the reported C9-epi-cephalosporolide H and its spiro isomer.
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Figure 3: Reported and synthesized cephalosporolide H isomers.

mation File 1, Table S1 for a full comparison). In the absence of
an authentic sample, a definitive assignment will not be
possible, although we note that the relative stereochemistry of
1b corresponds to that of cephalosporolide F, the structure of
which has been confirmed.

A central feature of this study is our ability to prepare the four
diastereomers selectively. Specifically, we found that chelation
of zinc salts between the spiroketal oxygen and appropriately
positioned hydroxyls overrides normal steric biases to guide the
formation of the spiroketal. Cephalosporolide E was targeted
for validation of this approach. There are three main differ-

ences between cephalosporolides E and H (Figure 2): (1)

Oln., O (CH2)6CH3 O_/On,hm

“(CH,)6CH3

1c

[«]o®® ~7.6 (c 0.69, MeOH)

Cephalosporolide E was isolated (and has been prepared [28])
admixed with cephalosporolide F, whereas cephalosporolide H
was isolated as single isomer. (2) Cephalosporolide E (and F)
has a C2 methylene; C2 of cephalosporolide H is quaternary.
(3) Cephalosporolide E (and F) has a methyl group at C9, as
opposed to the n-heptyl chain in cephalosporolide H.

Synthesis of cephalosporolide E started with the known alcohol
12, which was prepared from the commercially available diester
11 (Scheme 4) [34]. PMB protection of alcohol 12 followed by
Sharpless dihydroxylation afforded diol 14 [35,36]. DDQ oxi-
dation of PMB ether produced 1,3-dioxane 15 [37]. Protecting
group manipulation led to the formation of primary alcohol 17
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Scheme 4: Synthesis of homopropargyl silyl ether.

[38], which was converted into homopropargyl silyl ether 19
over two steps, i.e., DMP oxidation and subsequent Ohira—Best-
mann ethynylation [39].

Coupling of the propargyl silyl ether 19 with the (R)-propylene
oxide produced the internal alkyne 20 (Scheme 5). Gold(I) chlo-
ride in MeOH induced the spiroketalization of alkyne 20 with
concomitant cleavage of the PMP acetal and partial cleavage of
the TBS ether. After completion of the desilylation with TBAF,
a mixture of 5,5-spiroketals 21a and 21b was obtained in 71%
overall yield from 20. The mixture of diols 21a and 21b
converged to 21a (epimer 21b no longer observable by
'H NMR) upon treatment with zinc chloride. TEMPO oxi-
dation of diol 21a led to the formation of cephalosporolide E

(2, admixed with a minor diastereomer tracing back to the
Sharpless dihydroxylation reaction). Spectroscopic data for our
synthetic material was in full agreement with the reported data
for cephalosporolide E [28-30].

Conclusion

We have completed the stereocontrolled synthesis of the
reported structure of cephalosporolide H and three diastereoiso-
mers, leading us to suggest a potential structure for natural
cephalosporolide H (i.e., 1b, or perhaps 1a). Chelation by using
zinc chloride plays a key role in accessing the otherwise contra-
thermodynamic spiroketal stereoisomers. This strategy was
expanded to enable synthetic production of cephalosporolide E
for the first time in a stereocontrolled manner.

OTBS OTBS CH
~  Buli, THF; = ® 1.AuCI(43%), HO
BFyEt,0, —78 °C t0 0 °C OH MeOH, 5 h, rt
0._0 -
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Scheme 5: Synthesis of cephalosporolide E.
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Supporting Information

Supporting Information File 1

General experimental procedures, experimental and
characterization data for new compounds, copies of NMR
spectra, and comparison of characterization data reported
for cephalosporolide H and obtained for the four synthetic
diastereomers reported here.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-8-146-S1.pdf]
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