AZAHETEROCYCLIC DERIVATIVES OF α -PYRONO[2,3-f]ISOFLAVONES

T. V. Shokol, V. A. Turov, V. V. Semenyuchenko, and V. P. Khilya

UDC 547.814.5

9-Azahetaryl-3-arylpyrano[2,3-f]chromen-4,8-diones were synthesized by condensation of 7-hydroxy-8-formylisoflavones with 2-azahetarylacetonitriles followed by acid hydrolysis.

Key words: isoflavones, 2-azahetarylacetonitriles, condensation, α -pyrono[2,3-f]isoflavones.

The broad class of natural complicated flavonoids contains compounds with α - and γ -pyrone cores in a single molecule, in particular, derivatives of pyrano[2,3-*f*]chromen-4,8-dione (1). Roots of *Clausena heptaphylla* afforded clausenidine (2) [1, 2]; the powdery film from the leaf surface of the fern *Pityrogramma calomelanos*, calomelanol D (3) [3-7], which are partially hydrogenated derivatives of 1.

Synthetic derivatives of α -pyrono[2,3-*f*]chromones have been proposed as monofunctional photoreagents for DNA [8]. α -Pyrono[2,3-*f*]flavones, their heteroanalogs, and isoflavones exhibit bactericidal activity [9, 10].

The pyrano[2,3-*f*]chromen-4,8-dione system can be synthesized via annellation of the γ -pyrone core to the coumarin core [9-13] or, on the other hand, by annellation of the α -pyrone ring to the chromone ring [9, 14-18]. α -Pyrono[2,3-*f*]isoflavones were prepared through both pathways, by acylation of 5-hydroxy-6-arylacetylcoumarin using the Kostanetsky reaction [11] and starting with 7-hydroxy-8-formylchromones under forcing Perkin reaction conditions [9, 15]. Derivatives of this system with heterocyclic substituents in the α -pyrone ring are known. Therefore, it seemed interesting to modify α -pyrono[2,3-*f*]isoflavones by adding pharmacophoric azaheterocyclic groups.

Thus, we investigated the reaction of 7-hydroxy-8-formylisoflavones **4-7** with 2-azahetarylacetonitriles. The starting materials for synthesizing the formyl derivatives were the natural isoflavone formononetin (**8**) and its synthetic analogs **9-11** that are unsubstituted and substituted at the 2- and 6-positions. 8-Formylformononetin (**4**) was synthesized previously from **8** using the Duff reaction [19, 20]. We used this method to synthesize 7-hydroxy-8-formylisoflavones **4-7**. Reaction of **8-11** with an excess of hexamethylenetetramine in acetic acid with subsequent work up with dilute HCl produced in good yields (60-73%) **4-7**.

PMR spectra of 4-7 in DMSO-d₆ contained a singlet at 6.8 ppm that was characteristic of H-8 in starting isoflavones 8-11. The formyl proton resonated at 10-53-10.59 ppm. A broad singlet for the 7-OH was shifted to weak field by almost 2 ppm as a result of the formation of an intramolecular H-bond with the O atom of the 8-CHO group. The chelate structure of the products was also confirmed by their characteristic red-brown color in alcohol solution with FeCl₃ [14, 19] and the presence of a broad band at 3070-3100 cm⁻¹ in the IR spectra. Formyl C=O and isoflavone carbonyl stretching vibrations were observed as a strong broad band at 1640-1650 cm⁻¹.

Taras Shevchenko Kiev National University, 01033, Kiev, ul. Vladimirskaya, 64, e-mail: vkhilya@mail.univ.kiev.ua. Translated from Khimiya Prirodnykh Soedinenii, No. 6, pp. 544-547, November-December, 2006. Original article submitted July 3, 2006.

4: $R_1 = OMe, R_2 = R_3 = H;$ **5:** $R_1 = NO_2, R_2 = R_3 = H;$ **6:** $R_1 = Cl, R_2 = Me, R_3 = H;$ **7:** $R_1 = F, R_2 = Me, R_3 = Et;$ **8:** $R_1 = OMe, R_2 = R_3 = H;$ **9:** $R_1 = NO_2, R_2 = R_3 = H;$ **10:** $R_1 = Cl, R_2 = Me, R_3 = H;$ **11:** $R_1 = F, R_2 = Me, R_3 = Et;$ **12:** $R_1 = OMe, R_2 = H;$ **13:** $R_1 = NO_2, R_2 = H;$ **14:** $R_1 = Cl, R_2 = Me;$ **16:** $R_1 = NO_2, R_2 = R_3 = H;$ **17:** $R_1 = F, R_2 = Me, R_3 = Et;$ **18:** $R_1 = OMe, R_2 = H;$ **19:** $R_1 = NO_2, R_2 = H;$ **20:** $R_1 = Cl, R_2 = Me;$ **21:** $R_1 = OMe;$ **22:** $R_1 = NO_2;$ **23:** $R_1 = OMe, R_2 = R_3 = H;$ **24:** $R_1 = NO_2, R_2 = R_3 = H;$ **25:** $R_1 = F, R_2 = Me, R_3 = Et$

7-Hydroxy-8-formylisoflavones **4-7** underwent a Knoevenagel reaction with 2-cyanomethyl derivatives of azines (pyridine and quinazolin-4-one) and azoles (1-methylbenzimidazole, 4-methylthiazole, 5-phenyl-1,3,4-thiadiazole, and benzothiazole) in DMF in the presence of catalytic amounts of piperidine at room temperature. Hydrolysis of the condensation products by H_2SO_4 (3%) for 5 h isolated in high yields 9-azahetaryl-3-arylpyrano[2,3-*f*]chromen-4,8-diones **12-14**, **16-20**, **24**, and **25**. Longer boiling in H_2SO_4 (30%) was required to form **15** and **21-23**. Compounds **12-25** are high melting and poorly soluble in organic solvents.

PMR spectra of **12-25** in CF₃CO₂D contained signals characteristic of the isoflavone protons and the azaheterocyclic part of the molecules in addition to a weak-field singlet at 9.43-10.15 ppm for H-10 of pyrano[2,3-*f*]chromen-4,8-dione that was deshielded by the azaheterocycle N atom. Formation of the α -pyrone ring was confirmed by the appearance in IR spectra of **12-25** of a strong band for C=O stretches of a lactone carbonyl at 1710-1750 cm⁻¹. The chromone C=O was located at 1640-1660 cm⁻¹, which agreed with previous results for α -pyronochromones [10, 17].

Thus, reaction of 7-hydroxy-8-formylisoflavones with 2-azahetarylacetonitriles under mild conditions produced new derivatives of α -pyrono[2,3-*f*]isoflavone with an azaheterocyclic substituent in the α -pyrone ring.

EXPERIMENTAL

The purity of the products was monitored by TLC on Silufol UV-254 plates using $CHCl_3:CH_3OH(9:1)$. PMR spectra were recorded in DMSO-d₆ and CF_3CO_2D on a Varian Mercury 400 spectrometer relative to TMS (internal standard). IR spectra were recorded on a UR-20 instrument in KBr disks. Elemental analyses of all compounds agreed with those calculated.

General Method for Synthesizing 7-Hydroxy-8-formylisoflavones 4-7. A solution of **8-11** (5 mmol) and hexamethylenetetramine (7 g, 50 mmol) in acetic acid (20 mL) was heated on a water bath for 6-8 h, poured into HCl: $H_2O(1:1, 24 \text{ mL})$, boiled for 10 min, and diluted with water (40 mL). After several hours the resulting precipitate was filtered off and recrystallized from EtOH.

7-Hydroxy-8-formyl-4'-methoxyisoflavone (4). Yield 60%, mp 178°C (lit. [19] mp 166°C, [20] 165-185°C), $C_{17}H_{12}O_5$. PMR spectrum (400 MHz, DMSO-d₆, δ , ppm, J/Hz): 3.82 (3H, s, CH₃O-4'), 6.97 (2H, d, J = 8.8, H_{Ar}-2', H_{Ar}-6'), 7.07 (1H, d, J = 8.8, H-6), 7.52 (2H, d, J = 8.8, H_{Ar}-3', H_{Ar}-5'), 8.28 (1H, d, J = 8.8, H-5), 8.37 (1H, s, H-2), 10.55 (1H, s, CHO-8), 12.25 (1H, s, OH-7). IR spectrum (KBr, v, cm⁻¹): 3080 (CHO...<u>HO</u>), 1640 (C=O).

7-Hydroxy-8-formyl-4'-nitroisoflavone (5). Yield 70%, mp 182°C, $C_{16}H_9NO_6$. PMR spectrum (400 MHz, DMSO-d₆, δ , ppm, J/Hz): 7.12 (1H, d, J = 8.8, H-6), 7.92 (2H, d, J = 8.8, H_{Ar}-2', H_{Ar}-6'), 8.27 (3H, d, J = 8.8, H-5, H_{Ar}-3', H_{Ar}-5'), 8.68 (1H, s, H-2), 10.53 (1H, s, CHO-8), 12.26 (1H, s, OH-7). IR spectrum (KBr, v, cm⁻¹): 3080 (CHO...<u>HO</u>), 1650 (C=O).

7-Hydroxy-2-methyl-8-formyl-4'-chloroisoflavone (6). Yield 72%, mp 165°C, $C_{17}H_{11}ClO_4$. PMR spectrum (400 MHz, DMSO-d₆, δ , ppm, J/Hz): 2.36 (3H, s, CH₃-2), 7.04 (1H, d, J = 8.8, H-6), 7.28 (2H, d, J = 8.4, H_{Ar}-2', H_{Ar}-6'), 7.44 (2H, d, J = 8.4, H_{Ar}-3', H_{Ar}-5'), 8.17 (1H, d, J = 8.8, H-5), 10.56 (1H, s, CHO-8), 12.22 (1H, s, OH-7). IR spectrum (KBr, v, cm⁻¹): 3100 (CHO...<u>HO</u>), 1640 (C=O).

7-Hydroxy-2-methyl-8-formyl-6-ethyl-4'-fluoroisoflavone (7). Yield 73%, mp 183°C, $C_{19}H_{15}FO_4$. PMR spectrum (400 MHz, DMSO-d₆, δ , ppm, J/Hz): 1.27 (3H, t, J = 7.6, <u>CH</u>₃CH₂-6), 2.35 (3H, s, CH₃-2), 2.73 (2H, q, J = 7.6, CH₃<u>CH</u>₂-6), 7.20 (2H, t, J_{H-3',H-2'} = J_{H-3',F} = 8.4, H_{Ar}-3', H_{Ar}-5'), 7.30 (2H, dd, J_{H-2',H-3'} = 8.4, J_{H-2',F} = 5.6, H_{Ar}-2', H_{Ar}-6'), 8.05 (1H, s, H-5), 10.59 (1H, s, CHO-8), 12.80 (1H, s, OH-7). IR spectrum (KBr, v, cm⁻¹): 3070 (CHO...<u>HO</u>), 1640 (C=O).

General Method for Synthesizing 9-Azahetaryl-3-arylpyrano[2,3-*f*]chromen-4,8-diones 12-25. A solution of 4-7 (1 mmol) in DMF (2 mL) was treated with the appropriate 2-azahetarylacetonitrile (1 mmol) and piperidine (3 drops), heated for 5 min, held at room temperature for 12 h, treated with H_2SO_4 (10 mL, 3%), boiled for 5 h (for 15 and 21-23, for 15 h in 30% H_2SO_4), and cooled. The precipitate was filtered off and recrystallized from DMF.

3-(4-Methoxyphenyl)-9-(pyridin-2-yl)pyrano[2,3-*f*]chromen-4,8-dione (12). Yield 79%, mp 217°C, $C_{24}H_{15}NO_5$. PMR spectrum (400 MHz, CF_3CO_2D , δ , ppm, J/Hz): 3.85 (3H, s, OCH_3 -4'), 6.98 (2H, d, J = 8.8, H_{Ar} -2', H_{Ar} -6'), 7.28 (2H, d, J = 8.8, H_{Ar} -3', H_{Ar} -5'), 7.53 (1H, d, J = 9.2, H-6), 7.97 (1H, t, J = 6.8, H_{Py} -4"), 8.22 (1H, s, H-2), 8.61-8.66 (3H, m, H-5, H_{Py} -3", H_{Py} -5"), 8.77 (1H, d, J = 5.6, H_{Py} -6"), 9.44 (1H, s, H-10). IR spectrum (KBr, v, cm⁻¹): 1740 (C=O_{α}), 1660 (C=O_{γ}).

3-(4-Nitrophenyl)-9-(pyridin-2-yl)pyrano[**2**,**3**-*f*]chromen-**4**,**8**-dione (13). Yield 51%, mp >300°C, C₂₃H₁₂N₂O₆. PMR spectrum (400 MHz, CF₃CO₂D, δ, ppm, J/Hz): 7.79 (1H, d, J = 9.2, H-6), 7.84 (2H, d, J = 8.8, H_{Ar}-2', H_{Ar}-6'), 8.21 (1H, t, J = 6.8, H_{Py}-4"), 8.47 (2H, d, J = 8.8, H_{Ar}-3', H_{Ar}-5'), 8.57 (1H, s, H-2), 8.83-8.90 (3H, m, H-5, H_{Py}-3", H_{Py}-5"), 9.01 (1H, d, J = 5.6, H_{Py}-6"), 9.68 (1H, s, H-10). IR spectrum (KBr, ν, cm⁻¹): 1750 (C=O_α), 1645 (C=O_γ).

2-Methyl-9-(pyridin-2-yl)-3-(4-chlorophenyl)pyrano[2,3-*f*]chromen-4,8-dione (14). Yield 75%, mp 267°C, $C_{24}H_{14}CINO_4$. PMR spectrum (400 MHz, CF_3CO_2D , δ , ppm, J/Hz): 2.61 (3H, s, CH_3 -2), 7.30 (2H, d, J = 8.4, H_{Ar} -2', H_{Ar} -6'), 7.55 (2H, d, J = 8.4, H_{Ar} -3', H_{Ar} -5'), 7.76 (1H, d, J = 8.8, H-6), 8.21 (1H, m, H_{Py} -4'), 8.81-8.84 (3H, m, H-5, H_{Py} -3", H_{Py} -5"), 9.01 (1H, d, J = 5.6, H_{Pv} -6"), 9.67 (1H, s, H-10). IR spectrum (KBr, ν , cm⁻¹): 1730 (C=O_{α}), 1650 (C=O_{γ}).

3-(4-Nitrophenyl)-9-(4-oxo-3,4-dihydroquinazolin-2-yl)pyrano[**2,3-***f*]**chromen-4,8-dione** (**15**). Yield 83%, mp >300°C, $C_{26}H_{13}N_3O_7$. PMR spectrum (400 MHz, CF_3CO_2D , δ , ppm, J/Hz): 7.79 (1H, d, J = 9.2, H-6), 7.83 (2H, d, J = 8.8, H_{Ar} -2', H_{Ar} -6'), 8.01 (1H, t, J = 7.6, H-7"), 8.17 (1H, d, J = 8.0, H-8"), 8.26 (1H, t, J = 7.6, H-6"), 8.47 (2H, d, J = 8.8, H_{Ar} -3', H_{Ar} -5'), 8.51 (1H, s, H-2), 8.61 (1H, d, J = 8.0, H-5"), 8.97 (1H, d, J = 9.2, H-5), 10.15 (1H, s, H-10). IR spectrum (KBr, v, cm⁻¹): 1710 (C=O_a), 1670 (C=O_a), 1645 (C=O_y).

9-(1-Methylbenzimidazol-2-yl)-3-(4-nitrophenyl)pyrano[**2**,**3-***f*]**chromen-4**,**8-dione (16).** Yield 82%, mp 291°C, C₂₆H₁₅N₃O₆. PMR spectrum (400 MHz, CF₃CO₂D, δ, ppm, J/Hz): 4.32 (3H, s, N–CH₃), 7.79 (1H, d, J = 9.2, H-6), 7.86 (5H, m, H_{Ar}-2', H_{Ar}-6', H_{Bzi}-5", H_{Bzi}-6", H_{Bzi}-7"), 8.00 (1H, d, J = 8.0, H_{Bzi}-4"), 8.48 (2H, d, J = 8.0, H_{Ar}-3', H_{Ar}-5'), 8.56 (1H, s, H-2), 8.90 (1H, d, J = 9.2, H-5), 9.43 (1H, s, H-10). IR spectrum (KBr, ν, cm⁻¹): 1735 (C=O_α), 1660 (C=O_γ).

2-Methyl-9-(1-methylbenzimidazol-2-yl)-3-(4-fluorophenyl)-6-ethylpyrano[2,3-*f***]chromen-4,8-dione (17). Yield 83%, mp >300°C, C_{29}H_{21}FN_2O_4. PMR spectrum (400 MHz, CF_3CO_2D, \delta, ppm, J/Hz): 1.52 (3H, t, J = 7.6, <u>CH</u>₃CH₂-6), 2.58 (3H, s, CH₃-2), 3.17 (2H, q, J = 7.6, CH₃<u>CH</u>₂-6), 4.32 (3H, s, N–CH₃), 7.27 (2H, t, J_{H-3',H-2'} = J_{H-3',F} = 8.4, H_{Ar}-3', H_{Ar}-5'), 7.37 (2H, dd, J_{H-2',H-3'} = 8.4, J_{H-2',F} = 5.6, H_{Ar}-2', H_{Ar}-6'), 7.87-8.01 (4H, m, H_{Bzi}-4", H_{Bzi}-5", H_{Bzi}-6", H_{Bzi}-7"), 8.70 (1H, s, H-5), 9.44 (1H, s, H-10). IR spectrum (KBr, v, cm⁻¹): 1720 (C=O_α), 1630 (C=O_γ).**

9-(4-Methylthiazol-2-yl)-3-(4-methoxyphenyl)pyrano[2,3-*f*]chromen-4,8-dione (18). Yield 78%, mp 271°C, $C_{23}H_{15}NO_5S$. PMR spectrum (400 MHz, CF_3CO_2D , δ , ppm, J/Hz): 2.58 (3H, s, CH_3 -4″), 3.85 (3H, s, OCH_3 -4′), 6.98 (2H, d, J = 8.8, H_{Ar} -2′, H_{Ar} -6′), 7.28 (2H, d, J = 8.8, H_{Ar} -3′, H_{Ar} -5′), 7.51 (1H, d, J = 9.2, H-6), 7.56 (1H, s, H-5″), 8.21 (1H, s, H-2), 8.64 (1H, d, J = 9.2, H-5), 9.43 (1H, s, H-10). IR spectrum (KBr, v, cm⁻¹): 1735 (C=O_q), 1650 (C=O_y).

9-(4-Methylthiazol-2-yl)-3-(4-nitrophenyl)pyrano[2,3-*f*]chromen-4,8-dione (19). Yield 74%, mp 292°C, $C_{22}H_{12}N_2O_6S$. PMR spectrum (400 MHz, CF_3CO_2D , δ , ppm, J/Hz): 2.82 (3H, s, CH_3 -4″), 7.78 (1H, d, J = 9.2, H-6), 7.79 (1H, s, H-5″), 7.84 (2H, d, J = 8.4, H_{Ar} -2′, H_{Ar} -6′), 8.46 (2H, d, J = 8.4, H_{Ar} -3′, H_{Ar} -5′), 8.58 (1H, s, H-2), 8.87 (1H, d, J = 9.2, H-5), 9.75 (1H, s, H-10). IR spectrum (KBr, v, cm⁻¹): 1740 (C=O_{α}), 1660 (C=O_{γ}).

2-Methyl-9-(4-methylthiazol-2-yl)-3-(4-chlorophenyl)pyrano[**2**,**3**-*f*]**chromen-4**,**8**-**dione**(**20**). Yield 76%, mp 275°C, C₂₃H₁₄ClNO₄S. PMR spectrum (400 MHz, CF₃CO₂D, δ , ppm, J/Hz): 2.60 (3H, s, CH₃-2), 2.80 (3H, s, CH₃-4"), 7.29 (2H, d, J = 8.4, H_{Ar}-2', H_{Ar}-6'), 7.54 (2H, d, J = 8.4, H_{Ar}-3', H_{Ar}-5'), 7.73 (1H, d, J = 8.8, H-6), 7.78 (1H, s, H-5"), 8.81 (1H, d, J = 8.8, H-5), 9.73 (1H, s, H-10). IR spectrum (KBr, v, cm⁻¹): 1725 (C=O_α), 1660 (C=O₄).

3-(4-Methoxyphenyl)-9-(5-phenyl-[1,3,4]thiadiazol-2-yl)pyrano[2,3-f]chromen-4,8-dione (21). Yield 87%, mp >300°C, C₂₇H₁₆N₂O₅S. PMR spectrum (400 MHz, CF₃CO₂D, δ, ppm, J/Hz): 3.85 (3H, s, OCH₃-4'), 6.99 (2H, d, J = 8.8, H_{Ar}-2', H_{Ar}-6'), 7.30 (2H, d, J = 8.8, H_{Ar}-3', H_{Ar}-5'), 7.54-7.59 (3H, m, H-6, H_{Ph}-3", H_{Ph}-5"), 7.73 (1H, t, J = 7.6, H_{Ph}-4"), 7.93 (2H, d, J = 7.6, H_{Ph}-2", H_{Ph}-6"), 8.26 (1H, s, H-2), 8.65 (1H, d, J = 9.2, H-5), 9.65 (1H, s, H-10). IR spectrum (KBr, v, cm⁻¹): 1725 (C=O_α), 1640 (C=O_γ).

3-(4-Nitrophenyl)-9-(5-phenyl-[1,3,4]thiadiazol-2-yl)pyrano[2,3-*f***]chromen-4,8-dione (22).** Yield 88%, mp>300°C, $C_{26}H_{13}N_3O_6S$. PMR spectrum (400 MHz, CF_3CO_2D , δ , ppm, J/Hz): 7.79 (3H, m, H-6, H_{Ph} -3", H_{Ph} -5"), 7.84 (2H, d, J = 8.8, H_{Ar} -2', H_{Ar} -6'), 7.94 (1H, t, J = 7.6, H_{Ph} -4"), 8.16 (2H, d, J = 7.6, H_{Ph} -2", H_{Ph} -6"), 8.47 (2H, d, J = 8.8, H_{Ar} -3', H_{Ar} -5'), 8.60 (1H, s, H-2), 8.87 (1H, d, J = 9.2, H-5), 9.90 (1H, s, H-10). IR spectrum (KBr, v, cm⁻¹): 1725 (C=O_{\alpha}), 1660 (C=O_{\gamma}).

9-Benzothiazol-2-yl-3-(4-methoxyphenyl)pyrano[2,3-*f*]chromen-4,8-dione (23). Yield 89%, mp >300°C, $C_{26}H_{15}NO_5S$. PMR spectrum (400 MHz, CF_3CO_2D , δ , ppm, J/Hz): 4.09 (3H, s, OCH_3 -4'), 7.23 (2H, d, J = 8.4, H_{Ar} -2', H_{Ar} -6'), 7.53 (2H, d, J = 8.4, H_{Ar} -3', H_{Ar} -5'), 7.66 (1H, d, J = 8.8, H-6), 7.95 (1H, t, J = 8.4, H-6"), 8.03 (1H, t, J = 8.4, H-5"), 8.31 (1H, d, J = 8.4, H-7"), 8.40 (1H, d, J = 8.4, H-4"), 8.49 (1H, s, H-2), 8.94 (1H, d, J = 8.8, H-5), 9.89 (1H, s, H-10). IR spectrum (KBr, v, cm⁻¹): 1735 (C=O_{α}), 1645 (C=O_{γ}).

9-Benzothiazol-2-yl-3-(4-nitrophenyl)pyrano[**2**,**3**-*f*]**chromen-4**,**8**-**dione** (**24**). Yield 78%, mp>300°C, C₂₅H₁₂N₂O₆S. PMR spectrum (400 MHz, CF₃CO₂D, δ, ppm, J/Hz): 7.81 (1H, d, J = 8.8, H-6), 7.86 (2H, d, J = 8.8, H_{Ar}-2', H_{Ar}-6'), 7.96 (1H, t, J = 8.4, H-6''), 8.04 (1H, t, J = 8.4, H-5''), 8.32 (1H, d, J = 8.4, H-7''), 8.40 (1H, d, J = 8.4, H-4''), 8.48 (2H, d, J = 8.8, H_{Ar}-3', H_{Ar}-5'), 8.62 (1H, s, H-2), 8.94 (1H, d, J = 8.8, H-5), 9.90 (1H, s, H-10). IR spectrum (KBr, v, cm⁻¹): 1725 (C=O_α), 1650 (C=O_γ).

9-Benzothiazol-2-yl-2-methyl-3-(4-fluorophenyl)-6-ethylpyrano[2,3-f]chromen-4,8-dione (25). Yield 85%, mp >300°C, $C_{28}H_{18}FNO_4S$. PMR spectrum (400 MHz, CF_3CO_2D , δ , ppm, J/Hz): 1.49 (3H, t, J = 7.6, <u>CH_3CH_2-6</u>), 2.61 (3H, s, CH_3-2), 3.16 (2H, q, J = 7.6, CH_3<u>CH_2-6</u>), 7.24 (2H, t, J_{H-3',H-2'} = J_{H-3',F} = 8.4, H_{Ar}-3', H_{Ar}-5'), 7.34 (2H, dd, J_{H-2',H-3'} = 8.4, J_{H-2',F} = 5.6, H_{Ar}-2', H_{Ar}-6'), 7.93 (1H, t, J = 8.4, H-6'), 8.00 (1H, t, J = 8.4, H-5''), 8.29 (1H, d, J = 8.4, H-7''), 8.35 (1H, d, J = 8.4, H-4''), 8.72 (1H, s, H-5), 9.87 (1H, s, H-10). IR spectrum (KBr, v, cm⁻¹): 1725 (C=O_α), 1645 (C=O_γ).

REFERENCES

- 1. B. S. Joshi and V. N. Kamat, *Tetrahedron Lett.*, **46**, 5767 (1966).
- 2. B. S. Joshi, V. N. Kamat, and A. K. Saksena, *Tetrahedron*, 23, No. 12, 4785 (1967).
- 3. F. Asai, M. Iinuma, T. Tanaka, and M. Mizuno, Chem. Pharm. Bull., 38, No. 4, 1079 (1990).
- 4. F. Asai, M. Iinuma, T. Tanaka, and M. Mizuno, *Heterocycles*, 33, No. 1, 229 (1992).
- 5. F. Asai, M. Iinuma, T. Tanaka, M. Takenaka, and M. Mizuno, *Phytochemistry*, **31**, No. 7, 2487 (1992).

- 6. M. Iinuma, T. Tanaka, F. Asai, K. Miyauchi, and E. Wollenweber, *Phytochemistry*, **33**, No. 5, 1247 (1993).
- 7. M. Iinuma, T. Tanaka, and F. Asai, *Phytochemistry*, **36**, No. 4, 941 (1994).
- 8. G. Pastorini, R. Rodighiero, P. Manzini, M. T. Conconi, A. Chilin and A. Guiotto, *Gazz. Chim. Ital.*, **119**, No. 9, 481 (1989).
- 9. M. V. Lakshmi and N. V. S. Rao, *Curr. Sci.*, **42**, No. 1, 19 (1973).
- 10. K. A. Thakar and N. R. Manjaramkar, *Indian J. Chem.*, 9, 892 (1971).
- 11. C. V. Deliwala and N. M. Shah, J. Chem. Soc., 1250 (1939).
- 12. K. A. Thakar and R. C. Joshi, J. Indian Chem. Soc., 58, No. 9, 880 (1981).
- 13. M. S. Y. Khan and P. Sharma, *Indian J. Chem.*, Sec. B, 34, No. 3, 237 (1995).
- 14. S. Rangaswami and T. R. Seshadry, Proc. Indian Acad. Sci., Sect. A, 9, 7 (1939).
- 15. Y. Kawase, T. Sekiba, and K. Fukui, Bull. Chem. Soc. Jpn., **31**, 997 (1958).
- 16. K. V. S. Raju, G. Srimannarayana, and N. V. S. Rao, Tetrahedron Lett., No. 5, 473 (1977).
- 17. R. Puranik, Y. J. Rao, and G. L. D. Krupadanam, Synth. Commun., 29, No. 8, 1355 (1999).
- 18. A. V. S. Rao and N. V. S. Rao, Proc. Indian Acad. Sci., 80, No. 2, 102 (1974).
- 19. M. Krishnamurti and T. R. Seshadri, J. Sci. Ind. Res., Sect. B, 14, 258 (1955).
- 20. T. Murakami, Y. Nishikawa, and T. Ando, *Chem. Pharm. Bull.*, **8**, No. 8, 688 (1960).