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AZAHETERO CYCLIC DERIVATIVES OF α-PYRONO[2,3-f]ISOFLAVONES

T. V. Shokol, V. A. Turov, V. V. Semenyuchenko, and V. P. Khilya UDC 547.814.5
 

9-Azahetaryl-3-arylpyrano[2,3-f]chromen-4,8-diones were synthesized by condensation of 7-hydroxy-8-
formylisoflavones with 2-azahetarylacetonitriles followed by acid hydrolysis.

Key words: isoflavones, 2-azahetarylacetonitriles, condensation, α-pyrono[2,3-f]isoflavones.

The broad class of natural complicated flavonoids contains compounds with α- and γ-pyrone cores in a single molecule,
in particular, derivatives of pyrano[2,3-f]chromen-4,8-dione (1).  Roots of Clausena heptaphylla afforded clausenidine (2) [1,
2]; the powdery film from the leaf surface of the fern Pityrogramma calomelanos, calomelanol D (3) [3-7], which are partially
hydrogenated derivatives of 1.

Synthetic derivatives of α-pyrono[2,3-f]chromones have been proposed as monofunctional photoreagents for DNA [8].
α-Pyrono[2,3-f]flavones, their heteroanalogs, and isoflavones exhibit bactericidal activity [9, 10].

The pyrano[2,3-f]chromen-4,8-dione system can be synthesized via annellation of the γ-pyrone core to the coumarin
core [9-13] or, on the other hand, by annellation of the α-pyrone ring to the chromone ring [9, 14-18].  α-Pyrono[2,3-
f]isoflavones were prepared through both pathways, by acylation of 5-hydroxy-6-arylacetylcoumarin using the Kostanetsky
reaction [11] and starting with 7-hydroxy-8-formylchromones under forcing Perkin reaction conditions [9, 15].  Derivatives of
this system with heterocyclic substituents in the  α-pyrone  ring  are  known.   Therefore,  it  seemed  interesting  to  modify
α-pyrono[2,3-f]isoflavones by adding pharmacophoric azaheterocyclic groups.

Thus, we investigated the reaction of 7-hydroxy-8-formylisoflavones 4-7 with 2-azahetarylacetonitriles.  The starting
materials for synthesizing the formyl derivatives were the natural isoflavone formononetin (8) and its synthetic analogs 9-11
that are unsubstituted and substituted at the 2- and 6-positions.  8-Formylformononetin (4) was synthesized previously from 8
using the Duff reaction [19, 20].   We used this method to  synthesize  7-hydroxy-8-formylisoflavones  4-7.    Reaction of 8-11
with an excess of hexamethylenetetramine in acetic acid with subsequent work up with dilute HCl produced in good yields (60-
73%) 4-7.

PMR spectra of 4-7 in DMSO-d6 contained a singlet at 6.8 ppm that was characteristic of H-8 in starting isoflavones
8-11.    The  formyl  proton  resonated  at 10-53-10.59 ppm.   A broad singlet for the 7-OH was shifted to weak field by almost
2 ppm as a result of the formation of an intramolecular H-bond with the O atom of the 8-CHO group.  The chelate structure of
the products was also confirmed by their characteristic red-brown color in alcohol solution with FeCl3 [14, 19] and the presence
of a broad band at 3070-3100 cm-1 in the IR spectra.  Formyl C=O and isoflavone carbonyl stretching vibrations were observed
as a strong broad band at 1640-1650 cm-1.
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  4: R1 = OMe, R2 = R3 = H; 5: R1 = NO2, R2 = R3 = H; 6: R1 = Cl, R2 = Me, R3 = H; 7: R1 = F, R2 = Me, R3 = Et; 

  8: R1 = OMe, R2 = R3 = H; 9: R1 = NO2, R2 = R3 = H; 10: R1 = Cl, R2 = Me, R3 = H; 11: R1 = F, R2 = Me, R3 = Et; 

12: R1 = OMe, R2 = H; 13: R1 = NO2, R2 = H; 14: R1 = Cl, R2 = Me; 16: R1 = NO2, R2 = R3 = H; 17: R1 = F, R2 = Me, R3 = Et; 

18: R1 = OMe, R2 = H; 19: R1 =NO2, R2 = H; 20: R1 = Cl, R2 = Me; 21: R1 = OMe; 22: R1 = NO2; 23: R1 = OMe, R2 = R3 = H;

24: R1 = NO2, R2 = R3 = H; 25: R1 = F, R2 = Me, R3 = Et

7-Hydroxy-8-formylisoflavones 4-7 underwent a Knoevenagel reaction with 2-cyanomethyl derivatives of azines
(pyridine and quinazolin-4-one) and azoles (1-methylbenzimidazole, 4-methylthiazole, 5-phenyl-1,3,4-thiadiazole, and
benzothiazole) in DMF in the presence of catalytic amounts of piperidine at room temperature.  Hydrolysis of the condensation
products by H2SO4 (3%) for 5 h isolated in high yields 9-azahetaryl-3-arylpyrano[2,3-f]chromen-4,8-diones 12-14, 16-20, 24,
and 25.  Longer boiling in H2SO4 (30%) was required to form 15 and 21-23.  Compounds 12-25 are high melting and poorly
soluble in organic solvents.

PMR spectra of 12-25 in CF3CO2D contained signals characteristic of the isoflavone protons and the azaheterocyclic
part of the molecules in addition to a weak-field singlet at 9.43-10.15 ppm for H-10 of pyrano[2,3-f]chromen-4,8-dione that was
deshielded by the azaheterocycle N atom.  Formation of the α-pyrone ring was confirmed by the appearance in IR spectra of
12-25 of a strong band for C=O stretches of a lactone carbonyl at 1710-1750 cm-1.  The chromone C=O was located at 1640-
1660 cm-1, which agreed with previous results for α-pyronochromones [10, 17].

Thus, reaction of 7-hydroxy-8-formylisoflavones with 2-azahetarylacetonitriles under mild conditions produced new
derivatives of α-pyrono[2,3-f]isoflavone with an azaheterocyclic substituent in the α-pyrone ring.
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EXPERIMENTAL

The purity of the products was monitored by TLC on Silufol UV-254 plates using CHCl3:CH3OH (9:1).  PMR spectra
were recorded in DMSO-d6 and CF3CO2D on a Varian Mercury 400 spectrometer relative to TMS (internal standard).  IR
spectra were recorded on a UR-20 instrument in KBr disks.  Elemental analyses of all compounds agreed with those calculated.

General Method for Synthesizing 7-Hydroxy-8-formylisoflavones 4-7.  A solution of 8-11 (5 mmol) and
hexamethylenetetramine (7 g, 50 mmol) in acetic acid (20 mL) was heated on a water bath for 6-8 h, poured into HCl:H2O (1:1,
24 mL), boiled for 10 min, and diluted with water (40 mL).  After several hours the resulting precipitate was filtered off and
recrystallized from EtOH.

7-Hydroxy-8-formyl-4 ′-methoxyisoflavone (4).  Yield 60%, mp 178°C (lit. [19] mp 166°C, [20] 165-185°C),
C17H12O5.  PMR spectrum (400 MHz, DMSO-d6, δ, ppm, J/Hz): 3.82 (3H, s, CH3O-4′), 6.97 (2H, d, J = 8.8, HAr-2′, HAr-6′),
7.07  (1H, d, J = 8.8, H-6),  7.52 (2H, d, J = 8.8, HAr-3′, HAr-5′), 8.28 (1H, d, J = 8.8, H-5), 8.37 (1H, s, H-2), 10.55 (1H, s,
CHO-8), 12.25 (1H, s, OH-7).  IR spectrum (KBr, ν, cm-1): 3080 (CHO...HO), 1640 (C=O).

7-Hydroxy-8-formyl-4 ′-nitroisoflavone  (5).   Yield  70%,  mp  182°C, C16H9NO6.  PMR spectrum (400 MHz,
DMSO-d6, δ, ppm, J/Hz):  7.12 (1H, d, J = 8.8, H-6), 7.92 (2H, d, J = 8.8, HAr-2′, HAr-6′), 8.27 (3H, d, J = 8.8, H-5, HAr-3′,
HAr-5′), 8.68 (1H, s, H-2), 10.53 (1H, s, CHO-8), 12.26 (1H, s, OH-7).  IR spectrum (KBr, ν, cm-1): 3080 (CHO...HO), 1650
(C=O).

7-Hydroxy-2-methyl-8-formyl-4′-chloroisoflavone  (6).   Yield  72%,  mp  165°C,   C17H11ClO4.  PMR spectrum
(400 MHz, DMSO-d6, δ, ppm, J/Hz): 2.36 (3H, s, CH3-2), 7.04 (1H, d, J = 8.8, H-6), 7.28 (2H, d, J = 8.4, HAr-2′, HAr-6′), 7.44
(2H, d, J = 8.4, HAr-3′, HAr-5′), 8.17 (1H, d, J = 8.8, H-5), 10.56 (1H, s, CHO-8), 12.22 (1H, s, OH-7).  IR spectrum (KBr, ν,
cm-1): 3100 (CHO...HO), 1640 (C=O).

7-Hydroxy-2-methyl-8-formyl-6-ethyl-4′-fluoroisoflavone (7).  Yield 73%, mp 183°C, C19H15FO4.  PMR spectrum
(400 MHz, DMSO-d6, δ, ppm, J/Hz): 1.27 (3H, t, J = 7.6, CH3CH2-6), 2.35 (3H, s, CH3-2), 2.73 (2H, q, J = 7.6, CH3CH2-6),
7.20 (2H, t, JH-3′,H-2′ = JH-3′,F = 8.4, HAr-3′, HAr-5′), 7.30 (2H, dd, JH-2′,H-3′ = 8.4, JH-2′,F = 5.6, HAr-2′, HAr-6′), 8.05 (1H, s,
H-5), 10.59 (1H, s, CHO-8), 12.80 (1H, s, OH-7).  IR spectrum (KBr, ν, cm-1): 3070 (CHO...HO), 1640 (C=O).

General Method for Synthesizing 9-Azahetaryl-3-arylpyrano[2,3-f]chromen-4,8-diones 12-25.  A solution of 4-7
(1 mmol) in DMF (2 mL) was treated with the appropriate 2-azahetarylacetonitrile (1 mmol) and piperidine (3 drops), heated
for 5 min, held at room temperature for 12 h, treated with H2SO4 (10 mL, 3%), boiled for 5 h (for 15 and 21-23, for 15 h in 30%
H2SO4), and cooled.  The precipitate was filtered off and recrystallized from DMF.

3-(4-Methoxyphenyl)-9-(pyridin-2-yl)pyrano[2,3-f]chromen-4,8-dione (12).  Yield 79%, mp 217°C, C24H15NO5.
PMR spectrum (400 MHz, CF3CO2D, δ, ppm, J/Hz): 3.85 (3H, s, OCH3-4′), 6.98 (2H, d, J = 8.8, HAr-2′, HAr-6′), 7.28 (2H, d,
J = 8.8, HAr-3′, HAr-5′), 7.53 (1H, d, J = 9.2, H-6),  7.97  (1H, t, J = 6.8, HPy-4″),  8.22  (1H, s, H-2), 8.61-8.66 (3H, m, H-5,
HPy-3″, HPy-5″), 8.77 (1H, d, J = 5.6, HPy-6″), 9.44 (1H, s, H-10).  IR spectrum (KBr, ν, cm-1): 1740 (C=Oα), 1660 (C=Oγ).

3-(4-Nitrophenyl)-9-(pyridin-2-yl)pyrano[2,3-f]chromen-4,8-dione (13).  Yield 51%, mp >300°C, C23H12N2O6.
PMR spectrum (400 MHz, CF3CO2D, δ, ppm, J/Hz): 7.79 (1H, d, J = 9.2, H-6), 7.84 (2H, d, J = 8.8, HAr-2′, HAr-6′), 8.21 (1H,
t, J = 6.8, HPy-4″), 8.47 (2H, d, J = 8.8, HAr-3′, HAr-5′), 8.57 (1H, s, H-2), 8.83-8.90 (3H, m, H-5, HPy-3″, HPy-5″), 9.01 (1H,
d, J = 5.6, HPy-6″), 9.68 (1H, s, H-10).  IR spectrum (KBr, ν, cm-1): 1750 (C=Oα), 1645 (C=Oγ).

2-Methyl-9-(pyridin-2-yl)-3-(4-chlorophenyl)pyrano[2,3-f]chromen-4,8-dione (14).  Yield 75%, mp 267°C,
C24H14ClNO4.  PMR spectrum (400 MHz, CF3CO2D, δ, ppm, J/Hz): 2.61 (3H, s, CH3-2), 7.30 (2H, d, J = 8.4, HAr-2′, HAr-6′),
7.55 (2H, d, J = 8.4, HAr-3′, HAr-5′), 7.76 (1H, d, J = 8.8, H-6), 8.21 (1H, m, HPy-4′), 8.81-8.84 (3H, m, H-5, HPy-3″, HPy-5″),
9.01 (1H, d, J = 5.6, HPy-6″), 9.67 (1H, s, H-10).  IR spectrum (KBr, ν, cm-1): 1730 (C=Oα), 1650 (C=Oγ).

3-(4-Nitrophenyl)-9-(4-oxo-3,4-dihydroquinazolin-2-yl)pyrano[2,3-f]chromen-4,8-dione    (15).      Yield   83%,
mp >300°C,  C26H13N3O7.   PMR  spectrum  (400 MHz, CF3CO2D, δ, ppm, J/Hz):  7.79  (1H, d, J = 9.2, H-6), 7.83 (2H, d,
J = 8.8, HAr-2′, HAr-6′),  8.01  (1H, t, J = 7.6, H-7″), 8.17 (1H, d, J = 8.0, H-8″), 8.26 (1H, t, J = 7.6, H-6″), 8.47 (2H, d, J = 8.8,
HAr-3′, HAr-5′), 8.51 (1H, s, H-2), 8.61 (1H, d, J = 8.0, H-5″), 8.97 (1H, d, J = 9.2, H-5), 10.15 (1H, s, H-10).  IR spectrum (KBr,
ν, cm-1): 1710 (C=Oα), 1670 (C=Oq), 1645 (C=Oγ).

9-(1-Methylbenzimidazol-2-yl)-3-(4-nitrophenyl)pyrano[2,3-f]chromen-4,8-dione (16).  Yield 82%, mp 291°C,
C26H15N3O6.  PMR spectrum (400 MHz, CF3CO2D, δ, ppm, J/Hz): 4.32 (3H, s, N–CH3), 7.79 (1H, d, J = 9.2, H-6), 7.86 (5H,
m, HAr-2′, HAr-6′, HBzi-5″, HBzi-6″, HBzi-7″), 8.00 (1H, d, J = 8.0, HBzi-4″), 8.48 (2H, d, J = 8.0, HAr-3′, HAr-5′), 8.56 (1H, s,
H-2), 8.90 (1H, d, J = 9.2, H-5), 9.43 (1H, s, H-10).  IR spectrum (KBr, ν, cm-1): 1735 (C=Oα), 1660 (C=Oγ).
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2-Methyl-9-(1-methylbenzimidazol-2-yl)-3-(4-fluorophenyl)-6-ethylpyrano[2,3-f]chromen-4,8-dione (17).  Yield
83%, mp >300°C, C29H21FN2O4.  PMR spectrum (400 MHz, CF3CO2D, δ, ppm, J/Hz): 1.52 (3H, t, J = 7.6, CH3CH2-6), 2.58
(3H, s, CH3-2), 3.17 (2H, q, J = 7.6, CH3CH2-6), 4.32 (3H, s, N–CH3), 7.27 (2H, t, JH-3′,H-2′ = JH-3′,F = 8.4, HAr-3′, HAr-5′),
7.37 (2H, dd, JH-2′,H-3′ = 8.4, JH-2′,F = 5.6, HAr-2′, HAr-6′), 7.87-8.01 (4H, m, HBzi-4″, HBzi-5″, HBzi-6″, HBzi-7″), 8.70 (1H,
s, H-5), 9.44 (1H, s, H-10).  IR spectrum (KBr, ν, cm-1): 1720 (C=Oα), 1630 (C=Oγ).

9-(4-Methylthiazol-2-yl)-3-(4-methoxyphenyl)pyrano[2,3-f]chromen-4,8-dione (18).  Yield 78%, mp 271°C,
C23H15NO5S.  PMR spectrum (400 MHz, CF3CO2D, δ, ppm, J/Hz): 2.58 (3H, s, CH3-4″), 3.85 (3H, s, OCH3-4′), 6.98 (2H, d,
J = 8.8, HAr-2′, HAr-6′), 7.28 (2H, d, J = 8.8, HAr-3′, HAr-5′), 7.51 (1H, d, J = 9.2, H-6), 7.56 (1H, s, H-5″), 8.21 (1H, s, H-2),
8.64 (1H, d, J = 9.2, H-5), 9.43 (1H, s, H-10).  IR spectrum (KBr, ν, cm-1): 1735 (C=Oα), 1650 (C=Oγ).

9-(4-Methylthiazol-2-yl)-3-(4-nitrophenyl)pyrano[2,3-f]chromen-4,8-dione (19).  Yield 74%, mp 292°C,
C22H12N2O6S.  PMR spectrum (400 MHz, CF3CO2D, δ, ppm, J/Hz): 2.82 (3H, s, CH3-4″), 7.78 (1H, d, J = 9.2, H-6), 7.79 (1H,
s, H-5″), 7.84 (2H, d, J = 8.4, HAr-2′, HAr-6′), 8.46 (2H, d, J = 8.4, HAr-3′, HAr-5′), 8.58 (1H, s, H-2), 8.87 (1H, d, J = 9.2, H-5),
9.75 (1H, s, H-10).  IR spectrum (KBr, ν, cm-1): 1740 (C=Oα), 1660 (C=Oγ).

2-Methyl-9-(4-methylthiazol-2-yl)-3-(4-chlorophenyl)pyrano[2,3-f]chromen-4,8-dione (20).  Yield 76%, mp 275°C,
C23H14ClNO4S.  PMR spectrum (400 MHz, CF3CO2D, δ, ppm, J/Hz): 2.60 (3H, s, CH3-2), 2.80 (3H, s, CH3-4″), 7.29 (2H, d,
J = 8.4, HAr-2′, HAr-6′), 7.54 (2H, d, J = 8.4, HAr-3′, HAr-5′), 7.73 (1H, d, J = 8.8, H-6), 7.78 (1H, s, H-5″), 8.81 (1H, d, J = 8.8,
H-5), 9.73 (1H, s, H-10).  IR spectrum (KBr, ν, cm-1): 1725 (C=Oα), 1660 (C=Oγ).

3-(4-Methoxyphenyl)-9-(5-phenyl-[1,3,4]thiadiazol-2-yl)pyrano[2,3-f]chromen-4,8-dione   (21).    Yield    87%,
mp >300°C, C27H16N2O5S.  PMR spectrum (400 MHz, CF3CO2D, δ, ppm, J/Hz): 3.85 (3H, s, OCH3-4′), 6.99 (2H, d, J = 8.8,
HAr-2′, HAr-6′), 7.30 (2H, d, J = 8.8, HAr-3′, HAr-5′), 7.54-7.59 (3H, m, H-6, HPh-3″, HPh-5″), 7.73 (1H, t, J = 7.6, HPh-4″), 7.93
(2H, d, J = 7.6, HPh-2″, HPh-6″), 8.26 (1H, s, H-2), 8.65 (1H, d, J = 9.2, H-5), 9.65 (1H, s, H-10).  IR spectrum (KBr, ν, cm-1):
1725 (C=Oα), 1640 (C=Oγ).

3-(4-Nitrophenyl)-9-(5-phenyl-[1,3,4]thiadiazol-2-yl)pyrano[2,3-f]chromen-4,8-dione (22).  Yield 88%, mp >300°C,
C26H13N3O6S.  PMR spectrum (400 MHz, CF3CO2D, δ, ppm, J/Hz): 7.79 (3H, m, H-6, HPh-3″, HPh-5″), 7.84 (2H, d, J = 8.8,
HAr-2′, HAr-6′), 7.94 (1H, t, J = 7.6, HPh-4″), 8.16 (2H, d, J = 7.6, HPh-2″, HPh-6″), 8.47 (2H, d, J = 8.8, HAr-3′, HAr-5′), 8.60
(1H, s, H-2), 8.87 (1H, d, J = 9.2, H-5), 9.90 (1H, s, H-10).  IR spectrum (KBr, ν, cm-1): 1725 (C=Oα), 1660 (C=Oγ).

9-Benzothiazol-2-yl-3-(4-methoxyphenyl)pyrano[2,3-f]chromen-4,8-dione (23).  Yield 89%, mp >300°C,
C26H15NO5S.  PMR spectrum (400 MHz, CF3CO2D, δ, ppm, J/Hz): 4.09 (3H, s, OCH3-4′), 7.23 (2H, d, J = 8.4, HAr-2′, HAr-6′),
7.53 (2H, d, J = 8.4, HAr-3′, HAr-5′), 7.66 (1H, d, J = 8.8, H-6), 7.95 (1H, t, J = 8.4, H-6″), 8.03 (1H, t, J = 8.4, H-5″), 8.31 (1H,
d, J = 8.4, H-7″), 8.40 (1H, d, J = 8.4, H-4″), 8.49 (1H, s, H-2), 8.94 (1H, d, J = 8.8, H-5), 9.89 (1H, s, H-10).  IR spectrum (KBr,
ν, cm-1): 1735 (C=Oα), 1645 (C=Oγ).

9-Benzothiazol-2-yl-3-(4-nitrophenyl)pyrano[2,3-f]chromen-4,8-dione (24).  Yield 78%, mp >300°C, C25H12N2O6S.
PMR spectrum (400 MHz, CF3CO2D, δ, ppm, J/Hz): 7.81 (1H, d, J = 8.8, H-6), 7.86 (2H, d, J = 8.8, HAr-2′, HAr-6′), 7.96 (1H,
t, J = 8.4, H-6″), 8.04 (1H, t, J = 8.4, H-5″), 8.32 (1H, d, J = 8.4, H-7″), 8.40 (1H, d, J = 8.4, H-4″), 8.48 (2H, d, J = 8.8, HAr-3′,
HAr-5′), 8.62 (1H, s, H-2), 8.94 (1H, d, J = 8.8, H-5), 9.90 (1H, s, H-10).  IR spectrum (KBr, ν, cm-1): 1725 (C=Oα), 1650
(C=Oγ).

9-Benzothiazol-2-yl-2-methyl-3-(4-fluorophenyl)-6-ethylpyrano[2,3-f]chromen-4,8-dione   (25).    Yield   85%,
mp >300°C, C28H18FNO4S.  PMR spectrum (400 MHz, CF3CO2D, δ, ppm, J/Hz): 1.49 (3H, t, J = 7.6, CH3CH2-6), 2.61 (3H,
s, CH3-2), 3.16 (2H, q, J = 7.6, CH3CH2-6), 7.24 (2H, t, JH-3′,H-2′ = JH-3′,F = 8.4, HAr-3′, HAr-5′), 7.34 (2H, dd, JH-2′,H-3′ = 8.4,
JH-2′,F = 5.6, HAr-2′, HAr-6′), 7.93 (1H, t, J = 8.4, H-6′), 8.00 (1H, t, J = 8.4, H-5″),  8.29 (1H, d, J = 8.4, H-7″), 8.35 (1H, d,
J = 8.4, H-4″), 8.72 (1H, s, H-5), 9.87 (1H, s, H-10).  IR spectrum (KBr, ν, cm-1): 1725 (C=Oα), 1645 (C=Oγ).
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