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Abstract

We have analyzed the level of gene coregulation, using gene expression patterns measured across the National Cancer Institute’s 60 tumor cell

panels (NCI60), in the context of predefined pathways or functional categories annotated by KEGG (Kyoto Encyclopedia of Genes and Genomes),

BioCarta, and GO (Gene Ontology). Statistical methods were used to evaluate the level of gene expression coherence (coordinated expression) by

comparing intra- and interpathway gene–gene correlations. Our results show that gene expression in pathways, or groups of functionally related

genes, has a significantly higher level of coherence than that of a randomly selected set of genes. Transcriptional-level gene regulation appears to

be on a ‘‘need to be’’ basis, such that pathways comprising genes encoding closely interacting proteins and pathways responsible for vital cellular

processes or processes that are related to growth or proliferation, specifically in cancer cells, such as those engaged in genetic information

processing, cell cycle, energy metabolism, and nucleotide metabolism, tend to be more modular (lower degree of gene sharing) and to have genes

significantly more coherently expressed than most signaling and regular metabolic pathways. Hierarchical clustering of pathways based on their

differential gene expression in the NCI60 further revealed interesting interpathway communications or interactions indicative of a higher level of

pathway regulation. The knowledge of the nature of gene expression regulation and biological pathways can be applied to understanding the

mechanism by which small drug molecules interfere with biological systems.
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The genome encodes two major types of information: genes

encoding proteins that execute biological functions and cis-

control elements of transcription [1]. Proteins may function as

monomers, as complexes, or within networks of interacting

proteins, metabolites, and/or small molecules (pathways). The

cis-control elements, together with transcription factors, form

the linkages and architectures of regulatory networks controlling

expression levels for genes that mediate physiological and

developmental responses. Numerous efforts have been dedicat-

ed to the task of deconvoluting the function and regulation of

biological networks, especially with the increasing availability

of RNA expressionmicroarrays, which provide large amounts of

data for analysis of individual genes within predefined pathways

or for elucidation of hidden gene regulation networks [2–6].
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Deriving gene regulation networks or pathways, on the basis of

expression data, is based on the general premise that coregulated

genes function in the same pathway or, in other words,

functionally related genes are coregulated or coexpressed.

Verification of this premise and the extrapolation of these results

toward the identification of causal factors underlying gene

coregulation is currently a very active area of research.

Coexpression of genes has been observed using pathways

annotated by KEGG (Kyoto Encyclopedia of Genes and

Genomes, http://www.genome.jp/kegg/), based on gene ex-

pression data in colon and liver cancer cells and normal tissue

samples [6] and in the Arabidopsis genome [7]. Neighboring

genes, that is, genes that are immediately adjacent on

chromosomes, have been found to be coexpressed in humans

[8,9], Drosophila [10–12], yeast [10], Caenorhabditis elegans

[13], and Arabidopsis [7]. Certain transcription factors, e.g.,

CTCF, serve to insulate adjacent genes from transcriptional
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activation. The requirement for coregulation of functionally

related genes has been proposed as a possible cause for the

observed coexpression of genes. In addition, the number of

interactions between proteins has been implicated as an

important predictor for the degree of coexpression between

their corresponding genes, a result that has been offered as an

explanation for particularly high degrees of coexpression in

genes encoding proteins that are known to function in

multicomponent complexes, which often contain a large

number of protein–protein interactions [14,15]. In yeast, genes

encoding interacting proteins tend to be coexpressed

[14,16,17]. In contrast, the degree of coexpression for genes

encoding enzymes in metabolic pathways has been found to be

generally low [6,7], despite the observation of similarities in

gene expression patterns for some metabolic pathways in

embryonic and adult mouse tissues [18]. This finding based on

clustering analysis is, however, mostly observational and not

quantitative. Furthermore, functionally linked interacting pro-

teins have been observed to share higher cis-similarity, defined

as the proportion of shared transcription factor binding sites

regulating the transcription of a gene, than enzymes catalyzing

the conversion of adjacent substrates to products in a collection

of metabolic pathways [19]. This finding has led to the

hypothesis that genes encoding a set of interacting proteins will

be transcribed using a common set of regulatory signals,

whereas substrate concentration and enyzme–substrate inter-

actions may exact regulatory control of metabolic pathways, as

distinct from explicit transcriptional control [20].

The normal network structures of a system, however, may

be perturbed in diseases through genetic mutations and/or by

pathological environmental cues, such as infectious agents or

chemical carcinogens. Cancer is believed to arise from multiple

spontaneous and/or inherited mutations functioning in net-

works that control vital cellular events [21–23], which is partly

reflected by genetic alterations in intracellular signaling path-

ways, which normally orchestrate the execution of develop-

mental programs and the cellular response to extrinsic factors

[24]. The evolving states of certain cancers are reflected in

dynamically changing expression patterns of genes and

proteins within the diseased cells [25]. In support of these

observations, computational methods find that there are more

pathways with coexpressed genes in cancer cells than in normal

cells [6]. System-based analyses of cellular processes that

integrate information on genes, proteins, and metabolites,

combined with technological advances to monitor these

changes, offer the potential for improvements in predictive

medicine [1].

The goal of our present work is to propose novel strategies

to examine at length gene expression regulation patterns within

predefined pathways or functional groups. Our analysis focuses

on the constitutive gene expression data measured across the

National Cancer Institute’s 60-tumor-cell screen (NCI60),

which reflects diverse cell lineages (lung, renal, colorectal,

ovarian, breast, prostate, central nervous system, melanoma,

and hematological malignancies). We will analyze the NCI60
gene expression patterns in terms of pathways annotated by

KEGG and BioCarta and gene categories defined by GO (Gene
Ontology). Comparison of the degree of gene expression

coherence in these three annotation schemes will be used to

postulate rationales that might determine the cohesiveness of a

pathway or a group of functionally related genes. The gene

expression data across the NCI60 will be organized into self-

organizing maps (SOMs) [26], which segregate the data into

nodes, i.e., clusters of genes sharing similar expression

patterns. Meta-clustering of the SOM nodes will be used to

generate a hierarchy of clades. Pathways will be organized

according to similarity of gene occurrence patterns in SOM

clades for each pathway. These results will be used to assess

interactions between pathways either through gene sharing or

through coexpression of genes, which may be indicative of a

higher level of regulation and coherence within cellular

processes. One of our future goals is to utilize the knowledge

obtained about the nature of gene expression regulation and

biological pathways to assess relationships between pathway

gene expressions and drug responses derived from various

cancer cell lines, with the aim of gaining a better understanding

of mechanisms of drug action.

Results

Our measure of pathway cohesiveness is based on correla-

tions of gene expression patterns across the NCI60 for genes

within specific pathways. The cohesiveness of a pathway is

represented by the coherence of its gene expressions as

measured by their correlation strength. Genes in the same

pathway are believed to be regulated in a more coordinated

fashion than a random set of genes, thus expression patterns of

these genes are expected to be more coherent. However, some

pathways appear to be more cohesive than others, due to

factors such as the degree of gene expression regulation within

the pathway, modularity of the pathway, degree of gene sharing

(cross talk) with other pathways, expression data availability,

experimental errors/data quality, etc. In addition, even though

computational methods have been widely used in biological

data analysis and interpretation, a statistically significant

finding does not always translate directly to biological

relevance, due partly to the intricate nature of biological

systems and the inherent complexity of data generated therein.

However, applying rigorous statistical procedures to establish

the significance level of the observations and exclude the

possibility of certain events happening by random chance helps

to improve our confidence for proposing statistically significant

results as a foundation for testable hypothesis generation. We

have followed this principle throughout the course of our

investigations.

The gene expression cohesiveness of pathways defined by

KEGG and BioCarta and annotation categories (terms) defined

by GO can be evaluated by comparing the intra- versus

interpathway gene expression correlations using the Kruskal–

Wallis procedure. The Kruskal–Wallis H statistic (H score) is

computed for each pathway, and the significance ( p value) of

each pathway H score is evaluated by a random gene

permutation procedure. The randomization is run 1000 times;

thus the smallest nonzero p value that can be obtained is 0.001
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(see Data and methods for computation details). A pathway is

considered significantly cohesive at the 95% confidence level

if it has a significant ( p � 0.05) and positive H score. The

larger the H score, the more coherent the gene expressions are

within a pathway, compared to the expressions of genes not

linked by a known pathway. The number of pathways that can

be studied in this fashion is naturally limited by the availability

of gene expression data, and the results obtained will be

affected consequently. In the present investigation, only path-

ways that have at least three gene expression data vectors

available within our microarray set are included in the

calculations. Summary statistics related to the three pathway

systems under investigation are shown in Table 1.

Gene expression coherence in pathways annotated by KEGG

Of the 111 KEGG pathways, each of which has at least three

genes with available expression data, 21 (19%) have signifi-

cantly stronger intra- than interpathway gene–gene correla-

tions. These pathways, sorted in descending order by their level

of intrapathway gene expression cohesiveness, and their H

scores are listed in Table 2. The ribosome pathway is the most

cohesive pathway, with a p value of nearly 0. The ribosome

pathway is composed of genes that encode various proteins of

the ribosomal subunits. These proteins need to interact

physically with each other to form a large protein complex,

the ribosome, and are thereby closely related functionally. The

second most cohesive KEGG pathway is oxidative phosphory-

lation, which is composed of genes that encode protein

complexes (complexes I through V) that participate in the

mitochondrial respiration chain. These include the NADH

dehydrogenases, succinate dehydrogenases, cytochrome c oxi-

dases, cytochrome c reductases, ATPases, and ATP synthases.

In fact, in addition to ribosome and oxidative phosphoryla-

tion, most KEGG pathways that are composed of genes

encoding parts of some large protein complex (labeled with

superscript a in Table 2) also appear to be significantly

cohesive, except for RNA polymerase and protein export.

These include the proteasome, ATP synthesis, DNA poly-

merase, and basal transcription factors pathways, which are

significantly enriched (Fisher’s exact p = 0.01) within the set

of cohesive pathways. The fact that the proteins in these

pathways need to interact physically with each other in the

cell to ensure the proper formation and function of the protein

complexes appears to be reflected in their tightly coordinated

gene expression.
Table 1

Summary statistics for KEGG and BioCarta pathway systems and gene categories

Annotation

scheme

Pathways

defined

Pathways with �3

gene data vectors

Maximum pathw

gene count

KEGG 134 111 123

BioCarta 314 262 63

Terms

defined

Terms with �3

gene data vectors

Maximum term

gene count

GO 3564 787 945
The KEGG pathways can be further grouped into sub-

categories including metabolism, cellular processes, environ-

mental information processing, genetic information processing,

and human diseases, according to their cellular function (see

Table 3). Among those categories, only one group, genetic

information processing, which includes ribosome, proteasome,

aminoacyl-tRNA biosynthesis, basal transcription factors,

DNA polymerase, ubiquitin-mediated proteolysis, protein

export, and RNA polymerase, shows a significant enrichment

of cohesive pathways (Fisher’s exact p = 0.03; see Table 3).

Five of these eight pathways are cohesive and six of them are

composed of genes that encode large protein complexes. In

contrast, the groups metabolism and environmental information

processing, which include all the signaling pathways, appear to

have a less than average percentage of cohesive pathways (see

Table 3), but neither is statistically significant at the 95%

confidence level, compared to the occurrence of all cohesive

pathways in KEGG (19%). The lack of cohesive pathways in

the metabolic pathway group, however, is statistically signif-

icant at the 90% confidence level ( p = 0.07).

Gene expression coherence in pathways deposited in BioCarta

In the 262 BioCarta functional pathways analyzed herein,

34 (13%) show significant intrapathway gene expression

cohesiveness. These pathways, their cohesiveness H scores,

and the significance levels ( p values) of their H scores are

listed in Table 4. A comparison between the genes annotated

in the BioCarta pathway system and the genes in KEGG

shows an overlap of 281 genes (20.5%). When categorized by

the KEGG pathway system, the intersection appears to be

significantly enriched (Fisher’s exact p � 0.05) in genes that

belong to, in order of descending significance level, MAPK

signaling pathway, integrin-mediated cell adhesion, apoptosis,

cell cycle, toll-like receptor signaling pathway, TGF-h
signaling pathway, cytokine–cytokine receptor interaction,

Jak–STAT signaling pathway, neurodegenerative disorders,

and prion disease. A closer examination of the cohesive

BioCarta pathway genes shows that they are significantly

enriched (Fisher’s exact p � 0.05), compared to all genes in

the BioCarta–KEGG intersection, with genes that belong to

two KEGG pathways, cell cycle and oxidative phosphoryla-

tion, which are also the third and second most cohesive

pathways, respectively, in KEGG (see Table 2). This indicates

a good agreement in regard to cohesive pathways obtained

from these two pathway systems. This agreement is also
defined by GO

ay Average pathway

gene count

Cohesive pathway

count ( p � 0.05)

Cohesive

pathways (%)

19 21 19

10 34 13

Average term

gene count

Cohesive term

count ( p � 0.05)

Cohesive

terms (%)

20 171 22



Table 3

Summary statistics for KEGG pathway categories and their level o

cohesiveness

Pathway category Pathway

count

Cohesive

pathway

count

Cohesive

(%)

p (Fisher’s

exact)

Genetic information

processing

8 5 62.5 0.03

Cellular

processes

4 2 50.0 0.24

Human diseases 8 2 25.0 0.66

Metabolism 81 11 13.6 0.07

Environmental

information processing

9 1 11.1 1

The statistical significance of the coherence level within each pathway category

is indicated by a p value yielded from the Fisher’s exact test comparing the

percentage of cohesive pathways that belong to that category with the

percentage of all cohesive pathways in KEGG.

Table 2

Statistically cohesive KEGG pathways ordered in decreasing level of

significance ( p value)

Pathway Pathway title H score p

hsa03010 Ribosomea 4328.66 <1 � 10�3

hsa00190 Oxidative phosphorylationa 399.42 <1 � 10�3

hsa04110 Cell cycle 221.71 <1 � 10�3

hsa03050 Proteasomea 69.30 <1 � 10�3

hsa00193 ATP synthesisa 27.77 <1 � 10�3

hsa00230 Purine metabolism 26.47 <1 � 10�3

hsa00531 Glycosaminoglycan degradation 22.81 <1 � 10�3

hsa00900 Terpenoid biosynthesis 18.11 <1 � 10�3

hsa00970 Aminoacyl-tRNA biosynthesis 16.70 <1 � 10�3

hsa03022 Basal transcription factorsa 9.83 3.50 � 10�3

hsa03030 DNA polymerasea 9.16 4.33 � 10�3

hsa00100 Biosynthesis of steroids 9.54 4.61 � 10�3

hsa00260 Glycine, serine, and threonine metabolism 8.52 6.29 � 10�3

hsa00240 Pyrimidine metabolism 16.62 7.75 � 10�3

hsa05050 Dentatorubropallidoluysian atrophy 5.41 1.37 � 10�2

hsa00350 Tyrosine metabolism 5.91 1.52 � 10�2

hsa00450 Selenoamino acid metabolism 5.44 1.70 � 10�2

hsa01510 Neurodegenerative disorders 5.03 1.74 � 10�2

hsa04510 Integrin-mediated cell adhesion 6.00 2.22 � 10�2

hsa04350 TGF-h signaling pathway 5.59 2.39 � 10�2

hsa00511 N-Glycan degradation 4.03 3.00 � 10�2

These pathways show significantly stronger (Kruskal-Wallis p < 0.05) intra-

versus interpathway gene expression correlations.
a Pathway composed of genes encoding parts of large protein complexes.
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apparent in that ‘‘cyclins and cell cycle regulation’’ is the

most cohesive BioCarta pathway and ‘‘electron transport

reaction in mitochondria,’’ which corresponds to the oxidative

phosphorylation pathway in KEGG, is one of the top

cohesive pathways in BioCarta as well. BioCarta, however,

has no genes in common with the most cohesive KEGG

pathway, the ribosome pathway.

Annotation of all BioCarta genes in terms of functional

categories defined in GO shows an enrichment of genes

involved in cell cycle, RNA splicing, translation regulation,

nuclear pore and DNA metabolism, signal transduction,

chromatin modification, cell growth and proliferation, and

apoptosis. The genes in the cohesive BioCarta pathways, in

addition, are especially enriched in RNA splicing, nuclear

pore and DNA metabolism, cell cycle, and cell growth.

KEGG, however, shows a significant lack of genes, except for

cell cycle, in those categories. As a result, the cohesiveness of

these pathways cannot be evaluated within the KEGG

pathway system. BioCarta further groups its pathways into

12 different categories, as shown in Table 5. Four of those

categories, adhesion, cell cycle regulation, developmental

biology, and metabolism, have an above-average (>13%)

number of cohesive pathways; but none of them, with the

exception of metabolism ( p = 0.012; see Table 5), is

significantly different from average at the 95% confidence

level ( p � 0.05). The other 8 categories have less than

average (<13%) numbers of cohesive pathways. Among

those, 2 pathway categories, cell signaling and cytokines/

chemokines, show a significant ( p < 0.05) lack of cohesive

pathways. This is consistent with the results obtained from

the KEGG pathway system, in which most of the signaling

pathways are not significantly cohesive.
Contrary to the findings with KEGG, however, the

pathways categorized as metabolic in BioCarta are signifi-

cantly more cohesive than a typical pathway. The reason may

be due, largely, to the fact that while the contents of

metabolic pathways in KEGG and BioCarta might be

expected to be similar, they are largely different. Metabolism

is the largest pathway category in KEGG, which includes 81

pathways, 11 of which are statistically cohesive. On the other

hand, BioCarta defines only 22 metabolic pathways and 8 of

them are statistically cohesive. A closer examination of the

genes involved in the BioCarta metabolic pathways in

comparison to those defined by KEGG reveals that some

of the genes over represented in the BioCarta metabolic

pathways are actually involved in KEGG pathways that are

mostly (12 of 14) not defined as metabolic, and a couple of

them are significantly cohesive, such as the integrin-mediated

cell adhesion and neurodegenerative disorders pathways. At

the same time, the genes involved in most KEGG metabolic

pathways are largely underrepresented in BioCarta. Combin-

ing the two pathway systems together results in a total of 373

pathways, 55 of which are cohesive; and a total of 103

metabolic pathways, 19 of which are cohesive. This means

15% of all pathways are cohesive and 18% of metabolic

pathways are cohesive. This difference is, however, not

statistically significant (Fisher’s exact p = 0.36). Therefore,

the overall conclusion regarding the cohesiveness of meta-

bolic pathways is that they are not significantly different

from a typical pathway. Nevertheless, it would be interesting

to assess which metabolic pathways are the most and least

cohesive. Using the combined pathways, the genes involved

in the cohesive metabolic pathways are compared with the

ones in the noncohesive metabolic pathways in terms of their

functions, as annotated by GO. The genes in cohesive

metabolic pathways are shown to be significantly enriched

in functional categories such as proton transport, mitochon-

drial electron transport, oxidative phosphorylation, DNA-

directed RNA polymerase activity, transcription, DNA repli-

cation/binding/metabolism, nucleoside biosynthesis and

metabolism, and isoprenoid and cholesterol biosynthesis.
f



Table 4

Statistically cohesive BioCarta pathways ordered in decreasing level of

significance ( p values)

Pathway title H score p

Cyclins and cell cycle regulation 33.12 <1 � 10�3

The PRC2 complex sets long-term

gene silencing through modification

of histone tails

22.82 <1 � 10�3

Spliceosomal assembly 22.74 <1 � 10�3

Role of Ran in mitotic spindle

regulation

20.84 <1 � 10�3

Antigen processing and presentation 19.53 <1 � 10�3

Agrin in postsynaptic differentiation 14.82 <1 � 10�3

Glycolysis pathway 14.65 <1 � 10�3

Apoptotic DNA fragmentation and

tissue homeostasis

13.38 <1 � 10�3

Ion channels and their functional role

in vascular endothelium

7.84 <1 � 10�3

Cycling of Ran in nucleocytoplasmic

transport

10.29 1.57 � 10�3

Multidrug resistance factors 8.49 1.81 � 10�3

Electron transport reaction in mitochondria 9.26 2.94 � 10�3

uCalpain and friends in cell spread 9.26 2.95 � 10�3

CTL-mediated immune response against

target cells

7.55 4.10 � 10�3

Granzyme A-mediated apoptosis pathway 8.23 4.53 � 10�3

mCalpain and friends in cell motility 8.05 4.75 � 10�3

h-Arrestins in GPCR desensitization 6.92 5.55 � 10�3

Eukaryotic protein translation 6.57 6.87 � 10�3

Sonic hedgehog receptor Ptc1 regulates

cell cycle

6.69 8.29 � 10�3

ER-associated degradation pathway 6.83 8.53 � 10�3

Regulation of MAP kinase pathways

through dual-specificity phosphatases

6.03 9.28 � 10�3

Mechanism of protein import into the nucleus 6.55 9.40 � 10�3

cdc25 and chk1 regulatory pathway in

response to DNA damage

5.86 1.03 � 10�2

Overview of telomerase RNA component

gene hTerc transcriptional regulation

4.84 1.40 � 10�2

The IGF-1 receptor and longevity 5.38 1.43 � 10�2

Internal ribosome entry pathway 5.37 1.43 � 10�2

Adhesion molecules on lymphocyte 4.71 1.79 � 10�2

Monocyte and its surface molecules 4.71 1.79 � 10�2

Activation of PKC through G-protein-

coupled receptor

4.83 1.79 � 10�2

Attenuation of GPCR signaling 4.36 1.95 � 10�2

ChREBP regulation by carbohydrates

and cAMP

4.36 1.95 � 10�2

Ghrelin: regulation of food intake and

energy homeostasis

4.31 1.99 � 10�2

Activation of cAMP-dependent protein

kinase PKA

3.92 2.46 � 10�2

Stathmin and breast cancer resistance to

anti-microtubule agents

4.36 2.59 � 10�2

These pathways show significantly stronger (Kruskal-Wallis p < 0.05) intra-

versus interpathway gene expression correlations.

Table 5

Summary statistics for BioCarta pathway categories and their level of

cohesiveness

Pathway category Pathway

count

Cohesive

pathway

count

Cohesive

(%)

p (Fisher’s

exact)

Metabolism 22 8 36.4 0.012

Adhesion 14 4 28.6 0.14

Cell cycle

regulation

25 5 20.0 0.36

Developmental

biology

23 4 17.4 0.53

Expression 51 5 9.8 1

Immunology 50 4 8.0 1

Apoptosis 27 2 7.4 1

Cell signaling 149 10 6.7 0.003

Cell activation 18 1 5.6 1

Cytokines/

chemokines

39 0 0 0.012

Neuroscience 18 0 0 0.24

Hematopoiesis 8 0 0 0.60

The statistical significance of the coherence level within each pathway category

is indicated by a p value yielded from the Fisher’s exact test comparing the

percentage of cohesive pathways belonging to that category with the percentage

of all cohesive pathways in BioCarta.
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Conversely, the genes involved in noncohesive metabolic

pathways are significantly enriched in categories including

Golgi apparatus, metabolism, fatty acid metabolism, endo-

plasmic reticulum, protein serine/threonine kinase activity,

RAB small monomeric GTPase activity, protein amino acid

glycosylation, and lipid catabolism. Clearly, there appears to

be a functional separation between the cohesive and the

noncohesive metabolic pathways.
Expression coherence in gene categories defined by Gene

Ontology

GO annotates genes according to their participation in a

biological process, the molecular function of the gene product,

or the specific cellular location of the expressed gene. Each of

the 787 GO terms that have at least three genes with available

expression data was evaluated for its intraterm expression

coherence. Among these gene categories, 171 (22%) show

significant expression cohesiveness within a GO term. Because

of space considerations, only the 45 GO terms that are cohesive

at a significance level of p < 10�3 and their H scores are listed

in Table 6. These results show a clear agreement with those

derived from the KEGG and BioCarta pathways. For example,

the GO terms that are the most cohesive include genes that are

engaged in processes such as protein biosynthesis and

ribosomal pathways, which correspond to the ribosome

pathway in KEGG; cell cycle, which corresponds to the same

pathways in KEGG and BioCarta; RNA splicing and binding,

which are also cohesive in BioCarta; mitochondrial electron

transport, which corresponds to the same pathway in BioCarta

and the oxidative phosphorylation pathway in KEGG; DNA

binding and metabolism, which are also cohesive in BioCarta;

and other activities that are not sufficiently represented in

KEGG and BioCarta, such as metal ion binding and transport.

The GO category of signal transduction turns out to be the least

cohesive GO term of all. This is, in fact, consistent with the

findings from the analysis of the KEGG and BioCarta

pathways, in both cases of which the signaling pathway

category contains a less than average number of cohesive

pathways. This finding may be of importance in decisions

about efforts to discover agents that target signaling pathways.

In addition, we find that many GO terms representing large

protein complexes are significantly cohesive. There are 32 GO



Table 6

Statistically cohesive GO terms ordered in decreasing H values

Term Title H score

Biological process

GO:0006412 Protein biosynthesis 1396.83

GO:0007067 Mitosis 205.04

GO:0000398 Nuclear mRNA splicing, via spliceosome 186.73

GO:0006260 DNA replication 124.32

GO:0006397 mRNA processing 98.59

GO:0006118 Electron transport 69.56

GO:0007049 Cell cycle 60.92

GO:0008380 RNA splicing 53.67

GO:0000910 Cytokinesis 43.53

GO:0006120 Mitochondrial electron transport,

NADH to ubiquinone

36.34

GO:0006091 Generation of precursor metabolites and

energy

33.66

GO:0006265 DNA topological change 29.66

GO:0007001 Chromosome organization and biogenesis

(sensu Eukaryota)

29.13

GO:0006406 mRNA-nucleus export 22.54

GO:0000070 Mitotic sister chromatid segregation 18.10

Molecular function

GO:0003735 Structural constituent of ribosome 2339.68

GO:0003723 RNA binding 1388.27

GO:0003677 DNA binding 192.12

GO:0008248 Pre-mRNA splicing factor activity 132.11

GO:0016491 Oxidoreductase activity 90.43

GO:0008137 NADH dehydrogenase (ubiquinone) activity 54.69

GO:0003954 NADH dehydrogenase activity 50.42

GO:0004129 Cytochrome c oxidase activity 45.70

GO:0005507 Copper ion binding 42.23

GO:0005509 Calcium ion binding 37.93

GO:0003918 DNA topoisomerase (ATP-hydrolyzing) activity 27.86

GO:0004175 Endopeptidase activity 22.87

GO:0015078 Hydrogen ion transporter activity 20.62

GO:0019843 rRNA binding 18.99

GO:0046870 Cadmium ion binding 17.99

Cellular component

GO:0005840 Ribosome 1290.60

GO:0005739 Mitochondrion 995.19

GO:0005842 Cytosolic large ribosomal subunit

(sensu Eukaryota)

737.65

GO:0005843 Cytosolic small ribosomal subunit

(sensu Eukaryota)

583.62

GO:0005622 Intracellular 464.34

GO:0019866 Inner membrane 63.27

GO:0005643 Nuclear pore 51.98

GO:0005764 Lysosome 47.80

GO:0030530 Heterogeneous nuclear ribonucleoprotein

complex

47.22

GO:0005624 Membrane fraction 43.73

GO:0005694 Chromosome 25.07

GO:0005746 Mitochondrial electron transport chain 24.99

GO:0000786 Nucleosome 24.59

GO:0005839 Proteasome core complex (sensu Eukaryota) 22.87

GO:0005732 Small nucleolar ribonucleoprotein complex 19.99

These GO terms show significantly stronger (Kruskal-Wallis p < 0.05) intra-

versus interterm gene expression correlations. Only GO terms significantly

cohesive at p < 1 � 10�3 are listed.

Table 7

Summary statistics for the three ontologies (biological process, molecular

function, and cellular component) and multicomponent protein complexes

(defined by terms containing either ‘‘some’’ or ‘‘complex’’) defined by GO and

their level of cohesiveness

GO category Term

count

Cohesive

term count

Cohesive

(%)

p (Fisher’s

exact)

Molecular function 311 61 19.6 1

Biological process 346 71 20.5 1

Cellular component 130 39 30.0 0.043

Large protein

complex (‘‘some’’)

32 13 40.6 0.017

Protein complex

(‘‘complex’’)

47 11 23.4 0.86

The statistical significance of the coherence level within each GO category is

indicated by a p value yielded from the Fisher’s exact test comparing the

percentage of cohesive pathways belonging to that category with the percentage

of all cohesive terms in GO.
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terms that end with ‘‘some’’ (ribosome, lysosome, chromo-

some, nucleosome, proteasome, etc.) and 13 (41%) of them are

cohesive, which is significantly higher than the average
frequency of cohesive GO terms (22%) (Fisher’s exact p =

0.017; see Table 7). The GO terms that contain the word

‘‘complex’’ also show a slightly higher than average frequency

of cohesive terms but the difference is not statistically

significant. In fact, among the three different ontologies,

biological process, molecular function, and cellular component,

the first two contain about 20% significantly cohesive terms;

cellular component, however, has 30% significantly cohesive

terms (see Table 7). This difference is significant (Fisher’s

exact p = 0.043), which indicates that genes expressed in the

same cellular location, which include, but are not dominated

by, genes encoding proteins that form large protein complexes,

appear to be more coherently expressed than genes simply

involved in the same biological process or engaging in the

same molecular function.

Gene expression coherence in pathways (KEGG, BioCarta)

versus functionally related gene groups (GO)

So far we have been analyzing the level of gene expression

coherence using three annotation schemes without making the

distinction between a pathway and a group of functionally

related genes, although the functionally related gene groups

defined by GO are not pathways per se. Even though genes

involved in the same pathway are generally assumed to be

functionally related, it would still be interesting to examine the

gene composition within a pathway in terms of GO functional

categories. For this purpose, we calculated the percentage of

genes in each KEGG or BioCarta pathway that belong to the

same GO term, which turned out to be 50% on average (data

not shown). In fact, 41% of KEGG pathways and 56% of

BioCarta pathways have over half of their genes belonging to

the same GO term. This confirms the assumption that pathways

contain functionally related genes. A further analysis shows

that the pathways with a higher percentage of genes belonging

to the same GO term are not significantly more cohesive than

the ones with a lower percentage. This is consistent with the

earlier finding that GO terms are not significantly more

cohesive than pathways.
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Pathway or functionally related genes are more coherently

expressed than a random set of genes

Based on our analysis of the level of coordinated gene

expression within various pathway systems or functional

categories we find that some functionally related genes are

more coherently expressed than others. The question still

remains as to whether the coexpression of genes could be

observed just by random chance, that is, whether the

categorization of genes into pathways is meaningful. To test

this hypothesis, pathways (groups of genes) are built by

randomly selecting and assigning genes to each pathway, and

the cohesiveness, measured by an H score, is evaluated for

each of these random pathways (see Data and methods for

details). For each annotation system, genes are randomly

permutated a thousand times and H scores for each pathway

calculated. The distribution of the H scores for these

randomly generated pathways, together with that of the

corresponding real gene annotation system, KEGG, BioCarta,

or GO, is shown in Fig. 1. The difference in the

distributions clearly shows that our observations of intrapath-

way gene expression cohesiveness are not random. The three

distributions for the randomly generated gene groups are

almost completely overlapping, yielding a mean random

pathway cohesiveness H score of close to 0 (0.1) and a

median score of 0. The distributions of the three real

systems are similar to one another, but are clearly right-

shifted, with the peak H score at around 1.0, compared to
Fig. 1. Distributions of Kruskal–Wallis H scores calculated for GO terms and K

pathways) generated by randomly assigning genes to each group (see Data and me

cohesiveness. The distributions of the three true pathway systems are clearly right-

random pathways is close to 0 (0.1) and the median is 0. The median H scores for t

which are significantly different from random (t test: GO, p = 2.61 � 10�23; KEG
the random distributions. The mean and median H scores for

the three annotation systems are KEGG 47.29, 0.58;

BioCarta 1.47, 0.28; and GO 17.34, 0.59. The mean H

scores for KEGG and GO are skewed by several extremely

cohesive (H > 1000) pathways or GO terms and appear to

be much larger than the median scores as a result. The

observed differences in the H score distributions generated

from the real systems compared to those within the

randomly selected groups of genes are statistically very

significant (t test: GO, p = 2.61 � 10�23; KEGG, p =

7.89 � 10�19; BioCarta, p = 1.20 � 10�15). This leads to

the conclusion that gene expression cohesiveness observed

within pathways is very unlikely to occur by chance;

therefore, it is evident that functionally related genes or

genes involved in the same pathway are, overall, more

coherently expressed than a random set of genes, and

coordinated regulation of these genes, to a certain level, is

a real component of their biological organization.

BioCarta pathways are less cohesive than KEGG and GO

Additionally, among the three gene annotation schemes

analyzed, the pathways defined by BioCarta seem to be the

least cohesive, with the lowest mean and median H scores,

compared to those of KEGG or GO, and this observation is

significant at the 90% confidence level (t test: BioCarta vs

KEGG, p = 0.07; BioCarta vs GO, p = 0.05). Considering

that the mean H scores for KEGG and GO are probably
EGG and BioCarta pathways in comparison to sets of gene groups (random

thods for details). A large positive H score indicates a high level of pathway

shifted compared to the random distributions. The mean H score for the set of

he three annotation systems are 0.58 (KEGG), 0.28 (BioCarta), and 0.59 (GO),

G, p = 7.89 � 10�19; BioCarta, p = 1.20 � 10�15).
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skewed by the extremely cohesive ribosome pathway (H >

1000), which is not in the BioCarta pathway system, the

median H scores for KEGG and GO are almost the same,

whereas the median H score for BioCarta is 50% lower. This

can probably be explained by the inherent differences within

the nature of genes annotated by KEGG, BioCarta, and GO.

We have analyzed a total of 3365 genes, each of which is

present in at least one of the three annotation schemes, and

1995 of them are annotated only by GO. Of the three, GO is

the most comprehensive gene function annotation scheme,

which tries to assign an annotation to every gene with no bias

toward any specific type of gene. Approximately 90% of the

genes present in KEGG or BioCarta are also annotated by

GO. However, rather than generating annotations per gene,

KEGG attempts to curate and elaborate on metabolic path-

ways, large molecular assemblies, and regulatory pathways. In

fact, a large majority, 81 of 111 (73%), of the KEGG

pathways that we have analyzed are metabolic pathways. As

we have shown earlier, metabolic pathways are not signifi-

cantly more or less cohesive than a typical pathway. On the

other hand, BioCarta has a large collection of signaling

pathways and a smaller number of pathways in other

categories. Cell signaling is the largest pathway category in

BioCarta, which constitutes 57% (149 of 262) of all BioCarta

pathways we have examined. Signaling pathways, however,

are significantly less cohesive than a typical pathway. This

may provide an explanation for the observation that the

overall cohesiveness of KEGG pathways is similar to that of

GO functional categories but BioCarta pathways appear to be

less cohesive than both.

Hierarchical clustering of KEGG pathways shows a higher

level of gene expression regulation

An additional perspective on gene expression and path-

ways can be accomplished by independently clustering gene

expressions across tumor cells and then assessing pathway

coherence within neighborhood clusters. Hierarchical cluster-

ing of the spread pattern (occurrences of genes within a

pathway in SOM clades; see Data and methods for details) of

the 111 KEGG pathways on the gene expression SOM (Fig.

2, cohesive pathways are labeled with red dots) further

segregates these pathways into 15 clusters (see Fig. 3), which

can be used to assess whether pathways involved in similar

biological processes share similar regulation by gene expres-

sion patterns. As mentioned earlier, KEGG groups its path-

ways into five general cellular process categories (Fig. 3, top),

which are further divided into 22 subcategories (Fig. 3,

bottom). Fig. 3 shows the composition of each of the 15

pathway clusters, shown in the same order as the dendrogram

in Fig. 2, i.e., adjacent clusters share similar spread patterns,

according to the five general categories (top) and the 22

subcategories (bottom). One can see that pathways belonging

to the same category usually cluster together, that is, genes

from these pathways are partly coexpressed. The 81 metabolic

pathways are scattered across almost all clusters, but 6 of the

15 clusters are composed solely of metabolic pathways (Fig.
3, top). Furthermore, cluster 1 is composed solely of

metabolic pathways involved in glycan biosynthesis and

metabolism and cluster 4 solely of lipid metabolism (Fig. 3,

bottom).

Cluster 10 contains all of the six signal transduction

pathways, which belong to the environmental information

processing category. The other two pathway subcategories

that belong to environmental information processing are

ligand–receptor interaction, whose pathways are clustered

together in cluster 14, and immune system, which forms one

cluster by itself in cluster 11. Five of the eight pathways

involved in genetic information processing are grouped

together in cluster 15. The ribosome pathway, which belongs

to the translation subcategory in genetic information proces-

sing, and the immune system subcategory, which has only

one pathway (complement and coagulation cascades), each

form one single cluster by themselves (clusters 5 and 11,

respectively). These results can be used as an indication of

the degree of communication or interaction, and subsequent-

ly the level of coregulation, between different pathways.

Clearly, pathways that participate in the same cellular

processes tend to cluster together and thus show a high

degree of interpathway communication by sharing or

coexpressing part of their genes. Therefore, these pathways

are probably coregulated at a level higher than basic gene

expression regulation. Moreover, the pathways that belong to

different categories or subcategories but are clustered

together, as shown at the bottom of Fig. 3, provide valuable

clues about possible interactions or coregulation patterns

between these pathways.

Pathway gene spread over the SOM and expression coherence

As employed by many researchers, simple clustering of

gene expression patterns can also be used to detect

coexpressed or coregulated genes [27]. However, one needs

to be aware of the fact that clustering detects only one form

of coregulation, that is, positive correlations between gene

expression patterns, since negatively correlated genes are

generally not clustered together. Nonetheless, the degree of

spread (DoS; the number of SOM clades the pathway

occupies divided by the maximum number of genes in the

pathway in one clade) of genes within a pathway on the gene

expression SOM can be used as an alternative measure of

pathway gene expression coherence, especially pathways that

are dominated by positive gene correlations. In fact, DoS

turns out to be significantly correlated with the gene

expression cohesiveness H scores (r = �0.21, p = 0.027),

that is, the more cohesive a pathway is, the less of a spread it

will have on the gene SOM. The average DoS score of the

KEGG pathways is 4.9. The most cohesive is again the

ribosome pathway, having the smallest DoS (0.17), with 80%

of its genes clustered into one clade (see Fig. 2; the ribosome

pathway has only one white square). Other significantly

cohesive pathways, such as cell cycle, oxidative phosphory-

lation, terpenoid biosynthesis, aminoacyl-tRNA biosynthesis,

and biosynthesis of steroids, also have small DoS scores (<3),



Fig. 2. Hierarchical clustering of 111 KEGG pathways. The genes are first grouped into 50 clades based on their expression patterns across the NCI60 using the SOM

clustering procedure. The fraction of genes that fall into each SOM clade is then calculated for every pathway, yielding 111 data vectors. These data vectors are

finally clustered hierarchically, grouping similar pathways together. Each row represents a pathway and each column represents a SOM clade. The fraction of genes

in a pathway that fall into a particular clade is shown by the color of the square in which the pathway and the clade intersect. A yellow to white color indicates a high

fraction value, a reddish color indicates a medium fraction value, and black indicates zero. The dendrogram generated from the hierarchical clustering of pathways is

shown on the left and the 111 pathways are arranged in the order in which they appear in the dendrogram such that neighboring pathways are similar to each other

and have many of their genes fall into the same clade. The dendrogram at the top is generated from hierarchical clustering of the SOM nodes, each cluster of which

forms a clade. The 50 clades are also shown in their dendrogram order such that genes in neighboring clades share similar expression patterns. The general categories

each pathway group belongs to are shown on the right (all pathway names can be found in the supplementary information). The cohesive pathways (intrapathway

gene–gene correlations are significantly stronger than interpathway gene–gene correlations at p < 0.05; see Data and methods for details) are labeled with red dots.

These pathways generally have their genes localized in a few clades, whereas the less cohesive pathways tend to have a larger spread of their genes across many

SOM clades.

R. Huang et al. / Genomics 87 (2006) 315–328 323
characterized by occupying few, but hot, white squares in Fig.

2. These pathways are dominated by strong positive intrapath-

way gene–gene correlations. Interestingly, however, some

pathways shown as significantly cohesive by their H scores,

such as the TGF-h signaling pathway and neurodegenerative
disorders, exhibit a large degree of spread over the SOM

(DoS � 7; see Fig. 2), indicating that these pathways are

enriched in negative intrapathway gene–gene correlations.

Pathways that have smaller than average DoS scores but are

not shown as significantly cohesive, for example sulfur



Fig. 3. Histograms of the 15 KEGG pathway clusters generated from hierarchical clustering (see Fig. 2 legend for details). Each histogram represents the number of

pathways in a cluster and the clusters are ordered as they appear in the dendrogram. Top: Histograms are colored according to the five general pathway categories

(shown in the key) defined by KEGG. Bottom: Histograms are colored according to the 22 KEGG pathway subcategories (shown in the key). Pathways engaged in

similar cellular processes tend to cluster together.
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metabolism, ascorbate and aldarate metabolism, chondroitin/

heparan sulfate biosynthesis, keratan sulfate biosynthesis, and

nitrogen metabolism, are themselves characterized by posi-

tive, but weak, intrapathway gene–gene correlations or do not

have enough genes to achieve statistical significance.

As we have mentioned in previous sections, pathways may

communicate with each other not only through coexpressed

genes but also by actually sharing genes. In fact, many genes

participate in multiple pathways and the degree of pathway

cross talk, manifested by gene sharing, may be another factor
that contributes to the cohesiveness of a pathway. Since the

DoS score of a pathway can be used as another indicator of

pathway cohesiveness, we have examined the relationship

between the number of genes in a pathway that are shared

with other pathways and the DoS score of that pathway for

the KEGG pathways. These two attributes are significantly

correlated with each other (r = 0.36, p = 9.37 � 10�5), that

is, the more genes that a pathway shares with others, the less

cohesive the pathway. Fig. 4 clearly shows that the genetic

information processing pathway category, which contains the



Fig. 4. Relationship between the number of genes in a pathway that are shared with other pathways and the cohesiveness of the pathway. Each histogram represents a

KEGG pathway category. Top: Each histogram shows the percentage of cohesive pathways in a particular pathway category. Bottom: Each histogram shows the

average number of genes that a pathway in that category shares with others. Pathways that share many genes with others tend to be less cohesive. The genetic

information processing KEGG category has the highest percentage of cohesive pathways, each of which has the lowest number of genes shared on average.
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most cohesive pathways, is also the most modular, i.e., it has

the least number of shared genes (12 per pathway).

Environmental information processing, which contains all

the signal transduction pathways, is one of the least cohesive

pathway categories and also has the largest number of genes

shared with other pathways (78 per pathway).

Discussion

Our study provides a comprehensive evaluation of the

level of coregulation in pathway gene expressions measured

across the NCI60 using three different gene annotation

schemes, KEGG, BioCarta, and GO. We have discovered

that the level of gene coexpression is, overall, significantly

higher in pathways or functionally related gene groups than a

randomly selected set of genes. Approximately 20% of

pathways or functionally related gene groups analyzed have

statistically significant, coherent gene expressions. Based on

the types of pathways found to be cohesive vs noncohesive,

we postulate that pathway gene expression cohesiveness is

probably on a ‘‘need to be’’ basis, that is, genes in the same

pathway are coexpressed only when there is a need for it.

Pathways are probably designed by nature to be robust and

flexible enough to adapt to environmental changes to ensure

cell survival, that is, alternate mechanisms can take over if

parts of a pathway fail to operate. However, pathways with

genes encoding parts of a large protein complex need to be

cohesive probably because the co-presence and close physical

interaction of the proteins required for the proper function of

the protein complex demand the coexpression and tight

regulation of their corresponding genes. The same may be

true for genes that are expressed in the same cellular location/

component, which are found to be more cohesive than genes
participating in the same biological process or engaging in the

same molecular function.

Pathways involved in genetic information processing

(replication and repair, sorting and degradation, transcription,

translation) and cell cycle tend to be cohesive as well,

probably because they are responsible for the most vital

processes in a biological entity and, therefore, need to be

tightly regulated at the transcriptional level to ensure precisely

synchronized action of their constitutive genes to minimize

error, or probably because these processes are important for

growth and proliferation and therefore are cohesive in

constantly proliferating tumor cells. On the other hand,

pathways involved in environmental information processing

(signaling pathways) and most metabolic pathways are

generally found to be not cohesive, presumably because these

pathways need to be more robust to respond to environmental

changes. The co-presence of all these genes may not be

necessary, and genes are turned on or off sequentially when

needed. Therefore, these pathways do not need to be tightly

regulated at the transcriptional level and they are more likely

to be regulated by substrate concentration and enyzme–

substrate interactions. This is also reflected by the fact that

these pathways are much less modular than the cohesive

pathways. There is a high degree of cross talk (gene sharing)

between the signal transduction pathways as opposed to the

very cohesive pathways responsible for genetic information

processing, which are highly modular. The few metabolic

pathways that are cohesive show, as previously found, that

pathways responsible for vital life processes such as

nucleotide metabolism, energy metabolism, and isoprenoid

and cholesterol biosynthesis need to have more tightly

regulated gene expression than generic metabolic pathways,

such as carbohydrate metabolism, metabolism of cofactors
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and vitamins, fatty acid metabolism, protein amino acid

glycosylation, and lipid catabolism.

No significant distinction is found in the level of cohesive-

ness between a pathway, as defined by KEGG or BioCarta, and

a functional gene category, as defined by GO. This can partially

be attributed to the fact that most genes in a pathway are

functionally related, as reflected by over 50% of pathways

containing over half of their genes belonging to the same GO

category. KEGG is characterized by a large percentage of

metabolic pathways, whereas the largest pathway category in

BioCarta is signaling pathways, which are mostly not cohesive.

As a result, BioCarta contains a smaller percentage of cohesive

pathways than KEGG and GO. In addition, a higher level of

pathway regulation is revealed by hierarchical clustering of

pathway gene spread patterns on the gene expression SOM,

which shows interactions between pathways that engage in

similar cellular processes. A similar phenomenon has been

observed in the metabolic network of the yeast Saccharomyces

cerevisiae [2,3]. Also noteworthy is that most of the

significantly cohesive KEGG pathways (highlighted in red in

Fig. 2) appear in neighboring SOM clades. This shows a higher

level of coherence within the cellular processes, namely genetic

information processing, cell cycle, energy metabolism, and

nucleotide metabolism, in which these pathways are partici-

pating. Clusters that contain pathways from different cellular

processes are, furthermore, indicative of interprocess commu-

nications through coexpression and thus coregulation of these

pathways.

It would be interesting, as a future endeavor, to examine

the pathway gene expression coherence in normal tissues in a

similar fashion and compare the results to those obtained

herein, since the gene expression data we have analyzed are

derived solely from cancer cell lines. It is hoped that this will

provide clues as to which and how pathway regulations have

changed in cancer. Knowledge of the nature of gene

expression regulation and biological pathways can be applied

toward understanding the mechanism by which compound

substances or drug molecules interfere with the biological

system through interactions with gene products and conse-

quently pathways.

Conclusion

We have analyzed gene expression patterns derived from the

NCI60 in the context of predefined pathways or functional

categories annotated by KEGG, BioCarta, and GO. The degree

of gene coexpression, gene coregulation, or pathway cohesive-

ness in these three schemes demonstrates that expression of

genes in pathways, or functionally related genes, has a

significantly higher level of coherence than that of a random

set of genes. Pathways with genes encoding physically

interacting proteins and pathways involved in genetic informa-

tion processing and cell cycle tend to be cohesive and modular,

whereas signaling pathways are generally not cohesive and have

a high degree of interpathway cross talk. Most metabolic

pathways are not cohesive, except for the ones responsible for

nucleotide metabolism, energy metabolism, and isoprenoid and
cholesterol biosynthesis. Transcriptional level gene regulation

appears to be on a ‘‘need to be’’ basis, such that pathways

responsible for vital cellular processes or processes that are

related to growth or proliferation, specifically in cancer cells,

are the most cohesive. Clustering of pathways, in addition,

reveals interesting interpathway communications or interactions

indicative of a higher level of pathway regulation.

Data and methods

Gene expression data

Constitutive gene expression data from Novartis, measured in triplicate

across the 60 tumor cell lines using the Affymetrix DNA oligonucleotide

microarray technology, were downloaded from the Developmental Thera-

peutics Program Web server at http://www.dtp.nci.nih.gov. This data set

contains 12,626 mRNA expression profiles and is publicly available. In this

data set, each expression measurement (signal intensity) comes with a p

value that indicates the reliability of that measurement. The signals with

small p values are stronger and more reliable. We first filtered the data set

to include only measurements that exhibited the strongest signal intensity

( p < 0.05). The logarithm of each signal was taken to suppress extreme

data values. Replicate measurements for each gene were then averaged by

taking the median. Finally, only gene expression profiles having data

available for at least 40 cell lines were included. This yielded a data set of

4923 genes for our analysis.

Pathway data

Three databases were used for pathway gene analysis: the Kyoto Encyclopedia

of Genes and Genomes (http://www.genome.ad.jp/kegg/), Gene Ontology (http://

www.geneontology.org/), and BioCarta (http://www.biocarta.com/). Annotations

for 134 human pathways containing 2804 genes were downloaded from the

KEGG ftp site (ftp://ftp.genome.ad.jp/pub/kegg/pathways/hsa/). BioCarta anno-

tations for 314 pathways containing 1406 human genes were downloaded

from NCI’s Cancer Genome Anatomy Project (http://cgap.nci.nih.gov/) ftp site

(ftp://ftp1.nci.nih.gov/pub/CGAP). Annotations for 3564 GO terms containing

10,921 human genes were downloaded from the GO ftp site (ftp://

ftp.geneontology.org/pub/go/). In the gene expression data set we are working

with, 1047 genes are present in KEGG, 604 are present in BioCarta, and

3210 are present in GO.

Pathway cohesiveness and significance calculation

For each pathway Px, a Pearson correlation coefficient (r) was calculated

for each unique gene pair using their expression patterns from the NCI60. These

values are referred to as intrapathway r values. Then for each gene expression

data vector x in Px, an r value is calculated between x and every gene data

vector y, where gene y belongs to some other pathway Py where x m y. These

values are referred to as interpathway r values. The Pearson correlation

coefficient, r, is defined as

r ¼ ~n
i¼1 xi � x�ð Þ yi � y�ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~n
i¼1 xi � x�ð Þ2 yi � y�ð Þ2

q ð1Þ

where x̄ and ȳ denote averages, and the summation runs over the number of cell

lines (n). The intra- and interpathway r values are then used as two sample

populations to calculate the Kruskal–Wallis H statistic for pathway Px,

H ¼ 12

N N þ 1ð Þ ~
k

t¼1

R2
t

nt

� �
� 3 N þ 1ð Þ ð2Þ

where Rt is the rank sum of sample population t, nt is the size of sample

population t, k is the number of sample populations being compared, and

N ¼ ~k
t¼1nt . When each of the k sample populations being compared includes
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at least five observations, the sampling distribution of H is a very close

approximation of the m2 distribution for k � 1 degrees of freedom. It is actually

a fairly close approximation even when one or more of the samples include as

few as three observations. In the present study, only pathways that have at least

three gene expression data vectors available are included in the calculations.

Significance levels ( p values) are obtained using the m2 distribution with 1

degree of freedom (two-sample populations, intra- and interpathway correlation

coefficients, are compared here; therefore, k = 2 and k � 1 = 1).

A large H score (H > 3.84) indicates that a statistically significant ( p <

0.05) difference exists between the intra- and the interpathway r populations. A

small r is assigned a lower rank and a large r a higher rank. If the average rank

of the interpathway r values is higher than that of the intrapathway r values,

then a negative sign is applied to the H score. Therefore, a large positive H

score indicates a high level of gene expression coherence within the pathway

compared to expression of genes not linked by a known pathway. Either

absolute or real r values can be used when calculating the H scores, and slightly

different results will be obtained, depending on whether the intrapathway r

values are dominated by positive or negative values. Absolute r values are used

in all calculations unless otherwise specified, since both significant positive and

negative correlations between two genes are assumed to be indicative of

coordinated expression.

Randomization procedures are used to check the probability of getting a

large positive H score by chance compared to the p values obtained directly

from the m2 distribution. Random pathways of sizes approximately 5, 10, 15,

25, 50, and 100 are built by randomly picking and assigning genes in the data

set to each pathway, and their H scores are calculated. This procedure is

repeated 1000 times and the probabilities of getting H scores at various levels

for each pathway size are calculated. Further increase in the number of

randomizations does not appear to affect the outcome. The probabilities

obtained this way agree very well with the p values obtained directly using the

m2 distribution for pathway sizes 10 to 25 (number of genes in each pathway;

the size of the pathways we are working with is 10–25), that is, an H score of

>3.84 is required to get p < 0.05. However, the H score required to reach a

certain significance level (e.g., p < 0.05) shows a slight linear dependency on

pathway size (i.e., sample size). For larger pathways, higher H scores are

needed to get a significant p value. For this reason, we have applied the

randomization procedure to obtain the probability of observing an extreme H

score by chance for each pathway. Therefore, if a pathway in a particular

annotation system has n genes, then n genes are randomly selected from the

pool of m genes annotated by the system and the H score is calculated. This

procedure is repeated 1000 times for each pathway, and the fraction of H scores

that are more extreme than the actual H score of the pathway is then assigned as

the coherence p value for that particular pathway. If none of the 1000 random H

scores is more extreme than the actual H score, then the pathway is

significantly cohesive at p < 0.001. The number of significantly cohesive

( p < 0.05) pathways selected in this fashion, however, does not differ much

from that obtained directly from the m2 distribution because most pathways

(>90%) have fewer than 50 genes and most significant pathways (>60%) have

very large H scores (>7.5). For each gene annotation system, KEGG, BioCarta,

or GO, a distribution of the pathway H scores was calculated for each random

permutation; the mean and standard deviation (shown as error bars) of the

thousand random distributions were then plotted and are shown in Fig. 1. These

three random distributions are almost entirely coincidental.

We chose the H score as an indicator of pathway gene expression

cohesiveness because a significance measure exists for the H score calculated

for a pathway and, by using rank scores in place of actual correlation values, the

method is less sensitive to pathway size and gene outliers. This method is also a

more reliable measure of pathway coherence because not only gene–gene

relationships within a pathway are considered, but also comparisons are made

to check whether the intrapathway gene–gene interactions are in fact stronger

than interactions between genes not connected by some known pathway.

Hierarchical clustering of KEGG pathways

The genes were first grouped into 50 clades based on their expression

patterns across the NCI60 using the SOM clustering procedure. The fraction of

genes that fall into each SOM clade was then calculated for every KEGG

pathway, yielding 111 data vectors each containing 50 fractions. Wards-based
single-linkage hierarchical clustering of the 111 data vectors was performed

using MATLAB, which segregated the pathways into 15 groups. A dendrogram

showing the neighboring pathways was generated.
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