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A novel approach for the asymmetric synthesis of the active 

(1S,2R)-enantiomer of the antidepressant milnacipran is 

reported. The two stereogenic centers borne by the 

cyclopropane ring were sequentially installed starting from 

phenylacetic acid. 10 

Levomilnacipran 1 ((1S,2R)-milnacipran) is an antidepressant 

currently in phase III clinical trials1 for the treatment of major 

depressive disorders.2 Levomilnacipran is the most active 

enantiomer of milnacipran and a selective dual serotonin-

norepinephrine reuptake inhibitor.3 While several strategies have 15 

already been developed for the synthesis of milnacipran and 

analogous cyclopropanes in their racemic form,4 enantioselective 

routes to the title compound are scarce. 

 Approaches that have been devised so far relied on the 

asymmetric  construction of the key cyclopropane-fused lactone 2 20 

where absolute configuration of the two stereogenic centers is 

controled (Scheme 1).5 For example, the nucleophilic addition of 

phenylacetonitrile to optically active epichorohydrin under basic 

conditions provided efficient access to 2 through a two-step 

sequence (Scheme 1, Path A).6 Also, the rhodium(II)-catalyzed 25 

asymmetric intramolecular cyclopropanation of allyl phenyl-

diazoacetate efficiently promoted the formation of the key 

intermediate 2 (Scheme 1, Path B).7 Although the latter approach 

provided a concise pathway to lactone 2, the obtained 

enantiomeric excesses were moderate (≤ 68% ee) regardless of 30 

the rhodium-based catalytic system. Further transformation of 2 

by diethylaminolysis 

 
Scheme 1 Enantioselective routes to milnacipran 

 35 

Scheme 2 Retrosynthetic approach to optically active key lactone 2 

of the lactone ring followed by interconversion of the resulting 

alcohol into the corresponding primary amine, finally afforded 

optically active milnacipran. 

 In this paper we report an alternative route to levomilnacipran 40 

from (2S)-phenylpent-4-enoic acid 3 (Scheme 1, Path C). The 

latter compound could be easily converted to cis-γ-lactone 4 by 

iodolactonization prior to methanolysis of the lactone ring and 

concomitant epoxide 5 formation via ring closure of the transient 

halohydrin (Scheme 2). Tandem cyclopropanation by SN2 ring 45 

opening of the γ,δ-epoxide and in situ lactonization would then 

deliver the optically active target lactone 2. 

 Our synthesis thus commenced with the preparation of (2S)-

phenylpent-4-enoic acid 3 which was obtained with high 

enantioselectivity using the elegant methodology recently 50 

developed by Zakarian et al.8 (Scheme 3). The process involved 

the enantioselective alkylation of phenylacetic acid using a 

tetramine as traceless chiral auxilary. Using the above procedure, 

optically active (2S)-phenylpent-4-enoic acid 3 was obtained in 

 55 

Scheme 3 Enantioselective Approach to the Key Lactone 
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83% yield and 88% ee. Subsequent iodolactonisation of 3 with 

molecular iodine in diethyl ether afforded lactone 4.9 

Iodoactonization selectively provided the γ-butyrolactone as the 

only product (92% yield) and with satisfactory 

diastereoselectivity since the expected cis-isomer was formed 5 

preferentially over the trans-form (cis/trans 70:30). The 

lactonization step thus proceeded with high 1,3-asymmetric 

induction which permitted to control the absolute configuration of 

the C5 position. The major cis-isomer 4 was recovered by column 

chromatography and chiral HPLC measurements indicated no 10 

erosion of the optical purity since iodolactone 4 exhibited the 

same enantiomeric excess (88% ee) as that of the starting 

phenylacetic acid derivative 3. The lactone ring of 4 was 

thereafter methanolyzed in the presence of potassium carbonate. 

Although complete epimerization of the centre adjacent to the 15 

ester was observed under the mildly basic conditions, chiral 

information borne by C5 was fully retained during the ring 

closure step of the halohydrin intermediate into epoxide 5. 

Absolute stereochemistry of the epoxide unit is a key element in 

our overall strategy towards the asymmetric synthesis of lactone 20 

2 as the cyclopropanation step is expected to proceed by second 

order nucleophilic substitution of the epoxide with inversion of 

configuration. The stage was thus set for the intramolecular 

cyclopropanation of the γ,δ-epoxy ester 5 by SN2 nucleophilic 

ring opening of the oxirane. 25 

 

Table 1 Optimization of the Cyclopropanation Conditions 

entry solvent temp cis/transa conv (%)a 

1 THF rt 30:70 92 

2 THF rflx 45:55 90 

3 THF/HMPA (9:1) rflx 55:45 87 

4 Dioxane/HMPA (9:1) rflx 70:30 89 

a Based on 1H NMR analysis of the crude reaction mixture. 

  

 Attempts to run the reaction at room temperature and under 30 

various basic conditions afforded majoritarily the unwanted 

trans-cyclopropane (Table 1, Entry 1). LDA was however 

selected as a base and the reaction conditions were optimized to 

promote the preferential formation of the cis-isomer 6. We found 

that by rising the reaction temperature to refux, the ratio of the 35 

cis-isomer was increased up to nearly 50% (Entry 2). The 

addition of HMPA also had a beneficial effect on the selective 

formation of 6 as the latter was now produced as the major 

product (Entry 3). Best results were obtained when the 

intramolecular nucleophilic displacement was conducted in a 40 

higher boiling point solvent such as dioxane and in the presence 

of HMPA. Indeed, the expected cis-cyclopropane 6 was obtained 

in good yield and with a cis/trans ratio of 70:30 (Entry 4). The 

cis-cyclopropane  was not isolated from the crude mixture but 

treated in situ with HCl to induce clean formation of the key 45 

lactone 2 in 55% yield (over two steps) and 88% ee. Although not 

fully understood yet, the diastereoselectivity observed for the 

cyclopropanation step in the presence or in the absence of HMPA 

may originate from selective deprotonation of the ester. The 

process, which is governed by lithium coordination between the 50 

carbonyl and the epoxide, can give rise to cis or trans-enolate 

intermediates depending on the reaction conditions. Owing to 

steric interactions, each enolate evolves selectively to provide 

preferential access to one of the cyclopropane forms (for a model, 

see Figure S1 in the ESI). 55 

 At this stage, we had formally synthesized levomilnacipran 

considering that lactone 2, wherein the two stereogenic centers 

are irreversibly set, is the classical intermediate in the known 

syntheses of the title compound. The preparation of 

levomilnacipran was nevertheless continued (Scheme 4) by 60 

diethylaminolysis of the lactone in the presence of AlCl3 to afford 

the cyclopropyl amide-alcohol 7 in 90% yield.10  

 
Scheme 4 Completion of the Synthesis of Levomilnacipran 

The alcohol group was then converted into a leaving group for  65 

the ensuing introduction of the primary amine. Compound 7 was 

hence reacted with thionyl chloride to give halogenated derivative 

8 before potassium phtalimide was added. Nuleophilic 

displacement of the chlorine atom by potassium phtalimide 

permitted efficient introduction of the amine precursor (9) whose 70 

deprotection with ethanolamine finally afforded levomilnacipran 

1 in 89% yield. 

Spectral data (1H and 13C NMR) of 1 are consistent with those of 

authentic milnacipran and optical rotation measurements gave an 

[α]D value of −88.3 (c 1.0, CHCl3). Noteworthy that while 75 

compound 1 is levorotatory, levomilnacipran hydrochloride is 

dextrorotatory ([α]D +72.5 (c 0.7, CHCl3)). However, the optical 

rotation sign of 1·HCl matches that reported in the literature for 

(1S,2R)-milnacipran hydrochloride ([α]D +72.8 (c 0.95, CHCl3), 

96% ee).6a Enantiomeric excess of 1 was ultimately measured by 80 

chiral HPLC which revealed a steady ee value of 88%. These 

results unambiguously indicate that the initial stereochemical 

information of the starting α-substituted phenylacetic acid 3 was 

fully transferred throughout our synthesis of levomilnacipran. 

The strategy we have developed to meet the synthetic challenge 85 

of the asymmetric synthesis of levomilnacipran may also be 

viewed as a general route for the preparation of optically active 

substituted cyclopropanes. 

 In summary, we reported here an efficient enantioselective 

synthesis of levomilnacipran from phenylacetic acid. Our approch 90 

involved the asymmetric preparation of the central lactone 

intermediate 2 using three key reactions: i) the enantioselective 

synthesis of (2S)-phenylpent-4-enoic acid, ii) its selective 

iodolactonisation, and iii) the intramolecular cyclopropanation of 

epoxy ester 5. The enantiomeric excess of the starting 95 

phenylpentenoic acid 3 was preserved throughout the developed 

synthetic pathway, thus permitting efficient access to 

levomilnacipran 1 with 88% ee. 
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The asymmetric synthesis of Levomilnacipran is reported starting from phenylacetic acid. 
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