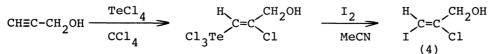
REGIO- AND STEREOSPECIFIC Z-IODO - AND Z-BROMOCHLORINATION OF ALKYLPHENYLACETYLENES VIA Z-CHLOROTELLURATION

Sakae UEMURA, Haruo MIYOSHI, and Masaya OKANO Institute for Chemical Research, Kyoto University, Uji, Kyoto 611

Reaction of alkylphenylacetylenes with tellurium(IV) tetrachloride in carbon tetrachloride gives Z-(2-chlorovinyl)tellurium (IV) trichloride derivatives in over 75% yield, which afford the corresponding Z-chloroiodoalkenes or Z-bromochloroalkenes in good yields by halogenodetelluration with iodine in acetonitrile or N-bromosuccinimide in carbon tetrachloride.

Although the reaction of phenylacetylene and diphenylacetylene with tellurium(IV) tetrachloride has been reported to give the vinyltellurium(IV) compounds, their structures have not yet been fully characterized.¹⁾ During a study of the regio- and stereochemistry of chlorotelluration of several acetylenes we have now found that the chlorotelluration of alkylphenylacetylenes and a subsequent halogenodetelluration gave a good yield of the corresponding Z-chloroiodoalkenes or Z-bromochloroalkenes in a high selectivity. The finding may add another interesting feature on the chemistry of organotellurium(IV) compounds, since a little is known concerning their use for organic syntheses.^{2,3)}


The reaction of tellurium(IV) tetrachloride with an equimolar amount of alkylphenylacetylene (1; R=H, Me, Et, or Ph) in carbon tetrachloride at 76°C for 1 hr, followed by the removal of the solvent in vacuo, gave the corresponding Z-(2-chlorovinyl)tellurium(IV) trichloride derivatives (2) in over 75% yield as a solid or brown oil without any formation of dichloroalkenes. The crude (2) obtained here is analytically almost pure without any purification such as recrystallization or distillation: (2; R=H); ¹H-NMR(MeOD) & 7.73(s, =CH), ¹³C-NMR(CDCl₃) & 124.2(d, =CH), mp 200°C(d). Found: C, 25.09; H, 1.71%. Calcd for C₈H₆Cl₄Te: C, 25.86, H, 1.63%. (2; R=Me); 1 H-NMR(CCl₄) δ 2.70(s, CH₃), oil. Found: C, 27.74; H, 2.04%. Calcd for $C_{9}H_{8}Cl_{4}Te: C, 28.04; H, 2.09$ %. (2; R=Et); oil. Found: C, 29.72; H, 2.31%. Calcd for $C_{10}H_{10}Cl_{4}Te: C, 30.06; H, 2.52$ %. (2; R=Ph); $^{13}C-NMR(CDCl_{3}) \delta$ 150.0(s, =C-Te), mp 97-103°C. Found: C, 37.18; H, 2.34%. Calcd for C₁₄H₁₀Cl₄Te: C, 37.57; H, 2.25%. No regioisomer of (2) was detected in the crude product by 1 H- and 13 C-NMR.

By treating the crude (2) with 1-2 mole equivalents of iodine in acetonitrile or methyl alcohol at reflux for 2 hr, iododetelluration occurred to produce the corresponding Z-chloroiodoalkenes (3; X=I) selectively. Treatment of (2; R=H) with N-bromosuccinimide-aluminium(III) chloride in carbon tetrachloride or copper(II) bromide in acetonitrile afforded (3; R=H, X=Br) in over 60% yield, while the reaction

PhCECR + TeCl₄
$$\xrightarrow{\text{Cl}_4}$$
 $\xrightarrow{\text{Ph}}_{\text{Cl}}$ $\xrightarrow{\text{CeC}_{\text{TeCl}_3}}$ $\xrightarrow{\text{I}_2/\text{MeCN or}}_{\text{NBS-Alcl}_3/\text{CCl}_4}$ $\xrightarrow{\text{Ph}}_{\text{Cl}}$ $\xrightarrow{\text{CeC}_{\text{X}}}_{\text{Cl}}$ $\xrightarrow{\text{Cl}}_{\text{X}}$ (3; X=I or Br)

of (2; R=H) with bromine was unsuccessful for obtaining the same compound (yield <10%) under several conditions examined. Typical results are shown in Table. Application to propargyl alcohol also afforded only Z-chloroiodoalkene (4) (δ 6.53 for =CH, 4.32 for CH₂OH) in 40% yield; an authentic E-isomer of (4) (δ 6.47 and 4.42, respectively) was prepared selectively via chloromercuration with mercury(II) chloride in aqueous NaCl⁴) followed by iododemercuration in acetonitrile.

Although halogenodemetallation of various vinylmetal compounds has been well known, the finding described here seems to be a first example of a successful

.

application to vinyltellurium(IV) compounds so far as we know.²⁾ Since halogenodemetallation of vinylmetal compounds usually proceeds with retention of configuration,⁵⁾ these results show that chlorotelluration of (1) and propargyl alcohol proceeded cis-stereospecifically and also regiospecifically. This method should be useful for selective cis-iodo- and cis-bromo-chlorination of alkylphenylacetylenes, because such reaction with several other reagents usually gives E-isomer (as a result of trans-addition) as a main product.⁶⁾

Table. Z-Chloroiodination ^{a)} and Z-bromochlorination ^{b)}				ination ^{b)}	
of (1) via chlorotelluration					
(1)	Yield(%) ^{C)}	Yield(%)	d) of	a)	I ₂ /MeCN, reflux for 2 hr.
	of (2)	(3; X=I)	(3; X=Br)	b)	NBS-AlCl ₃ /CCl ₄ , reflux for 2 hr.
н	86	94	70	C)	Isolated yield based on (1) charged.
Me	>90	85		d)	Based on (2) in the case of R=H
Et	>90	60			and Ph and on (1) in the case of
Ph	76		60 ^{f)}	_	R=Me and Et as determined by GLC
analysis. Some of (3) were determined by 1 H- and 13 C-NMR spectra together with					
elemental analysis. Others were identical on the retention time of GLC and in					
spectral data with those of the authentic samples obtained by the reported methods. $^{6)}$					
e) Mp 58°C. f) Contains E-isomer; Z/E=2.6/1.					

۱- ۱

References

- 1) M. de M. Campos and N. Petragnani, Tetrahedron, 18, 527(1962).
- 2) K. J. Irgolic, "The Organic Chemistry of Tellurium," Gordon and Breach, New York (1974).
- 3) D. Elmaleh, S. Patai, and Z. Rappoport, J. C. S. (C), <u>1971</u>, 3100; J. Bergman, Tetrahedron, <u>28</u>, 3323(1972); H. K. Spencer, M. V. Lakshmikantham, and M. P. Cava, J. Am. Chem. Soc., <u>99</u>, 1470(1977); H. K. Spencer and M. P. Cava, J. Org. Chem., <u>42</u>, 2937(1977); J. Bergman and L. Engman, Tetrahedron Lett., <u>1979</u>, 1509.
- 4) A. N. Nesmeyanov and N. K. Kochetkov, Izv. Akad. Nauk S.S.S.R., Otdel. Khim. Nauk, 1949, 76.
- 5) S. Uemura, H. Tara, M. Okano, and K. Ichikawa, Bull. Chem. Soc. Jpn., <u>47</u>, 2663 (1974) and references therein.
- 6) S. Uemura, H. Okazaki, A. Onoe, and M. Okano, J. C. S. Perkin I, <u>1977</u>, 676; ibid., <u>1979</u>, 548.

(Received August 29, 1979)