Tetrahedron 68 (2012) 10040-10048

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

A highly diastereoselective series of Nicholas cyclisation reactions of *N*-Boc-protected propargylamines

Peter Brawn^a, Elizabeth Tyrrell^{a,*}, Mark Carew^a, Kibur Hunie Tesfa^{a,†}, Iain Greenwood^b

^a School of Pharmacy & Chemistry, Kingston University, Penrhyn Road, Kingston Upon Thames, Surrey KT1 2EE, UK
^b St George's, University of London, Cranmer Terrace, London SW17 ORE, UK

ARTICLE INFO

Article history: Received 16 May 2012 Received in revised form 6 August 2012 Accepted 28 August 2012 Available online 10 September 2012

ABSTRACT

The reaction of *N*-Boc-protected propargylamine with salicylaldehyde derivatives and their subsequent Nicholas cyclisation reaction to provide a range of novel benzopyrans is reported. The cyclisation reactions proceeded with excellent levels of diastereoselectivity to afford compounds with cis-relative stereochemistry. As far as we are able to ascertain these are the first reported examples of Nicholas cyclisation reactions of propargyl alcohols that bear a terminal alkynyl *N*-protected amino motif.

Ωн

© 2012 Elsevier Ltd. All rights reserved.

Tetrahedror

1. Introduction

In a previous paper we described the antihypertensive activity of a range of novel benzopyrans¹ that were synthesized using a variation of an intramolecular Nicholas reaction² that was developed in our laboratories.³ The key ring closure occurs by the reaction of a tri-substituted alkenyl moiety, the nucleophile, with a dicobalt hexacarbonyl-stabilised 'Nicholas' cation.⁴ We also demonstrated that the reaction sequence that consists of cobalt complexation of the alkynyl moiety, intramolecular cyclisation and finally the oxidative decomplexation of dicobalt hexacarbonyl could be conveniently achieved in a one-pot process.⁵ The compounds from this series of reactions are interesting from the point of view that they contain several of the key pharmacophores present in the benchmark antihypertensive agent cromakalim (1). Results obtained from a series of in vitro studies⁶ suggested that despite the simplicity of our analogues they nevertheless exhibited antihypertensive activity albeit by a cellular mechanism other than potassium channel activation. From an array of novel benzopyrans screened the aryl monofluorinated compounds (2a) and (2b) proved to be the most potent (Fig. 1).

Encouraged by these results we directed our attention towards the synthesis of a more diverse range of benzopyrans containing both monofluorinated and difluorinated aryl substituents for further screening purposes. In order to introduce additional structural diversity into this range of benzopyrans we focused upon changes to the terminal alkynyl substituent. Our rationale for this

in vitro binding properties. Secondly most examples⁷ of the Nicholas reaction involve a propargyl alcohol/ether that bears a terminal R group (R=H, CH₃, aryl), such as the substrate (**3**) employed on our previous studies. In this study we were keen to break with tradition in the use of an *N*-protected propargylamine moiety (**4**) and hence provide diversity in this chemistry (Fig. 2).

The chemistry of related ynamines has been the subject of a review⁸ and the corresponding cobalt complexes have mainly been utilized in the Pauson–Khand reaction.⁹ As far as we have been able to ascertain, however, the use of propargylamines in Nicholas chemistry is minimal¹⁰ and we have been unable to retrieve an example. This modification would thus represent an important novel variation to existing Nicholas-style chemistry as well as provide benzopyrans with a propargylic amide bond. This is an important development as it facilitates the incorporation of handles, such as small peptides, for potential drug delivery purposes. Furthermore if the ynamino moiety is derived from an optically pure source, such as an amino acid, we have the potential means of controlling the stereochemistry of the subsequent ring closure. In

^{*} Corresponding author. Tel.: +44 208 547 8819; fax: +44 208 547 7562; e-mail address: e.tyrrell@kingston.ac.uk (E. Tyrrell).

[†] In part.

Fig. 2. Cyclisation precursors.

this paper we wish to disclose the results from the synthesis and cyclisation of novel compounds based upon compound (4). In particular we were keen to determine whether the presence of a terminal *N*-Boc-amino substituent might exert an influence upon either the efficiency and/or the selectivity of the subsequent cyclisation reactions.

2. Results and discussion

Our method of accessing propargyl alcohols **6a**–**i** is shown (Scheme 1) and the results tabulated (Table 1).

Table 1	

Entry	Substituent	5 a (%)	4 (%)	6 (%)	7 (%)	8 (%)
1	a . R ¹⁻⁴ =H	86	56	79	94	79
2	b . R ² =F	99	45	71	62	97
3	c . R ⁴ =F	91	55	84	58	76
4	d . R^1 , $R^2 = F$	95	35	76	95	96
5	e . R ¹ , R ⁴ =F	91	37	55	76	73
6	f . R ² , R ³ =F	92	34	67	39	91
7	g . R ³ =F	23	28	53	92	98
8	h . R ² , R ⁴ =F	79	54	67	71	52
9	i . R ¹ =F	95	<5	—	—	—

^a Isolated yields.

The data in Table 1 reveal some interesting trends; although the initial O-alkenylation was an efficient and high yielding reaction the subsequent alkynylation step proved to be a more capricious transformation. Initially we examined a number of bases for the

deprotonation of *N*-Boc-propargylamine¹¹ including *n*-BuLi, sodamide and LiHMDS before settling on LDA (2 equiv in THF). The reaction of the subsequent alkynide anion proved, however, to be more of a challenge providing the propargyl alcohols 4a-i in modest to good yields. The alkynylation reaction appears to be sensitive to both the presence of an N-Boc-amino substituent as well as the substitution pattern of the arvl ring. With regard to the influence of the amino moiety on the efficiency of the alkynylation step consider the three highest yielding alkynylations in Table 1: entry 1 4a (56%), entry 2 4b (45%) and entry 3 4c (55%). A comparison of these data, with those for the corresponding phenylethynyl alkynylations, give the following (84%), (82%) and (70%), respectively. With regard to the aryl substituents it seems that the aryl substitution pattern influences the electrophilic nature of the carbonyl to a greater degree than the actual number of aryl electron-withdrawing substituents present. Thus the presence of two fluorine substituents, entry 8 (54%), does not significantly reduce the reactivity of the carbonyl compared to an absence of fluorine, entry 1 (56%). On the other hand the relative position, of the aryl substituents, does have an impact. For example compare entry 8 (54%) with entry 4 (35%), entry 5 (37%) or entry 6 (34%). With regard to monofluorination the effects are even more marked compare entry 2 (45%) or entry 3 (55%) with entry 7 (28%) and entry 9 (>5%).

Conversion of the propargyl alcohols 4a-h into their corresponding hexacarbonyl dicobalt complexes. **6a-h** (Scheme 2) occurred in good to excellent vields. The intramolecular Nicholas cyclisation reaction was carried out by exposure of a dichloromethane solution of the complexed propargyl alcohol, maintained at 0 °C, to a Lewis acid. This reaction, to afford 7a-h, was remarkably facile taking place within the time it takes to carry out a TLC analysis of the reaction mixture. This process is facilitated by the intense red colour of the complex, which makes the product distribution readily visible by TLC analysis. In addition the complexation of alkynes, akin to 7a-h, helps in the discrimination of diastereoisomers by facilitating differentiation¹² in chromatography retention times for instance. Although a number of decomplexing agents have been used¹³ we have found that for this particular system the oxidative decomplexation of dicobalt hexacarbonyl using ceric ammonium nitrate (CAN) was the reagent of choice. This provided benzopyrans 8a-h in good to excellent yields (Scheme 2).

In the synthetic sequence the alkynylation step proved to be the limiting transformation however the three steps consisting of complexation, cyclisation and decomplexation proved to be highly efficient ranging from 24% overall yield (entry **6**) to 69% (entry **4**). As the hexacarbonyl dicobalt complexes are highly coloured (red) we have found it convenient, and more efficient, to carry out the complexation, cyclisation and decomplexation steps in one-pot by simply monitoring each step by TLC analysis.

Analysis of the resulting benzopyrans **8a**–**h** confirmed that the key Nicholas cyclisation reaction had taken place with excellent levels of diastereoselectivity. The ¹H NMR spectrum for compound **8h**, for instance, showed that the benzylic proton, which was resonant at δ 3.9 ppm, overlapped with the resonance attributed to the methylene CH₂ derived from the propargyl group (Fig. 3A). When the NMR sample was run in acetone-*d*₆, from CDCl₃, the overlapping signals separated into two resonances. The first appeared as a broad singlet at δ 3.85 ppm attributed to CH₂ and the second resonance at δ 3.89 ppm attributed to the benzylic proton. This appeared as a broadened doublet with a coupling constant *J* 4.0 Hz (Fig. 3B).

The corresponding ¹⁹F NMR spectrum of compound **8h** is shown (Fig. 5) and serves to confirm the presence of only one diastereoisomer. The second fluorine resonance at -139.7 ppm results from an incorporation of a fluoride ion derived from the Lewis acid.

Fig. 5. Fluorine NMR spectrum of compound 8h.

Fig. 3. Part of the ¹H NMR spectrum of 8h.

With the information obtained in Fig. 3B, i.e., the precise chemical shift δ of the benzylic proton in acetone- d_6 , we were then able to confirm the relative stereochemistry of the two adjacent protons by carrying out a NOESY experiment in acetone- d_6 . The spectrum obtained is shown (Fig. 4). This clearly shows an interaction between the benzylic proton and the adjacent methine hydrogen atom, which resonates at δ 2.4 ppm. The information that we obtained from these experiments, based upon the magnitude of the coupling constant *J*, for the benzylic proton, as well as the results obtained from the NOESY NMR experiments, suggested that the two newly generated stereocentres, resulting from the Nicholas reaction, have a cis-stereochemical relationship.

Fig. 4. NOESY ¹H NMR spectrum of 8h. The relevant protons are circled.

3. Conclusion

Although we anticipated that the presence of the terminal *N*-Boc-protected propargylamine would not impede the subsequent Nicholas cyclisation it was nevertheless gratifying to establish that both the efficiency of the cyclisation reactions and the corresponding diastereoselectivity of the Nicholas cyclisations remained consistent. The benzopyrans that resulted from this novel modification to the Nicholas reaction will now be screened for their antihypertensive activity and the results will be disseminated in due course. In addition it is our intention to extend this study to include the use of chiral *N*-Boc-protected propargylamines. As cobalt complexes such as **6a**-**h** are known to exhibit more sp² character a chiral complex should adopt a non-linear geometry and thus facilitate stereocontrol over the subsequent cyclisation reaction.

4. Experimental¹⁴

4.1. Physical measurements and materials

Melting point determinations were recorded using a Stuart Scientific SMP3 digital melting point apparatus and are uncorrected. IR spectra were recorded on a Perkin–Elmer 1600 series FTIR spectrophotometer and were calibrated using a standard polystyrene film. The spectra were recorded either as thin films for liquids, between sodium chloride discs or for solids as a Nujol mull. All infrared data are quoted in wave numbers (cm⁻¹). Proton nuclear magnetic resonance spectra (¹H NMR) were recorded at 400 MHz using a JEOL Eclipse 400 MHz spectrometer. Peak positions are quoted using the δ scale relative to tetramethylsilane $(\delta=0)$ as an internal standard. Carbon-13 NMR spectra (¹³C NMR) were recorded at 100 MHz on a JEOL Eclipse 400 MHz spectrometer using deuterochloroform as an internal standard. Low-resolution mass spectra were recorded on a VG TRIO-2 mass spectrometer under electron impact conditions at an ionising potential of 70 eV and/or with a Hewlett Packard GC-MS HP5890 (GC) with capillary column and HP 5971 (MS). Accurate mass analyses were performed and reported on a VG-ZAB-E under EI conditions by the EPSRC National Mass Spectrometry Service Centre (Swansea) using the EI Peak Match on M+ method. Reactions were carried out under an atmosphere of dry nitrogen unless otherwise stated.

4.2. Preparation of 2-(3-methylbut-2-enyloxy)-benzaldehyde 5a

To a flame-dried two-necked flask containing dry DMF (100 mL), were added salicylaldehyde (5.21 g, 42.7 mmol), 4-bromo-2-methylbut-2-ene (7.00 g, 47.0 mmol), finely ground anhydrous potassium carbonate (23.6 g, 171 mmol) and potassium iodide (0.714 g, 4.30 mmol). The solution was left to stir at an ambient temperature under an atmosphere of nitrogen for 2.5 h. Analysis of the reaction mixture by TLC (1:3 diethyl ether/light petroleum spirit) showed the presence of a new compound with an R_f of 0.480. The reaction mixture was poured into water and partitioned between diethyl ether. The aqueous phase was isolated and then extracted with diethyl ether (6×20 mL). The combined organic extracts were combined, dried over anhydrous magnesium sulfate, filtered and concentrated in vacuo to afford a yellow oil. Purification of the crude material was carried out by chromatography on silica,¹⁵ eluted with diethyl ether/light petroleum spirit (1:3). This provided the title compound, **5a**, (7.02 g, 86%) as a colourless oil: R_f 0.48 (1:3 diethyl ether/light petroleum spirit): v_{max} (NaCl)/cm⁻¹ (thin film) 3034, 1686, 1598, 1286; ¹H NMR (400 MHz, CDCl₃): *δ*=10.46 (1H, s, CO−H), 7.78 (1H, dd *J*=1.8, 7.9 Hz, Ar−H); 7.50-7.45 (1H, m, H-Ar); 6.97-6.93 (2H, m, H-Ar); 5.48-5.43 (1H, m, H-C=C); 4.59 (2H, d, J=6.8 Hz, CH₂); 1.76 (3H, s, CH₃); 1.71 (3H, s, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ =189.6, 161.1, 138.4, 135.6, 127.9, 124.8, 120.3, 118.8, 112.7, 65.2, 25.5, 18.0; LRMS (EI): m/z 191, 122, 104.93, 69, 51. HRMS (ES): calcd for C₁₂H₁₅O₂ [M⁺] 191.1067; found 191.1066.

4.2.1. 5-Fluoro-2-[(3-methylbut-2-en-1-yl)oxy benzaldehyde **5b**. Following the general procedure¹⁶ the title compound was isolated (8.71 g, 82%) as a crystalline solid: R_f 0.80 (1:3 diethyl ether/light petroleum spirit), mp 45–46 °C (from hexane); v_{max} (NaCl)/cm⁻¹ (thin film) 2866, 1686, 1612, 1490, 1428, 1384, 1266, 1200, 1148; ¹H NMR (400 MHz, CDCl₃): δ =10.41 (1H, d, *J*=1.3 Hz, CO–H), 7.48 (1H, dd, *J*=3.3, 8.3 Hz, Ar–H); 7.22 (1H, ddd, *J*=1.3, 3.3, 8.3 Hz, H–Ar); 6.95 (1H, dd, *J*=3.3, 8.3 Hz, H–Ar); 5.49–5.44 (1H, m, H–C=C); 4.60 (2H, d, *J*=6.6 Hz, CH₂); 1.79 (3H, d, *J*=1.1 Hz, CH₃); 1.74 (3H, br s, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ =189.0 (d, ⁴*J*_{C–F}=1.54 Hz), 158.1 (d, ⁴*J*_{C–F}=1.54 Hz), 155.7, (d, ²*J*_{C–F}=241.38 Hz), 139.2, 125.5 (d, ³*J*_{C–F}=5.38 Hz), 122.5 (d, ³*J*_{C–F}=23.06 Hz), 66.3, 25.9, 18.4. LRMS (EI): *m*/z 226 [M⁺+NH₄], 209, 140, 103, 86, 69. HRMS (ES): calcd for C₁₂H₁₇FNO₂ [M+NH₄]⁺ 226.1238; found 226.1237.

4.2.2. 3-Fluoro-2-[(3-methylbut-2-en-1-yl)-oxybenzaldehyde **5c**. Following the general procedure the title compound was isolated (7.97 g, 75%) as a colourless oil: R_f 0.76 (1:3 diethyl ether/light

petroleum ether): v_{max} (NaCl)/cm⁻¹ (thin film) 2866, 1690, 1606, 1478, 1380, 1262, 1216, 1068; ¹H NMR (400 MHz, CDCl₃): δ =10.36 (1H, d, *J*=0.9 Hz, CO–H), 7.61–7.56 (1H, m, Ar–H), 7.31 (1H, ddd, *J*=1.6, 8.1, 11.4 Hz, H–Ar), 7.09 (1H, ddd, *J*=0.6, 4.5, 8.1 Hz, H–Ar), 5.51–5.46 (1H, m, H–C=C); 4.73 (2H, d, *J*=7.5 Hz, CH₂); 1.74 (3H, s, CH₃); 1.63 (3H, s, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ =189.4 (d, ³*J*_{C-F}=3.1 Hz), 156.9 (d, *J*_{C-F}=248.29 Hz), 154.5, 149.4 (d, ³*J*_{C-F}=10.7 Hz), 141.1, 123.7 (*J*_{C-F}=7.7 Hz) 123.1 (d, ⁴*J*_{C-F}=3.0 Hz), 121.6 (³*J*_{C-F}=19.2 Hz), 118.8, 71.2 (d, ⁴*J*_{C-F}=6.2 Hz), 25.9, 18.1; LRMS (EI): *m/z* 227 [M⁺] 209, 140, 103, 86, 69; HRMS (ES): calcd for C₁₂H₁₇FNO₂ [M+NH₄]⁺ 226.1238; found 226.1237.

4.2.3. 5,6-Difluoro-2-[(3-methylbut-2-en-1-yl)oxy]-benzaldehyde **5d**. Following the general procedure the title compound was isolated as a colourless oil (1.37 g, 95%): R_f 0.53 (1:3 diethyl ether); v_{max} (NaCl)/cm⁻¹ (thin film) 2869, 1695, 1602, 1481, 1378, 1262, 1074; ¹H NMR (400 MHz, CDCl₃): δ =10.41 (1H, s, CO–H), 7.31 (1H, q, J=9.0 Hz, Ar–H); 6.67–6.73 (1H, m, H–Ar); 5.50–5.43 (1H, m, H–C=C); 4.62 (2H, d, J=6.5 Hz, CH₂); 1.81 (3H, s, CH₃); 1.75 (3H, s, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ =189.4, 157.1 (dd, ⁴J_{C-F}=3.67, 2.20 Hz), 149.9 (dd, ²J_{C-F}=266.30, ³J_{C-F}=13.21 Hz), 144.8, (dd, ²J_{C-F}=242.82, ³J_{C-F}=12.47 Hz), 139.4, 122.32 (dd, ³J_{C-F}=19.07, ⁴J_{C-F}=2.93 Hz), 118.8, 115.5 (d, ⁴J_{C-F}=5.87 Hz), 108.0 (t, ⁴J_{C-F}=4.77 Hz), 66.5, 25.7, 18.3; LRMS (EI): m/z 226 [M⁺] HRMS (EI): calcd for C₁₂H₁₆F₂NO₂ [M+NH₄]⁺ 244.1144; found 244.1146.

4.2.4. 3,6-Difluoro-2-[(3-methylbut-2-en-1-yl)oxy]- benzaldehyde **5e**. Following the general procedure the title compound was isolated as a colourless oil (1.29 g, 91%): R_f 0.64 (1:3 diethyl ether/light petroleum spirit): v_{max} (NaCl)/cm⁻¹ (thin film) 3060, 1690, 1606, 1582, 1444, 1284; ¹H NMR (400 MHz CDCl₃): δ =10.35 (1H, s, CO–H), 7.24–7.31 (1H, m, Ar–H); 6.81 (1H, td, J=9.3, 3.4 Hz, H–Ar); 5.45–5.53 (1H, m, H–C=C); 4.76 (2H, d, J=7.3 Hz, CH₂); 1.77 (3H, s, CH₃); 1.68 (3H, s, CH₃). ¹³C NMR (100 MHz, CDCl₃): δ =186.7, 157.7 (dd, ²J_{C-F}=260.43, ⁴J_{C-F}=2.93 Hz), 151.6 (dd, ²J_{C-F}=245.02, ⁴J_{C-F}=3.67 Hz), 148.8, (dd, ³J_{C-F}=13.20, ⁴J_{C-F}=5.13 Hz), 141.1, 122.2 (dd, ³J_{C-F}=22.74, ³J_{C-F}=11 Hz), 119.5 (dd, ³J_{C-F}=9.54, ⁴J_{C-F}=1.47 Hz), 118.5, 110.8 (dd, ³J_{C-F}=23.47 and ⁴J=7.34 Hz), 71.2 (d, J_{C-F}=6.60 Hz), 25.6, 17.8; LRMS (EI): m/z 226 [M⁺] HRMS (EI): calcd for C₁₂H₁₆F₂NO₂ [M+NH₄]⁺ 244.1144; found 244.1148.

4.2.5. 4,5-Difluoro-2-[(3-methylbut-2-en-1-yl)oxy]-benzaldehyde **5f**. Following the general procedure the title compound was isolated as a colourless oil (1.34 g, 92%): R_f 0.66 (1:3 diethyl ether/light petroleum spirit); v_{max} (NaCl)/cm⁻¹ (thin film) 3080, 1696, 1600, 1588, 1480, 1284; ¹H NMR (400 MHz CDCl₃): δ =10.38 (1H, d *J*=3.0 Hz, CO-H), 7.68 (1H, dt, *J*=3.0, 10 Hz, Ar-H); 6.84 (1H, dd, *J*=6.0, 10 Hz, Ar-H); 5.44–5.54 (1H, m, H–C=C); 4.63 (2H, d, *J*=6.8 Hz, CH₂); 1.85 (3H, s, CH₃); 1.79 (3H, s, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ =186.7, 158.2 (dd, ³*J*_{C-F}=8.44, ⁴*J*_{C-F}=1.83 Hz), 154.7 (dd, ²*J*_{C-F}=258.96, ³*J*_{C-F}=14.67 Hz), 144.8 (dd, ²*J*_{C-F}=244.29, ³*J*_{C-F}=18.3, ⁴*J*_{C-F}=2.93 Hz), 102.9 (d, ³*J*_{C-F}=21.27), 66.32, 25.56, 18.09; LRMS (EI): m/z 226 [M⁺] HRMS (EI): calcd for C₁₂H₁₆F₂NO₂ [M+NH₄]⁺ 244.1144; found 244.1146.

4.2.6. 4-Fluoro-2-[(3-methylbut-2-en-1-yl)oxy] benzaldehyde **5g**. Following the general procedure the title compound was isolated as a yellow oil (0.34 g, 23%): R_f 0.78 (1:3 diethyl ether/light petroleum spirit); v_{max} (NaCl)/cm⁻¹ (thin film) 2875, 1695, 1612, 1486, 1394, 1258, 1228, 1069; ¹H NMR (400 MHz, CDCl₃): δ =10.38 (1H, d, *J*=0.8 Hz CO-H), 7.86 (1H, dd *J*=7.0, 8.5 Hz, Ar-H); 6.63-6.76 (2H, m, H-Ar); 5.44-5.54 (1H, m, H-C=C); 4.62 (2H, d, *J*=6.8 Hz, CH₂); 1.82 (3H, s, CH₃); 1.78 (3H, s, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ =169.6, 167.1 (d, ²_{*J*C-F}=254.45 Hz), 163.7 (d, *J*_{C-F}=13.84 Hz), 140.3, 132.1 (d, *J*_{C-F}=11.53 Hz), 117.8, 109.4 (d, ⁴_{*J*C-F}=2.31 Hz), 107.1 (d, ${}^{3}J_{C-F}$ =22.29 Hz), 104.3 (d, ${}^{3}J_{C-F}$ =23.83 Hz), 62.3, 25.8, 18.1; LRMS (EI): *m/z* 227 [M⁺] 209, 140, 103, 86, 69. HRMS (ES): calcd for C₁₂H₁₇FNO₂ [M+NH₄]⁺ 226.1238; found 226.1239.

4.2.7. 3,5-Difluoro-2-[(3-methylbut-2-en-1-yl)oxy]-benzaldehyde **5h**. Following the general procedure the title compound was isolated as a colourless oil (1.03 g, 79%): R_f 0.64 (1:3 diethyl ether/light petroleum spirit); v_{max} (NaCl)/cm⁻¹ (thin film) 3090, 1695, 1610, 1586, 1484, 1279; ¹H NMR (400 MHz CDCl₃): δ =10.29 (1H, d, J=1.8 Hz, CO–H), 7.29 (1H, ddd J=1.8, 3.1 and 7.9 Hz, Ar–H); 7.09 (1H, ddd, J=3.1, 7.9 and 10.9 Hz, H–Ar); 5.49–5.43 (1H, m, H–C=C); 4.68 (2H, d, J=7.5 Hz, CH₂); 1.74 (3H, s, CH₃); 1.20 (3H, s, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ =188.1, shoulder, 157.6 (dd, ${}^{2}J_{C-F}$ =247.52 and ${}^{3}J_{C-F}$ =10.76 Hz), 155.8 (dd, ${}^{2}J_{C-F}$ =252.90, ${}^{3}J_{C-F}$ =9.99 Hz), 145.9 (dd, ${}^{3}J_{C-F}$ =15.37 and ${}^{4}J_{C-F}$ =3.80 Hz), 141.7, 131.2 (dd, ${}^{3}J_{C-F}$ =7.69, 2.31 Hz), 118.3, 110.8 (dd, ${}^{3}J_{C-F}$ =26.91 and 23.06 Hz), 108.8 (dd, ${}_{C-F}$ =23.06 and 3.84 Hz), 71.4 (d, ${}^{3}J_{C-F}$ =5.4 Hz), 25.8, 17.9; LRMS (EI): m/z 244 [M⁺+NH₄]⁺, 226, 175, 137, 86, 69. HRMS (ES): calcd for C₁₂H₁₆F₂NO₂ [M+NH₄]⁺ 244.1144; found 244.1146.

4.2.8. 6-*Fluoro-2-[(3-methylbut-2-en-1-yl)oxy]-benzaldehyde* **5i**. Following the general procedure the title compound was isolated as a colourless oil (1.01 g, 95%): $R_f 0.74$ (1:3 diethyl ether/light petroleum ether); v_{max} (NaCl)/cm⁻¹ (thin film) 2869, 1695, 1602, 1469, 1380, 1262, 1216, 1068; ¹H NMR (400 MHz CDCl₃): δ =10.45 (1H, s, CO–H), 7.45 (1H, td *J*=6.3 and 7.9 Hz, Ar–H); 6.77 (1H, d, *J*=8.8 Hz, H–Ar); 6.71 (1H, dd, *J*=8.8 and 10.0 Hz, H–Ar); 5.42–5.53 (1H, m, H–C=C); 4.64 (2H, d, *J*=6.5 Hz, CH₂); 1.81 (3H, s, CH₃); 1.76 (3H, s, CH₃). ¹³C NMR (100 MHz, CDCl₃): δ =187.6 (d, ⁴*J*_C–F=147 Hz), 162.6 (d, ²*J*_C–F=246.49 Hz), 161.6 (d, ³*J*=22.01 Hz), 139.1, 135.8 (d, *J*_C–F=711.74 Hz), 118.6, 114.4 (d, *J*=8.80 Hz), 108.5 (d, *J*=8.80 Hz), 108.4 (d, *J*=8.80 Hz), 66.2, 25.8, 18.3. LRMS (EI): *m/z* 227 [M+] 209, 140, 103, 86, 69. HRMS (ES): calcd for C₁₂H₁₇FNO₂ [M+NH₄]⁺ 226.1238; found 226.1234.

4.3. Preparation of 1-{2-[(3-methylbut-2-en-1-yl)oxy] phenyl}-3-*N*-Boc-methylaminoprop-2-yn-o1 4a

N-Boc-propargylamine (0.30 g, 1.94 mmol) was dissolved in THF (20 mL) at $-78 \degree \text{C}$ in a flame-dried round-bottom flask. To this solution was added dropwise LDA (1.80 M in heptane 2.11 mL, 3.80 mmol) to effect alkynide formation. The solution was left to stir at -78 °C for 60 min whereupon 5a (0.43 g, 2.25 mmol) was added in one portion. The reaction mixture was left to stir for a further 30 min and then allowed to reach ambient temperature. TLC analysis of the reaction mixture (3:7 ethyl acetate/light petroleum spirit) showed the presence of a slower moving compound R_f 0.41. The reaction mixture was guenched by the addition of a saturated aqueous solution of ammonium chloride (20 mL). The solvent was removed in vacuo and the mixture partitioned between water and dichloromethane. The organic phase was isolated and washed with water (3×20 mL), dried over anhydrous magnesium sulfate, filtered and concentrated in vacuo to give the crude product. Purification by column chromatography on silica (3:7 ethyl acetate/light petroleum spirit) provided the title compound 4a as a yellow oil (0.46 g, 56% yield): v_{max} (NaCl)/cm⁻¹ (thin film) 3455, 2980, 2932, 2252, 1709, 1601; ¹H NMR (400 MHz, CDCl₃): δ 7.51 (dd, 1H, *J*=7.5, 1.7 Hz, Ar–H), 7.30 (dt, 1H, *J*=8.2, 1.7 Hz, Ar–H), 7.0 (dt, 1H, *J*=7.5, 0.9 Hz, Ar–H), 6.92 (d, 1H, *J*=8.2 Hz, Ar–H), 5.69 (dt, 1H, J=6.0 and 1.8 Hz, CH-OH), 5.50-5.46 (m, 1H, CH=C), 4.68 (s, 1H, NH), 4.60 (d, 2H, J=6.5 Hz, CH₂O), 4.02 (d, 2H, J=4.3, CH₂-NH), 3.16 (d, 1H, J=6.1 Hz, OH), 1.79 (br s, 3H, CH₃-C=C), 1.74 (s, 3H, CH₃-C= C), 1.44 (s, 9H, (CH₃)₃C); ¹³C NMR (100 MHz, CDCl₃): δ =156.2, 155.3, 138.6, 129.6, 128.9, 122.9, 120.8, 119.4, 112.1, 82.4, 82.3, 80.0, 65.2, 61.2, 30.7, 28.4, 25.8, 18.2; LRMS (EI): *m*/*z* 363 (M+NH₄)⁺; HRMS (ES): calcd for C₂₀H₃₁N₂O₄ [M+NH₄]⁺ 363.2278; found [363.2279].

4.3.1. 1-{5-Fluoro-2-[(3-methylbut-2-en-1-yl)oxy]phenyl}-3-N-Bocmethylaminoprop-2-yn-o1 **4b**. Following the general procedure the title compound was isolated as a yellow oil (0.80 g, 45%): R_f 0.55 (3:7 ethyl acetate/light petroleum spirit); v_{max} (NaCl)/cm⁻¹ (thin film) 3412, 2924, 2228, 1674, 1598, 1492, 1246, 1190; ¹H NMR (400 MHz, CDCl₃): δ 7.34–7.28 (m, 1H, Ar–H), 6.96 (dd, 1H, *J*=8.0, 3.0 Hz, Ar–H), 6.84 (dd, 1H, *J*=8.9, 4.4 Hz, Ar–H), 5.68 (d, 1H, *J*=5.3 Hz, CH–OH), 5.47 (bd s, 1H, CH=C), 4.77–4.66 (m, 1H, NH), 4.57 (d, 2H, *J*=4.0 Hz, CH₂O), 4.03 (d, 2H, *J*=3.8 Hz, CH₂–NH), 3.12 (d, 1H, *J*=5.3 Hz, OH), 1.80 (s, 3H, CH₃–C=C), 1.74 (s, 3H, CH₃–C=C), 1.46 (s, 9H, (CH₃)₃C); ¹³C NMR (100 MHz, CDCl₃): δ =156.9 (d, ²*J*_{C-F}=239.89 Hz), 153.1, 152.1 (d, ⁴*J*_{C-F}=2.2 Hz), 138.7, 130.5 (d, ⁴*J*_{C-F}=6.6 Hz), 119.2, 115.3 (d, ³*J*_{C-F}=22.74 Hz), 114.9 (d, ³*J*_{C-F}=2.1 Hz), 13.2 (d, ⁴*J*_{C-F}=8.07 Hz), 82.8, 81.6, 80.1, 66.0, 61.0 (d, ⁴*J*_{C-F}=1.5 Hz), 30.75, 28.32, 25.75, 18.25; LRMS (EI): *m/z* 381 (M+NH₄)⁺; HRMS (ES): calcd for C₂₀H₃₀FN₂O₄ [M+NH₄]⁺ 381.2184; found [381.2188].

4.3.2. 1-{3-Fluoro-2-[(3-methylbut-2-en-1-yl)oxy]phenyl}-3-N-Bocmethylaminoprop-2-yn-o1 4c. Following the general procedure the title compound was isolated as a yellow oil (2.0 g, 55%): R_f 0.50 (3:7 ethyl acetate/light petroleum spirit); v_{max} (NaCl)/cm⁻¹ (thin film) 3356, 2978, 2931, 2404, 1694, 1476; ¹H NMR (400 MHz, CDCl₃): δ 7.30 (bd d, J=7.3 Hz, 1H, Ar-H), 7.11-6.99 (m, 2H, Ar-H), 5.71-5.64 (m, 1H, CH-OH), 5.59-5.51 (m, 1H, CH=C), 4.70–4.64 (m, 3H, NH and CH₂O), 4.02 (d, 2H, J=4.0 Hz, CH₂-NH), 3.00 (d, 1H, *I*=6.2 Hz, OH), 1.79 (s, 3H, CH₃-C=C), 1.79 (s, 3H, CH₃-C=C), 1.45 (s, 9H, (CH₃)₃C); ¹³C NMR (100 MHz, 155.3 (d, ${}^{2}J_{C-F}=247.53$ Hz), 144.5, 143.9 CDCl₃): (d, ${}^{3}J_{C-F}$ =12.30 Hz), 139.9, 135.2, 123.7 (d, ${}^{4}J_{C-F}$ =7.69 Hz), 122.9 (d, ${}^{4}J_{C-F}$ =3.07 Hz), 119.6, 117.0 (d, ${}^{3}J_{C-F}$ =19.22 Hz), 82.6, 82.3, 79.9, 70.5 (d, ${}^{4}J_{C-F}$ =6.15 Hz), 60.9, 30.7, 38.3, 25.8, 18.0; LRMS (EI): m/z381 $(M+NH_4)^+$; HRMS (ES): calcd for $C_{20}H_{30}FN_2O_4$ [M+NH₄] 381.2184; found [381.2184].

4.3.3. $1-\{5,6-Difluoro-2-[(3-methylbut-2-en-1-yl)oxy] phenyl\}-3-N-Boc-methylaminoprop-2-yn-o1$ **4d** $. Following the general procedure the title compound was isolated as a yellow oil (0.62 g, 35%): <math>R_f$ 0.50 (3:7 ethyl acetate/light petroleum spirit); v_{max} (NaCl)/cm⁻¹ (thin film) 3422, 2914, 2228, 1672, 1598, 1476; ¹H NMR (400 MHz, CDCl₃): δ 7.06 (d, J=9.5 Hz, 1H, Ar–H), 6.67–6.57 (m, 1H, Ar–H), 5.74 (d, J=10.8 Hz, 1H, CH–OH), 5.52–5.42 (m, 1H, CH=C), 4.66–4.51 (m, 3H, NH and CH₂O), 3.96 (d, 2H, J=2.8 Hz, CH₂–NH), 3.69 (d, 1H, J=10.8 Hz, OH), 1.81 (s, 3H, CH₃–C=C), 1.76 (s, 3H, CH₃–C=C), 1.44 (s, 9H, (CH₃)₃C); ¹³C NMR (100 MHz, CDCl₃); 158.5 (dd, ${}^{3}J_{C-F}=16.87$, ${}^{4}J_{C-F}=4.40$ Hz), 153.6 (dd, ${}^{2}J_{C-F}=272.16$ Hz, ${}^{3}J_{C-F}=13.20$ Hz), 152.7, 144.9 (dd, ${}^{2}J_{C-F}=1.47$ Hz), 118.6, 116.0 (dd, ${}^{3}J_{C-F}=18.34$ Hz, ${}^{4}J_{C-F}=2.20$ Hz), 107.7 (dd, ${}^{4}J_{C-F}=6.60$, 3.30 Hz), 82.2, 81.4, 79.9, 66.4, 60.3, 30.7, 28.3, 25.8, 18.3; LRMS (EI): m/z 399 (M+NH₄)⁺; HRMS (ES): calcd for C₂₀H₂₉F₂N₂O₄ [M+NH₄]⁺ 399.2090; found [399.2095].

4.3.4. $1-\{3,6-Difluoro-2-[(3-methylbut-2-en-1-yl)oxy] phenyl\}-3-N-Boc-methylaminoprop-2-yn-o1$ **4e** $. Following the general procedure the title compound was isolated as a yellow oil (0.67 g, 37%): <math>R_f$ 0.38 (3:7 ethyl acetate/light petroleum spirit); v_{max} (NaCl)/cm⁻¹ (thin film) 3422, 2914, 2230, 1677, 1596, 1476; ¹H NMR (400 MHz, CDCl₃): δ 7.02 (ddd, J=10.9, 9.2, 5.0 Hz, 1H, Ar–H), 6.76 (ddd, J=9.2, 9.0, 3.7 Hz, 1H, Ar–H) 5.71 (d, J=10.5 Hz, 1H, CH–OH), 5.57 (d, J=7.2 Hz, 1H, CH=C), 4.74–4.60 (m, 3H, NH and CH₂O), 3.97 (bd s, 2H, CH₂–NH), 3.53 (d, 1H, J=10.5 Hz, OH), 1.81 (s, 3H, CH₃–C=C), 1.75 (s, 3H, CH₃–C=C), 1.44 (s, 9H, (CH₃)₃C); ¹³C NMR (100 MHz, CDCl₃): 155.7 (dd, $^{2}J_{C-F}=273.63$, $^{4}J_{C-F}=2.93$ Hz), 152.8, 152.1 (dd,

 ${}^{2}J_{C-F}=254.56 \text{ Hz}, {}^{4}J_{C-F}=2.20 \text{ Hz}), 146.4 \text{ (dd, } {}^{3}J_{C-F}=13.94 \text{ Hz},$ ${}^{4}J_{C-F}=3.70 \text{ Hz}), 140.4, 119.1, 118.4 \text{ (dd, } {}^{3}J_{C-F}=16.14 \text{ Hz},$ ${}^{4}J_{C-F}=2.20 \text{ Hz}), 116.6 \text{ (dd, } {}^{3}J_{C-F}=22.01 \text{ Hz}, {}^{4}J_{C-F}=10.30 \text{ Hz}), 110.4 \text{ (dd, } {}^{3}J_{C-F}=24.21, {}^{4}J_{C-F}=8.10 \text{ Hz}), 82.5, 81.1, 80.5, 71.0 \text{ (d, } {}^{4}J_{C-F}=7.34 \text{ Hz}), 66.4, 30.6, 28.3, 25.9, 18.1; LRMS (EI):$ *m/z*399 (M+NH₄)⁺; HRMS (ES): calcd for C₂₀H₂₉F₂N₂O₄ [M+NH₄]⁺ 399.2090; found [399.2091].

4.3.5. 1-{4,5-Difluoro-2-[(3-methylbut-2-en-1-yl)oxy] phenyl}-3-N-Boc-methylaminoprop-2-yn-o1 4f. Following the general procedure the title compound was isolated as a yellow oil (0.60 g, 34%): $R_f 0.38$ (3:7 ethyl acetate/light petroleum spirit); v_{max} (NaCl)/cm⁻¹ (thin film) 3425, 2924, 2228, 1675, 1602, 1477; ¹H NMR (400 MHz, CDCl₃): δ 7.41 (dd, *J*=10.5, 9.5 Hz, 1H, Ar−H), 6.73 (dd, *J*=11.8, 6.5 Hz, 1H, Ar–H), 5.67 (d, J=5.3 Hz, 1H, CH–OH), 5.49–5.40 (m, 1H, CH= C), 4.81–4.62 (m, 1H, NH), 4.54 (d, J=4.3 Hz, 2H, CH₂–O), 4.02 (d, J=4.3 Hz, 2H, CH₂-NH), 3.53 (d, 1H, J=5.3 Hz, OH), 1.81 (s, 3H, CH₃-C=C), 1.75 (s, 3H, CH₃-C=C), 1.46 (s, 9H, (CH₃)₃C); ¹³C NMR (100 MHz, CDCl₃): δ =158.5 (dd, ⁴J_{C-F}=16.9 Hz, ⁵J_{C-F}=4.4 Hz), 153.6 $^{2}J_{C-F}$ =272.2 Hz, $^{3}J_{C-F}$ =13.2 Hz), 152.7, 144.9 (dd, (dd. $^{2}J_{C-F}=241.4$ Hz, $^{3}J_{C-F}=12.5$ Hz), 139.4, 122.2 (dd, $^{3}J_{C-F}=17.6$ Hz, ${}^{4}J_{C-F}=1.5$ Hz), 118.6, 116.0 (dd, ${}^{3}J_{C-F}=18.3$ Hz, ${}^{4}J_{C-F}=2.0$ Hz), 107.7 (d, ${}^{4}J_{C-F}=6.6$ Hz, ${}^{5}J_{C-F}=3.3$ Hz), 82.2, 81.4, 79.9, 66.4, 60.3, 30.7, 28.3, 25.8, 18.3; LRMS (EI): *m*/*z* 399 (M+NH₄)⁺; HRMS (ES): calcd for $C_{20}H_{29}F_2N_2O_4$ [M+NH₄]⁺ 399.2090; found [399.2091].

4.3.6. 1-{4-Fluoro-2-[(3-methylbut-2-en-1-yl)oxy]phenyl}-3-N-Bocmethylaminoprop-2-yn-o1 **4g**. Following the general procedure the title compound was isolated as a yellow oil (0.48 g, 28%): R_f 0.39 (3:7 ethyl acetate/light petroleum spirit); v_{max} (NaCl)/cm⁻¹ (thin film) 3346, 2968, 2398, 1690, 1602, 1476; ¹H NMR (400 MHz, CDCl₃): δ 7.24–7.08 (m, 1H, Ar–H), 6.69–6.60 (m, 2H, Ar–H), 5.67 (br s, 1H, CH–OH), 5.50–5.42 (m, 1H, CH=C), 4.84–4.67 (m, 1H, NH), 4.57 (d, 2H, J=5.8 Hz, CH₂O), 4.02 (br s, 2H, CH₂–NH), 3.38 (br s, 1H, OH), 1.81 (s, 3H, CH₃–C=C), 1.76 (s, 3H, CH₃–C=C), 1.46 (s, 9H, (CH₃)₃C); ¹³C NMR (100 MHz, CDCl₃): δ =164.4 (d, ³J_{C-F}=16.91 Hz), 147.9 (d, ⁴J_{C-F}=5.38 Hz), 137.6, 129.6 (d, ³J_{C-F}=29.9 Hz), 119.0 (d, ³J_{C-F}=24.21 Hz), 113.2 (d, ³J_{C-F}=13.84 Hz), 100.3 (d, ³J_{C-F}=26.14 Hz), 89.6, 80.9, 77.2, 65.2 (d, ⁴J_{C-F}=2.31 Hz), 31.4, 28.3, 25.8, 18.3; LRMS (EI): m/z 381 (M+NH₄)⁺; HRMS (ES): calcd for C₂₀H₃₀FN₂O₄ [M+NH₄]⁺ 381.2184; found [381.2187].

4.3.7. 1-{3,5-Difluoro-2-[(3-methylbut-2-en-1-yl)oxy] phenyl}-3-*N*-Boc-methylaminoprop-2-yn-o1 **4h**. Following the general procedure the title compound was isolated as a yellow oil (0.93 g, 54%): R_f 0.40 (3:7 ethyl acetate/light petroleum spirit); v_{max} (NaCl)/cm⁻¹ (thin film) 3425, 2924, 2228, 1675, 1602, 1477; ¹H NMR (400 MHz, CDCl₃): δ 7.09 (d, *J*=8.4 Hz, 1H, Ar–H), 6.89–6.84 (m, 1H, Ar–H), 5.68 (br s, 1H, CH–OH), 5.56–5.48 (m, 1H, CH=C), 4.73 (bd s, 1H, NH), 4.63 (d, *J*=7.0 Hz, 2H, CH₂–O), 4.01 (bd s, 2H, CH₂–N), 2.99 (d, 1H, *J*=5.5 Hz, OH), 1.79 (s, 3H, CH₃–C=C), 1.71 (s, 3H, CH₃–C=C), 1.45 (s, 9H, (CH₃)₃C); ¹³C NMR (100 MHz, CDCl₃): δ =156.5 (d, ²*J*_{C-F}=259.82 Hz), 155.6 (d, ²*J*_{C-F}=262.9 Hz), 152.1 (dd, ³*J*_{C-F}=11.5, ⁴*J*_{C-F}=2.3 Hz), 149.4, 140.3, 137.0 (d, ³*J*_{C-F}=2.15, ⁴*J*_{C-F}=2.31 Hz), 119.3, 109.7 (dd, ³*J*_{C-F}=24.6, ⁴*J*_{C-F}=2.31 Hz), 105.0 (dd, ³*J*_{C-F}=26.14, 23.06 Hz), 83.1, 81.7, 80.1, 70.7 (d, ⁴*J*_{C-F}=5.4 Hz), 60.2, 30.6, 28.3, 25.8, 18.0; LRMS (EI): *m*/*z* 399 (M+NH₄)⁺; HRMS (ES): calcd for C₂₀H₂₉F₂N₂O₄ [M+NH₄]⁺ 399.2090; found [399.2091].

4.4. Preparation of hexacarbonyl[1-{2-[(3-methylbut-2-en-1-yl)oxy]phenyl}-3-*N*-Boc-methylaminoprop-2-yn-o1] dicobalt 6a¹⁴

1-{2-[(3-Methylbut-2-en-1-yl)oxy]phenyl}-3-*N*-Boc-methyl aminoprop-2-yn-o1**4a** (1.27 g, 3.7 mmol) was dissolved in a flame-dried

round-bottom flask containing dichloromethane (20 mL) and charged with a magnetic stirrer. To the stirred solution was added octacarbonyl dicobalt (1.36 g, 4.0 mmol), which was then left to stir for 10 min. TLC analysis of the reaction mixture showed the presence of a faster moving compound $R_f 0.6$ (DCM). To the reaction mixture was added hexane (30 mL) and silica (1 g). The solvent was then removed, in vacuo, leaving the cobalt complex adsorbed onto the silica medium. Extraction of the silica with dichloromethane (30 mL) and solvent removal in vacuo, provided the title compound **6a** as a red oil (1.84 g, 79%), which required no further purification. v_{max} (NaCl)/ cm⁻¹ (thin film) 2090, 2050, 2024, 1600, 1484, 1454, 1382, 1286, 1230; ¹HNMR (400 MHz, CDCl₃): δ 7.51 (d, 1H, *I*=7.4 Hz, Ar-H), 7.23 (dd, 1H, J=8.0, 7.4 Hz, Ar-H), 7.01 (d, 1H, J=7.4 Hz, Ar-H), 6.89 (d, 1H, J=8.0 Hz, Ar–H), 6.21 (d, 1H, J=4.5 Hz, CH–OH), 5.50 (bd s, 1H, CH= C), 5.16 (bd s, 1H, NH), 4.66–4.27 (m, 4H, CH₂O, CH₂N), 4.24 (d, 1H, J=4.5, OH), 1.78 (br s, 3H, CH₃-C=C), 1.75 (s, 3H, CH₃-C=C), 1.46 (s, 9H, (CH₃)₃C); ¹³C NMR (100 MHz, CDCl₃): δ =156.2, 154.8, 138.3, 131.6, 128.7, 127.8, 120.4, 127, 120.9. 119.3, 111.4, 102.0, 95.1, 80.2, 69.1, 64.8, 28.3, 25.7, 18.1; LRMS (EI): *m*/*z* 632 (M–H⁺) HRMS (ES): calcd for C₂₆H₂₆Co₂NO₁₀ [M–H⁺] 632.0183; found [632.0196].

4.4.1. *Hexacarbonyl*[1-{5-*fluoro-2-*[(3-*methylbut-2-en-1yl*) *oxy*]*phenyl*}-3-*N*-*Boc-methylaminoprop-2-yn-01*]*dicobalt* **6b**. Following the general procedure the title compound was isolated as a red oil (0.69 g, 71%): R_f 0.36 (DCM); v_{max} (NaCl)/cm⁻¹ (thin film) 2098, 2050, 2028, 1610, 1458: ¹H NMR (400 MHz, CDCl₃): 6.96–6.89 (m, 1H, Ar–H), 6.81 (bd s, 2H, Ar–H), 6.21 (d, 1H, *J*=4.5 Hz, CH–OH), 5.59–5.51 (m, 1H, CH=C), 5.25–5.19 (m, 1H, NH), 4.56 (bd s, 2H, CH₂O), 4.36 (br s, 1H, CH₂N), 3.75 (bd s, 1H, OH), 1.96–1.64 (m, 6H, CH₃–C=C), 1.47 (s, 9H, (CH₃)₃C); ¹³C NMR (100 MHz, CDCl₃): 134.6, 119.1, 114.3, 112.3, 80.6, 68.5, 43.2, 28.3, 27.8, 22.2, 18.1; LRMS (EI): m/z 672 [M–Na⁺] HRMS (ES): calcd for C₂₆H₂₅Co₂FNNaO₁₀ [M+Na⁺] 672.0097; found [672.0087].

4.4.2. Hexacarbonyl[1-{3-fluoro-2-[(3-methylbut-2-en-1yl) oxy] phenyl}-3-N-Boc-methylaminoprop-2-yn-o1]dicobalt **6c**. Following the general procedure the title compound was isolated as a red oil (2.66 g, 84%): R_f 0.28 (DCM) v_{max} (NaCl)/cm⁻¹ (thin film) 3080, 2914, 2228, 1672, 1598, 1476; ¹H NMR (400 MHz, CDCl₃): 7.35 (d, 1H, J=7.5 Hz, Ar-H), 7.11–6.97 (m, 2H, Ar-H), 6.18 (d, 1H, J=3.8 Hz, CH-OH), 5.50 (t, 1H, J=6.9 Hz, CH=C), 5.40 (t, 1H, J=6.0 Hz NH), 4.85–4.77 (m, 1H, CH₂N), 4.58–4.44 (m, 2H, CH₂), 4.27 (dd, 1H, J=15.7, 6.0 Hz, CH₂N), 4.23 (d, 1H, J=3.8 Hz, OH), 1.75 (s, 3H, CH₃-C=C), 1.69 (s, 3H, CH₃-C=C), 1.47 (s, 9H, (CH₃)₃C): ¹³C NMR (100 MHz, CDCl₃): 138.6, 121.8, 119.6, 80.4, 77.3, 70.2, 68.4, 43.2, 28.3, 25.7, 22.2, 17.9; LRMS (EI): m/z 672 [M+Na⁺] HRMS (ES): calcd for C₂₆H₂₅Co₂FNNaO₁₀ [M+Na⁺] 672.0097; found [672.0090].

4.4.3. *Hexacarbonyl*[1-{5,6-*difluoro-2-[(3-methylbut-2-en-1-yl)oxy] phenyl*}-3-*N*-*Boc-methylaminoprop-2-yn-o1*]*dicobalt* **6d**. Following the general procedure the title compound was isolated as a red oil (0.31 g, 76%): R_f 0.25 (DCM); v_{max} (NaCl)/cm⁻¹ (thin film) 2914, 2052, 2028, 1609, 1598, 1476; ¹H NMR (400 MHz, CDCl₃): 7.06 (d, 1H, *J*=9.4 Hz, Ar–H), 6.56 (d, 1H, *J*=9.4 Hz, Ar–H), 6.26 (d, 1H, *J*=10.0 Hz, CH–OH), 5.50 (br s, 1H, CH=C), 5.13 (m, 1H, NH), 4.78 (d, 1H, *J*=10 Hz, OH), 4.66–4.51 (d, 2H, *J*=7.9 Hz, CH₂), 4.41 (dd, 2H, *J*=6.5, 10.5 Hz, CH₂N), 1.79 (s, 3H, CH₃–C=C), 1.76 (s, 3H, CH₃–C=C), 1.45 (s, 9H, (CH₃)₃C): ¹³C NMR (100 MHz, CDCl₃); 139.8, 117.4, 115.7, 107.23, 79.84, 68.7, 65.8, 42.7, 28.3, 25.7, 22.2, 18.1: LRMS (EI): *m/z* 690 [M+Na⁺] HRMS (ES): calcd for C₂₆H₂₅Co₂F₂NNaO₁₀ [M+Na⁺] 690.0003; found [690.0000].

4.4.4. Hexacarbonyl[1-{3,6-difluoro-2-[(3-methylbut-2-en-1-yl)oxy] phenyl}-3-N-Boc-methylaminoprop-2-yn-01]dicobalt **6e**. Following the general procedure the title compound was isolated as a red oil (0.66 g, 55%): R_f 0.22; v_{max} (NaCl)/cm⁻¹ (thin film) 2099, 2055,

2028, 1612, 1598, 1476; ¹H NMR (400 MHz, CDCl₃): 7.01 (br s, 1H, Ar–H), 6.77 (br s, 1H, Ar–H), 6.18 (br s, 1H, CH–OH), 5.54 (br s, 1H, CH=C), 5.17 (br s, 1H, NH), 4.90–4.69 (m, 2H, CH₂), 4.35 (bd s, 3H, CH₂N and OH), 1.87–1.63 (m, 6H, CH₃–C=C), 1.44 (s, 9H, (CH₃)₃C); ¹³C NMR (100 MHz, CDCl₃):118.5, 116.3, 110.3, 79.8, 70.8 (d, ⁴ J_{C-F} =8.1 Hz), 69.0, 42.8, 28.3; 25.6, 22.0, 18.0; LRMS (EI): *m/z* 666 [M–H⁺] HRMS (ES): calcd for C₂₆H₂₅Co₂F₂NO₁₀ [M–H⁺] 666.0038; found [666.0026].

4.4.5. Hexacarbonyl[1-{4,5-difluoro-2-[(3-methylbut-2-en-1-yl)oxy] phenyl}-3-N-Boc-methylaminoprop-2-yn-o1]dicobalt **6f**. Following the general procedure the title compound was isolated as a red oil (0.67 g, 67%): R_f 0.20 (DCM); v_{max} (NaCl)/cm⁻¹ (thin film) 2950, 2917, 2228, 2098, 2050, 1604, 1598, 1476; ¹H NMR (400 MHz, CDCl₃): 7.43 (t, 1H, *J*=10.0 Hz, Ar–H), 6.72 (dd, 1H, *J*=6.3 and 11.8 Hz, Ar–H), 6.21 (br s, 1H, CH–OH), 5.50–5.42 (m, 1H, CH=C), 5.31 (br s, 1H, NH), 4.84 (br s, 1H, OH), 4.63–4.51 (m, 2H, CH₂), 4.45 (d, 1H, *J*=6.0 Hz, CH₂N), 4.31 (dd, 1H, *J*=6.0 and 15.4 Hz, CH₂N), 1.79 (br s, 3H, CH₃–C=C), 1.75 (s, 3H, CH₃–C=C), 1.49 (s, 9H, (CH₃)₃C): ¹³C NMR (100 MHz, CDCl₃): 138.8, 118.6, 115.8, 101.4, 81.0, 66.9, 65.6, 43.4, 28.3, 25.7, 18.1: LRMS (EI): m/z 690 [M+Na]⁺ HRMS (ES): calcd for C₂₆H₂₅Co₂F₂NNaO₁₀ [M⁺+Na]⁺ 690.0003; found [689.9985].

4.4.6. *Hexacarbonyl*[1-{4-fluoro-2-[(3-methylbut-2-en-1-yl)oxy] phenyl}-3-N-Boc-methylaminoprop-2-yn-o1]dicobalt **6g**. Following the general procedure the title compound was isolated as a red oil (0.92 g, 53%): R_f 0.25 (DCM); v_{max} (NaCl)/cm⁻¹ (thin film) 2230, 2226, 2051, 1610, 1597, 1476; ¹H NMR (400 MHz, CDCl₃): 7.51 (t, 1H, J=7.5 Hz Ar-H), 6.74–6.69 (m, 1H, Ar-H), 6.64–6.58 (m, 1H, Ar-H), 6.19 (d, 1H, J=4.1 Hz, CH-OH), 5.52–5.42 (m, 1H, CH=C), 5.23–5.15 (m, 1H, NH), 4.59 (bd s, 1H, CH₂N), 4.54–4.45 (m, 2H, CH₂), 4.38 (d, 1H, J=4.1 Hz, OH), 4.30 (dd, 1H, J=15.8 and 6.0 Hz, CH₂N), 1.78 (s, 3H, CH₃–C=C), 1.75 (s, 3H, CH₃–C=C), 1.47 (s, 9H, (CH₃)₃C): ¹³C NMR (100 MHz, CDCl₃): 156.3, 138.7, 127.9, 118.8, 106.9, 99.5, 95.2, 80.4, 67.9, 65.2, 43.2, 28.3, 25.6, 18.1: LRMS (EI): m/z 648 [M-H]⁺ HRMS (ES): calcd for C₂₆H₂₅Co₂FNO₁₀ [M-H]⁺ 648.0132; found [648.0127].

4.4.7. *Hexacarbonyl*[1-{3,5-*difluoro-2-[(3-methylbut-2-en-1-yl)oxy] phenyl*}-3-*N*-*Boc-methylaminoprop-2-yn-o1*]*dicobalt* **6h**. Following the general procedure the title compound was isolated as a red oil (1.07 g, 67%): R_f 0.22 (DCM); v_{max} (NaCl)/cm⁻¹ (thin film) 3422, 2914, 2229, 2050, 2048, 1672, 1598, 1476; ¹H NMR (400 MHz, CDCl₃): 7.12 (d, 1H, J=8.2 Hz, Ar–H), 6.84–6.73 (m, 1H, Ar–H), 6.15 (d, 1H, J=2.0 Hz, CH–OH), 5.51–5.37 (m, 1H, CH=C and NH), 4.79–4.68 (m, 1H, CH₂), 4.61 (d, 1H, J=2.0 Hz, OH), 4.57–4.42 (m, 2H, CH₂N), 4.29 (dd, 1H, J=15.7, 5.7 Hz, CH₂), 1.74 (bd s, 3H, CH₃–C=C), 1.67 (s, 3H, CH₃–C=C), 1.47 (s, 9H, (CH₃)₃C): ¹³C NMR (100 MHz, CDCl₃): 138.9, 119.5, 115.7, 80.4, 70.4 (d, ⁴J_C–F=6.9 Hz), 67.9 (d, ⁴J_C–F=3.1 Hz), 43.3, 28.3, 25.7, 17.9; LRMS (EI): m/z 666 [M–H]⁺ HRMS (ES): calcd for C₂₆H₂₅Co₂F₂NO₁₀ [M–H]⁺ 666.0038; found [666.0033].

4.5. Preparation of hexacarbonyl {3-(1-fluoro-1-methylethyl)-4-(*N*-Boc-methylaminoethynyl)chromane} dicobalt 7a¹⁴

To a solution of hexacarbonyl[1-{2-[(3-methylbut-2-en-1-yl)oxy] phenyl}-3-*N*-Boc-methylaminoprop-2-yn-o1]dicobalt **6a** (1.10 g, 1.7 mmol) dissolved in dry dichloromethane (10 mL) and maintained at a temperature of 0 °C was added boron trifluouride diethyl etherate (0.25 g, 220 μ L, 1.8 mmol). The reaction mixture was left to stir for about 5 min under an atmosphere of nitrogen. Analysis by TLC showed the presence of a new compound with an *R*_f of 0.49 (DCM). The reaction mixture was quenched by the addition of a saturated aqueous solution of sodium hydrogen carbonate (10 mL) and then partitioned with dichloromethane. The aqueous phase was extracted

with dichloromethane (3×15 mL) and the combined organic layers were dried over anhydrous magnesium sulfate, filtered and the solvent removed in vacuo to afford the title compound as a red oil (0.55 g, 94%): v_{max} (NaCl)/cm⁻¹ (thin film) 3583, 2980, 2857, 2091, 2053, 2021, 1712, 1506; ¹H NMR (400 MHz, CDCl₃): 7.26–7.22 (m, 1H, Ar–H), 7.15 (t, 1H, *J*=7.2 Hz, Ar–H), 6.94 (t, 1H, *J*=7.2 Hz, Ar–H), 6.83 (d, 1H, *J*=8.0 Hz, Ar–H), 4.98–4.86 (m, 1H, NH), 4.62 (dd, 1H, *J*=16.1 and 6.5 Hz, CH₂), 4.47 (dd, 1H, *J*=16.1 and 6.5 Hz, CH₂), 4.39 (ddd, 1H, *J*=7.8, 3.0 and 1.3 Hz, CH₂), 4.33 (d, 1H, *J*=12.5 Hz, CH₂), 4.25 (s, 1H, Ar–CH), 2.46–2.35 (m, 1H, CH–CF) 1.45 (s, 9H, (CH₃)₃C), 1.44 (d, 3H, *J*=21.8 Hz, CH₃), 1.32 (d, 3H, *J*=22.3 Hz, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ =155.5, 154.0, 130, 128.6, 124.7, 121.4, 117.3, 104.4, 97.7, 96.6 (d, ²*J*_{C-F}=165.3 Hz), 79.9, 68.1, 63.1 (d, ⁴*J*_{C-F}=9.2 Hz), 49.7 (d, ³*J*_{C-F}=24.2 Hz), 37.2 (d, ⁴*J*_{C-F}=5.4 Hz), 28.3, 25.9 (d, ³*J*_{C-F}=23.8 Hz), 24.5 (d, ³*J*_{C-F}=24.6 Hz): LRMS (EI): *m/z* 666.

4.5.1. *Hexacarbonyl*{3-(1-*fluoro*-1-*methylethyl*)-6-*fluoro*-4-(*N*-Boc-*methylaminoethynyl*)*chromane*}*dicobalt* **7b**. Following the general procedure the title compound was isolated as a red oil (0.41 g, 62%): R_f 0.65 (DCM); v_{max} (NaCl)/cm⁻¹ (thin film) 3586, 2995, 2098, 2055, 1692, 1500; ¹H NMR (400 MHz, CDCl₃): 7.01 (dd, 1H, *J*=7.8, 3.0 Hz, Ar–H), 6.87 (ddd, 1H, *J*=9.0, 7.8, 3.0 Hz, Ar–H), 6.80 (dd, 1H, *J*=9.0, 4.5 Hz, Ar–H), 5.04–4.88 (m, 1H, NH), 4.64 (dd, 1H, *J*=16.1, 6.5 Hz, CH₂), 4.46 (dd, 1H, *J*=16.1, 6.5 Hz, CH₂), 4.46 (dd, 1H, *J*=16.1, 6.5 Hz, CH₂), 4.40–4.31 (m, 1H, CH₂), 4.31–4.25 (m, 1H, CH₂), 4.23 (s, 1H, Ar–CH), 2.45–2.34 (m, 1H, CH–CF), 1.45 (s, 9H, (CH₃)₃C), 1.44 (d, 3H, *J*=22.1 Hz, CH₃), 1.32 (d, 3H, *J*=22.1 Hz, CH₃): ¹³C NMR (100 MHz, CDCl₃): δ =126.1, 118.3, 115.4, 103.4, 97.8, 95, 80.2, 68.5, 62.8, 49.9, 37.3, 28.3, 25.6, 24.4; LRMS (EI): *m*/*z* 674 [M+Na]⁺ HRMS (ES): calcd for C₂₆H₂₅Co₂F₂N-NaO₉ [M+Na]⁺ 674.0054; found [674.0047].

4.5.2. *Hexacarbony*[3-(1-*fluoro*-1-*methylethyl*)-8-*fluoro*-4-(*N*-Boc-*methylaminoethynyl*)*chromane*]*dicobalt* **7c**. Following the general procedure the title compound was isolated as a red oil (1.53 g, 58%): R_f 0.60 (DCM); v_{max} (NaCl)/cm⁻¹ (thin film) 3582, 2986, 2080, 2054, 1682, 1509; ¹H NMR (400 MHz, CDCl₃): 7.08 (d, 1H, *J*=7.6 Hz, Ar–H), 6.97 (dd, *J*=8.1, 1.5 Hz, 1H, Ar–H), 6.90, (dd, 1H, *J*=7.6, 5.0 Hz, Ar–H), 4.96 (t, 1H, *J*=6.6 Hz, NH), 4.64 (dd, 1H, *J*=16.3, 6.6 Hz, CH₂), 4.51–4.39 (m, 3H, CH, CH₂), 4.30 (s, 1H, CH), 2.42 (dt, 1H, *J*=11.4, 3.2 Hz, CH₂), 1.51–1.43 (m, 12H, CH₃, (CH₃)₃C), 1.32 (d, 3H, *J*=22.3 Hz, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ =120.8, 120.7, 115.0, 101.7, 68.9, 63.4, 43.7, 28.3, 25.3, 24.6: LRMS (EI): *m/z* 650 [M–H⁺] HRMS (ES): calcd for C₂₆H₂₅Co₂F₂NO₉ [M–H⁺] 650.0089; found [650.0081].

4.5.3. *Hexacarbonyl*[3-(1-*fluoro*-1-*methylethyl*)-5,6-*difluoro*-4-(*N*-*Boc-methylaminoethynyl*)*chromane*]*dicobalt* **7d**. Following the general procedure the title compound was isolated as a red oil (0.25 g, 95%): R_f 0.61 (DCM); v_{max} (NaCl)/cm⁻¹ (thin film) 3425, 2946, 2220, 2080, 2055, 1672, 1598; ¹H NMR (400 MHz, CDCl₃): 7.04–6.95 (m, 1H, Ar–H), 6.68–6.64, (m, 1H, Ar–H), 5.01–4.97 (m, 1H, NH), 4.53–4.46 (m, 3H, CH₂ and CH₂), 4.43 (ddd, *J*=12.3, 4.8, 2.5 Hz, 1H, CH₂), 4.33–4.29 (m, 1H, CH), 1.85–1.76 (m, 1H, CH), 1.48–1.38 (m, 12H, CH₃ and (CH₃)₃C), 1.32 (d, 3H, *J*=22.1 Hz, CH₃); ¹³C NMR (100 MHz, CDCl₃): 80.1, 62.9, 49.1, 28.3, 25.7, 24.4; LRMS (EI): *m/z* 668 [M–H]⁺ HRMS (ES): calcd for C₂₆H₂₄Co₂F₃NO₉ [M–H]⁺ 667.9994; found [667.9989].

4.5.4. *Hexacarbonyl*{*3*-(*1-fluoro-1-methylethyl*)*-5,8-difluoro-4*-(*N-Boc-methylaminoethynyl*)*chromane*}*dicobalt* **7e**. Following the general procedure the title compound was isolated as a red oil (0.46 g, 76%): *R*_f 0.58 (DCM) ν_{max} (NaCl)/cm⁻¹ (thin film) 2914, 2228, 2055, 2040, 1598; ¹H NMR (400 MHz, CDCl₃); 7.04–6.92 (m, 1H, Ar–H), 6.49, (br s, 1H, Ar–H), 4.97 (br s, 1H, NH), 4.56–4.44 (m, 1H, CH₂), 4.41–4.27 (m, 2H, CH and CH₂), 3.95–3.78 (m, 2H, CH₂), 1.80–1.72 (m, 1H, CH), 1.49–1.35 (m, 15H, 2×CH₃ and (CH₃)₃C); ¹³C

NMR (100 MHz, CDCl₃): δ =116.0, 105.7,77.8, 67.1, 63.2, 48.2, 43.1, 28.3, 25.7, 24.6; LRMS (EI): *m/z* 669 [M–H]⁺ HRMS (ES): calcd for C₂₆H₂₄Co₂F₃NO₉ [M–H]⁺ 667.9994; found [667.9977].

4.5.5. *Hexacarbonyl*{3-(1-*fluoro*-1-*methylethyl*)-6,7-*difluoro*-4-(*N*-*Boc-methylaminoethynyl*)*chromane*}*dicobalt* **7f**. Following the general procedure the title compound was isolated as a red oil (0.21 g, 39%): R_f 0.56 (DCM); v_{max} (NaCl)/cm⁻¹ (thin film) 3425, 2915, 2050, 2025, 1672, 1598; ¹H NMR (400 MHz, CDCl₃): 7.16 (t, 1H, *J*=9.4 Hz, Ar–H), 6.67, (dd, 1H, *J*=11.2, 6.9 Hz, Ar–H), 5.07–4.86 (m, 1H, NH), 4.65 (dd, 1H, *J*=16.3 and 6.5 Hz, CH₂), 4.44 (dd, 1H, *J*=16.3 and 6.5 Hz, CH₂), 4.20 (s, 1H, Ar–CH), 2.40–2.30 (m, 1H, CF–CH) 1.51–1.39 (m, 12H, CH₃ and (CH₃)₃C) 1.31 (d, 3H, *J*=22.6 Hz, CH₃); 63.1, 43.6, 28.3, 25.9, 24.4; LRMS (EI): *m/z* 687 [M+NH₄]⁺ HRMS (ES): calcd for C₂₆H₂₈Co₂F₃N₂O₉ [M+NH₄]⁺ 687.0405; found [687.0404].

4.5.6. *Hexacarbonyl*{3-(1-*fluoro*-1-*methylethyl*)-7-*fluoro*-4-(*N*-*Bocmethylaminoethynyl*)*chromane*}*dicobalt* **7g**. Following the general procedure the title compound was isolated as a red oil (0.46 g, 76%): R_f 0.58 (DCM); v_{max} (NaCl)/cm⁻¹ (thin film) 2935, 2210, 2045, 2025, 1645, 1598, 1476; ¹H NMR (400 MHz, CDCl₃): 7.51 (t, 1H, *J*=7.8 Hz, Ar–H), 6.76–6.65, (m, 1H, Ar–H), 6.64–6.52 (m, 1H, Ar–H), 5.29–5.17 (m, 1H, NH), 4.66–4.34 (m, 4H, CH₂), 4.23 (br s, 1H, CH), 2.37 (d, 1H, *J*=10.5 Hz, CH), 1.53–1.38 (m, 12H, CH₃ and (CH₃)₃C) 1.31 (d, 3H, *J*=21.6 Hz); ¹³C NMR (100 MHz, CDCl₃): δ =106.9, 104.5, 99.5, 80.5, 67.7, 62.9, 43.1, 36.4, 28.3, 25.8, 24.4; LRMS (EI): *m/z* 650 [M–H⁺] HRMS (ES): calcd for C₂₆H₂₅Co₂F₂NO₉ [M–H⁺] 650.0089; found [650.0079].

4.5.7. *Hexacarbonyl*{3-(1-*fluoro*-1-*methylethyl*)-6,8-*difluoro*-4-(*N*-*Boc-methylaminoethynyl*)*chromane*}*dicobalt* **7h**. Following the general procedure the title compound was isolated as a red oil (0.56 g, 71%): R_f 0.57 (DCM); v_{max} (NaCl)/cm⁻¹ (thin film) 3420, 2914, 2228, 2250, 2220, 1598; ¹H NMR (400 MHz, CDCl₃): 6.89, (d, 1H *J*=8.3 Hz, Ar–H), 6.77 (ddd, 1H *J*=10.7, 8.3, 2.9 Hz, Ar), 5.02 (t, 1H *J*=6.5 Hz, NH), 4.66 (dd, 1H *J*=16.2, 6.5 Hz, CH₂), 4.45 (dd, 1H, *J*=16.2, 6.5 Hz, CH₂), 4.41–4.37 (m, 2H, CH₂), 4.28 (br s, 1H, CH), 2.42 (dt, 1H, *J*=11.4, 3.5 Hz, CH), 1.45 (s, 9H, (CH₃)₃C), 1.47 (d, 3H *J*=21.9 Hz), 1.32 (d, 3H, *J*=22.7 Hz, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ =138.5, 120.8, 115.0, 77.2, 63.4, 43.7, 28.3, 26.1, 24.3; LRMS (EI): *m/z* 687 [M+NH₄]⁺ HRMS (ES): calcd for C₂₆H₂₈Co₂F₃N₂O₉ [M+NH₄]⁺ 687.0405; found [687.0407].

4.6. Preparation of 3-(1-fluoro-1-methylethyl)-4-(*N*-Boc-methylaminoethynyl)chromane 8a

To a solution of hexacarbonyl {3-(1-fluoro-1-methylethyl)-4-(N-Boc-methylaminoethynyl)chromane} dicobalt 7a (1.28 g, 2.0 mmol) in methanol (125 mL) was added cerium ammonium nitrate (CAN) (6.03 g, 11.0 mmol). The solution was stirred at an ambient temperature for about 30 min until the evolution of gas ceased. Analysis by TLC showed the presence of a new compound with an R_f of 0.50 (ethyl acetate/hexane 3:7). The reaction mixture was quenched by the addition of a saturated aqueous solution of sodium hydrogen carbonate (50 mL). The solvent, methanol, was removed in vacuo and the resulting aqueous solution was extracted with diethyl ether (4×25 mL). The combined organic extracts were dried over anhydrous magnesium sulfate and the solvent removed in vacuo to afford the title compound as a light brown oil (0.55 g, 79%): v_{max} (NaCl)/ cm⁻¹ (thin film) 3356, 2982, 2204, 1694, 1586, 1490, 1229; ¹H NMR (400 MHz, CDCl₃): 7.34 (dd, 1H, J=7.5, 1.0 Hz, Ar-H), 7.14 (dd, 1H, J=7.5 and 1.4 Hz, Ar-H), 6.93 (dd, 1H, J=7.5, 1.0 Hz, Ar-H), 6.80 (dd, 1H, J=7.5, 1.4 Hz, Ar-H), 4.67–4.65 (m, 1H, NH), 4.39 (dt, 1H, J=11.6, 2.9 Hz, CH₂), 4.18-4.08 (m, 1H, CH₂), 3.95-3.83 (m, 3H, CH, CH₂), 2.41-2.30 (m, 1H, CHCF) 1.46 (d, J=21.6 Hz, 3H, CH₃), 1.45 (s, 9H, 4.6.1. 3-(1-Fluoro-1-methylethyl)-6-fluoro-4-(N-Boc-methyl-aminoethynyl)chromane**8b** $. Following the general procedure the title compound was isolated as a yellow oil (0.40 g, 97%): <math>R_f$ 0.61 (ethyl acetate/hexane 3:7); v_{max} (NaCl)/cm⁻¹ (thin film) 3356, 2980, 2210, 1698, 1586, 1490, 1229; ¹H NMR (400 MHz, CDCl₃): 7.06 (dd, 1H, *J*=9.0, 3.0 Hz, Ar–H), 6.85 (ddd, 1H, *J*=9.0, 8.0, 3.0 Hz, Ar–H), 6.75 (dd, 1H, *J*=9.0, 4.0 Hz, Ar–H), 4.63 (br s, 1H, NH), 4.39–4.30 (m, 1H, CH₂), 4.17–4.06 (m, 1H, CH₂), 3.92 (d, 2H, *J*=4.0 Hz, CH₂), 3.85 (br s, 1H, CH), 2.38–2.24 (m, IH, CH), 1.45 (s, 9H, (CH₃)₃C), 1.46 (d, 3H, *J*=22.3 Hz, CH₃), 1.39 (d, 3H, *J*=23.1 Hz, CH₃): ¹³C NMR (100 MHz, CDCl₃): δ 173.4, 157.1 (d, ²*J*_{C-F}=253.82 Hz), 123.7 (d, ³*J*_{C-F}=24.94 Hz), 122.8 (d, ⁴*J*_{C-F}=7.34 Hz), 119.5 (d, ⁴*J*_{C-F}=7.34 Hz), 117.8 (d, ⁴*J*_{C-F}=28.07 Hz), 115.76 (d, ³*J*_{C-F}=23.48 Hz), 96.2 (d, ²*J*_{C-F}=167.99 Hz), 93.7, 84.7, 78.8, 68.5, 64.4 (d, ⁴*J*_{C-F}=24.94 Hz), 25.3 (d, ³*J*_{C-F}=24.21 Hz); LRMS (EI): *m*/z 365 [M]⁺ HRMS (ES): calcd for C₂₀H₂₅F₂NO₃ [M]⁺ 365.1797; found [365.1800].

4.6.2. 3-(1-Fluoro-1-methylethyl)-8-fluoro-4-(N-Boc-methylaminoethynyl)chromane 8c. Following the general procedure the title compound was isolated as a yellow oil (0.22 g, 76%): Rf 0.54 (ethyl acetate/hexane 3:7); v_{max} (NaCl)/cm⁻¹ (thin film) 3480, 2914. 2228, 1680, 1599, 1476; ¹H NMR (400 MHz, CDCl₃): 7.10 (d, 1H, *I*=7.9 Hz, Ar–H), 6.96–6.90 (m, 1H, Ar–H), 6.83 (dd, 1H, *I*=7.9, 5.1 Hz, Ar-H), 4.72 (br s, 1H, NH), 4.43 (dt, 1H, J=11.8, 3.0 Hz, CH₂), 4.22 (dd, 1H, J=11.8, 5.1 Hz, CH₂), 3.90 (d, 3H, J=5.1 Hz, CH, CH₂), 2.38-2.24 (m, IH, CH), 1.50 (d, 3H, J=12.0 Hz, CH₃), 1.43 (s, 9H, (CH₃)₃C), 1.36 (d, 3H, J=22.8 Hz, CH₃): ¹³C NMR (100 MHz, CDCl₃): δ 156.6 (d, ²J_{C-F}=248.69 Hz), 152.6 (d, ³J_{C-F}=19.07 Hz), 151.3, 142.2 (d, ${}^{3}J_{C-F}=11.53$ Hz), 124.8 (d, ${}^{4}J_{C-F}=3.08$ Hz), 120.4 (d, ${}^{4}J_{C-F}$ =6.92 Hz), 114.4 (d, ${}^{3}J_{C-F}$ =17.68 Hz), 96.1 (d, ${}^{2}J_{C-F}$ =169.12 Hz), 93.7, 84.9, 78.8, 68.8, 64.4 $(d, {}^{4}J_{C-F}=9.99 \text{ Hz})$, 47.1 $(d, {}^{4}J_{C-F}=9.99 \text{$ ${}^{3}J_{C-F}$ =22.29 Hz), 28.2, 28.29–28.13 (m), 25.5 (d, ${}^{3}J_{C-F}$ =25.35 Hz), 25.4 (d, ${}^{3}J_{C-F}=24.60$ Hz); LRMS (EI): m/z 365 [M]⁺ HRMS (ES): calcd for C₂₀H₂₅F₂NO₃ [M]⁺ 365.1797; found [365.1799].

4.6.3. 3-(1-*Fluoro-1-methylethyl*)-5,6-*difluoro-4-(N-Boc-methylaminoethynyl*)*chromane* **8d**. Following the general procedure the title compound was isolated as a yellow oil (1.10 g, 96%): R_f 0.52 (ethyl acetate/hexane 3:7); v_{max} (NaCl)/cm⁻¹ (thin film) 3422, 2920, 2228, 1685, 1599, 1476; ¹H NMR (400 MHz, CDCl₃): 6.97 (dd, 1H, *J*=9.4, 9.2 Hz, Ar–H), 6.55 (ddd, 1H, *J*=9.2, 3.8 and 1.8 Hz), 4.65–4.54 (m, 1H, NH), 4.37–4.25 (m, 2H, CH₂), 4.02 (br s, 1H, CH), 3.91 (m, 3H, CH, CH₂), 1.44 (s, 9H, (CH₃)₃C), 1.42 (d, 3H, *J*=21.6 Hz, CH₃), 1.28 (d, 3H, *J*=23.8 Hz, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 155.2, 150.0 (dd, ⁴*J*_{C–F}=5.13, 2.20 Hz), 148.3 (dd, ²*J*_{C–F}=248.69, ³*J*_{C–F}=19.07, ⁴*J*_{C–F}=1.47 Hz), 112.0 (d, ³*J*_{C–F}=15.41 Hz), 111.7 (dd, ⁴*J*_{C–F}=5.87, 3.67 Hz), 95.9 (d, ²*J*_{C–F}=169.46 Hz), 83.6, 80.1, 78.0, 65.8, 63.4 (d, ⁴*J*_{C–F}=23.48 Hz), 24.9 (d, ³*J*_{C–F}=24.94 Hz): LRMS (EI): *m/z* 401 [M+NH₄]⁺ HRMS (ES): calcd for C₂₀H₂₄F₃NO₃ [M+NH₄]⁺ 401.2047; found [401.2049].

4.6.4. 3-(1-Fluoro-1-methylethyl)-5,8-difluoro-4-(N-Boc-methylaminoethynyl)chromane **8e**. Following the general procedure the title compound was isolated as a yellow oil (0.19 g, 73%): R_f 0.50 (ethyl acetate/hexane 3:7); v_{max} (NaCl)/cm⁻¹ (thin film) 2914, 2230, 1686, 1598; ¹H NMR (400 MHz, CDCl₃): 6.93 (ddd, 1H, *J*=9.5, 9.0, 5.0 Hz, Ar–H), 6.58 (ddd, *J*=9.5, 9.0, 3.5 Hz, 1H, Ar–H) 6.61 (br s, 1H, NH), 4.49–4.39 (m, 2H, CH₂), 4.02 (br s, 1H, CH), 3.90 (br s, 2H, CH₂), 2.34 (bd d, IH, *J*=13.3 Hz, CH), 1.49–1.39 (m, 12H, CH₃, (CH₃)₃C), 1.28 (d, 3H, *J*=22.3 Hz, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 155.4, 150.8, 131.0, 128.8, 114.3, 110.8, 106.2, 96.7, 92.5, 88.8, 80.2, 68.1, 63.7 (d, ³*J*_{C–F}=8.1 Hz), 46.6 (d, ³*J*_{C–F}=24.7 Hz), 28.9, 28.3, 25.9 (d, ³*J*_{C–F}=24.2 Hz), 24.8 (d, ³*J*_{C–F}=24.9 Hz); LRMS (EI): *m/z* 383 [M]⁺ HRMS (ES): calcd for C₂₀H₂₅F₃NO₃ [M]⁺ 383.1703; found [383.1699].

4.6.5. 3-(1-*Fluoro*-1-*methylethyl*)-6,7-*difluoro*-4-(*N*-*Boc*-*methyl*-*aminoethynyl*)*chromane* **8***f*. Following the general procedure the title compound was isolated as a yellow oil (0.07 g, 91%): *R*_f 0.52 (ethyl acetate/hexane 3:7); *v*_{max} (NaCl)/cm⁻¹ (thin film) 3445, 3321, 2918, 2228, 1678, 1602, 1476; ¹H NMR (400 MHz, CDCl₃): 7.14 (dd, 1H, *J*=10.2, 9.2 Hz, Ar–H), 6.62 (dd, 1H, *J*=11.3, 7.0 Hz, Ar–H) 4.63 (br s, 1H, NH), 4.35 (dt, 1H, *J*=11.5, 2.8 Hz, CH₂), 4.10 (dd, 1H, *J*=11.5, 5.6 Hz, CH₂), 3.92 (d, 2H, *J*=2.5 Hz, CH₂), 3.80 (d, 1H, *J*=2.5 Hz, CH), 2.37–2.25 (m, 1H, CH), 1.45 (s, 9H, (CH₃)₃C), 1.46 (d, 3H, *J*=21.8 Hz, CH₃), 1.39 (d, 3H, *J*=22.6 Hz, CH₃): ¹³C NMR (100 MHz, CDCl₃): δ 155.2, 148.3 (dd, ²*J*_{C−F}=248.69, ³*J*_{C−F}=14.67 Hz), 148.8 (dd, ²*J*_{C−F}=241.35, ³*J*_{C−F}=13.20 Hz), 144.8 (dd, ²*J*_{C−F}=240.62, ³*J*_{C−F}=16.14 Hz), 111.7 (dd, ⁴*J*_{C−F}=5.87, 4.47 Hz), 95.9 (d, ³*J*_{C−F}=16.799 Hz), 83.6, 80.1, 78.0, 65.8, 63.4 (d, ⁴*J*_{C−F}=8.80 Hz), 46.5 (d, ³*J*_{C−F}=22.74 Hz); LRMS (EI): *m*/*z* 401 [M+NH₄]⁺ HRMS (ES): calcd for C₂₀H₂₄F₃NO₃ [M+NH₄]⁺ 401.2047; found [401.2048].

4.6.6. 3-(1-Fluoro-1-methylethyl)-7-fluoro-4-(N-Boc-methylaminoethynyl)chromane 8g. Following the general procedure the title compound was isolated as a yellow oil (0.57 g, 98%): Rf 0.45 (ethyl acetate/hexane 3:7); v_{max} (NaCl)/cm⁻¹ (thin film) 3328, 2916, 2228, 1685, 1605, 1478; ¹H NMR (400 MHz, CDCl₃): 7.42 (d, J=7.4 Hz, 1H, Ar–H), 6.62–6.51 (m, 1H, Ar–H), 6.52 (dd, 1H J=10, 2.3 Hz, Ar-H), 4.64 (br s, 1H, NH), 4.49 (d, 2H, J=6.0 Hz, CH₂), 4.30 (d, J=11.5 Hz, 1H, CH₂), 4.09–4.01 (m, 1H, CH₂), 3.76 (br s, 1H, CH), 2.31-2.17 (m, IH, CH), 1.41-1.33 (m, 12H, (CH₃)₃C, CH₃), 1.30 (d, 3H, J=22.8 Hz CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 163.5 (d, $^{2}J_{C-F}$ =245.76 Hz), 161.0 (d, $^{2}J_{C-F}$ =248.69 Hz), 155.2, 130.95 (d, ${}^{4}J_{C-F}=9.54$ Hz), 128.9 (d, ${}^{3}J_{C-F}=10.27$ Hz), 124.8 (d, ${}^{4}J_{C-F}=3.67$ Hz), 108.6 (d, ${}^{3}J_{C-F}=22.01$ Hz), 106.9 (d, ${}^{3}J_{C-F}=20.54$ Hz), 96.2 (d, $^{2}J_{C-F}$ =167.99 Hz), 85.2, 82.5, 78.6, 65.6, 63.3 (d, $^{3}J_{C-F}$ =10.27 Hz), 47.1 (d, ${}^{3}J_{C-F}=22.74$ Hz), 28.3, 27.6 (d, ${}^{4}J_{C-F}=5.14$ Hz), 25.8 (d, ${}^{3}J_{C-F}=24.94$ Hz), 25.3 (d, ${}^{3}J_{C-F}=24.94$ Hz); LRMS (EI): m/z 365 [M]⁺ HRMS (ES): calcd for $C_{20}H_{25}F_2NO_3$ [M]⁺ 365.1797; found [365.1806].

4.6.7. 3-(1-Fluoro-1-methylethyl)-6,8-difluoro-4-(*N*-Boc-methylaminoethynyl)chromane **8h**. Following the general procedure the title compound was isolated as a yellow oil (0.18 g, 52%): R_f 0.45 (ethyl acetate/hexane 3:7); v_{max} (NaCl)/cm⁻¹ (thin film) 3445, 3248, 2922, 2218, 1686, 1598, 1484; ¹H NMR (400 MHz, CDCl₃): 6.88 (dd, *J*=8.6, 2.5 Hz, 1H, Ar–H), 6.74 (ddd, *J*=10.8, 8.6, 3.0 Hz, 1H, Ar–H), 6.64 (br s, 1H, NH), 4.41 (dt, *J*=11.7, 2.6, Hz, 1H, CH₂), 4.20 (dd, *J*=11.7 and 5.3 Hz, 1H, CH₂), 3.92 (d, *J*=3.8 Hz, 2H, CH₂), 3.87 (br s, 1H, CH), 2.41–3.31 (m, IH, CH), 1.52–1.44 (m, 12H, CH₃, (CH₃)₃C), 1.38 (d, 3H, *J*=22.9 Hz, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 171.7, 162.0, 155.7 (d, ³*J*_{C–F}=12.47 Hz), 138.9 (dd, ³*J*_{C–F}=11.74, ⁴*J*_{C–F}=2.93 Hz), 110.9 (dd, ³*J*_{C–F}=23.47, ⁴*J*_{C–F}=2.93 Hz), 107.5 (dd, ³*J*_{C–F}=2.47 Hz), 103.5 (dd, ³*J*_{C–F}=2.714, 21.27 Hz), 96.9, 94.5 (d, ²*J*_{C–F}=171.66 Hz), 90.3, 83.3, 68.4 (d, ⁴*J*_{C–F}=8.07 Hz), 64.9 (d, ⁴*J*_{C–F}=10.27 Hz), 47.3 (d, ³*J*_{C–F}=22.74 Hz), 28.7 (bd s), 27.9 (d, ³*J*_{C–F}=22.74 Hz); LRMS (EI): *m*/*z* 383 [M]⁺ HRMS (ES): calcd for C₂₀H₂₄F₃NO₃ [M]⁺ 383.1703; found [383.1707].

Acknowledgements

We would like to express our thanks to the SWAN alliance for the studentship to P.B. and to Kingston University for their financial support during this project. Special thanks to the EPSRC-MS service at Swansea for their kind provision of accurate mass spectra and for the excellent and efficient service they provide.

References and notes

- Tyrrell, E.; Tesfa, K.-H.; Greenwood, I.; Mann, A. L. Bioorg. Med. Chem. Lett. 2008, 18, 1237–1240.
- 2. Nicholas, K. M. Acc. Chem. Res. **1987**, 20, 207–214.
- 3. Tyrrell, E.; Tillett, C. Tetrahedron Lett. 1998, 39, 9535–9538.
- Berge, J.; Claridge, S.; Mann, A. L.; Muller, C.; Tyrrell, E. *Tetrahedron Lett.* **1997**, 38, 685–686; Tyrrell, E.; Millet, J.; Tesfa, K.-H.; Williams, N.; Mann, A. L.; Tillett, C.; Tyrrell, E. *Tetrahedron* **2007**, 63, 12769–12778.
- 5. Mann, A. L.; Muller, C.; Tyrrell, E. J. Chem. Soc., Perkin Trans. 1 1998, 1427–1438.
- 6. Brawn, P.; Greenwood, I.; Carew, M.; Tyrrell, E., unpublished results.
- Teobold, B. J. *Tetrahedron* 2002, 58, 4133–4170 (review); Cobalt mediated cyclisations: Fletcher, A. J.; Christie, S. D. R. J. Chem. Soc., Perkin Trans. 1 2000, 1657–1668.
- Zificsak, C. A.; Mulder, J. A.; Hsung, R. P.; Rameshkumar, C.; Wei, L-L. *Tetrahedron* **2001**, 57, 7575–7606; Blanchet, J.; Bonin, M.; Micouin, L. Org. Prep. Proceed. Int. **2002**, 34, 467–492.
- 9. Ji, Y.; Riera, A.; Verdaguer, X. Eur. J. Org. Chem. 2011, 1438-1442.
- Copper-catalysed propargylic amination see: Detz, R. J.; Delville, M. M. E.; Hiemstra, H.; van Maarseveen, J. H. Angew. Chem., Int. Ed. 2008, 47, 3777–3780; Transition metal three-component coupling of enamines to a 'Nicholas' cation: Roth, D.-K. Tetrahedron Lett. 1994, 21, 3505–3508; Nicholas reactions of amines: Roth, K.-D.; Muller, U. Tetrahedron Lett. 1993, 34, 2919–2922.
- 11. Available from Sigma–Aldrich no: 687146; CAS number 92136-395.
- 12. Alayrac, C.; Mioskowski, C.; Salaun, J.-P.; Durst, F. Synlett **1992**, 73–76.
- The use of Fe(NO₃)₃ see: Grove, D. D.; Miskevich, F.; Smith, C. C.; Corte, J. R. Tetrahedron Lett. **1990**, 31, 6277–6280; Muehldorf, A.; Guzman-Perez, A.; Kluge, A. F. Tetrahedron Lett. **1994**, 35, 8755–8758; The use of molecular iodine see: Isobe, M.; Nishizawa, R.; Hosokawa, S.; Nishikawa, T. Chem. Commun. **1998**, 2665–2676; The use of Ce(NO₃)₆(NH₄)₂ CAN see: Jacobi, P. A.; Zheng, W. Tetrahedron Lett. **1993**, 16, 2585–2588; Betancourt, J. M.; Rodriguez, C. M.; Martin, V. S. Tetrahedron Lett. **1998**, 39, 9773–9776; Sagamanova, I. K.; Tumanov, V. V.; Smit, W. A. Mendeleev Commun. **2008**, 18, 205–206.
- 14. The NMR spectra may be incomplete for some dicobalt hexacarbonyl complexes. This is due to signal broadening in the NMR sample of the complex that is often associated with concentration effects. In addition some of the carbon resonances are coincident and thus overlap in the corresponding ¹³C NMR spectrum. We have provided accurate mass data for all metal complexes. Where ¹³C NMR or partial ¹³C NMR data were obtained using a range of techniques such as HSQC, HMBC and Dept Q.
- 15. Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. **1978**, 43, 2923–2925.
- 16. The reactions were not conducted on the same scale however the reaction conditions provided are optimised.