B(C₆F₅)₃-Catalyzed C–H Alkylation of *N*-Alkylamines Using Silicon Enolates without External Oxidant

Jessica Z. Chan,[†] Yejin Chang,[†] and Masayuki Wasa*®

Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States

Supporting Information

ABSTRACT: An efficient method for the coupling of *N*-alkylamines with silicon enolates to generate β -amino carbonyl compounds is disclosed. These reactions proceed by activation of α -amino C–H bonds by B(C₆F₅)₃, which likely generates a "frustrated" acid/base complex in the presence of large *N*-alkylamines. The transformation requires no external oxidant and releases hydrosilane as a byproduct. The utility of this method is demonstrated in the late-stage functionalization of bioactive molecules such as citalopram, atomoxetine, and fluoxetine.

E nolate nucleophiles are commonly employed in addition reactions to C=N bonds (i.e., Mannich-type processes), since this process reliably generates several classes of important β-amino carbonyl molecules.¹⁻⁵ In these reactions, imine or iminium ion intermediates are either prepared in situ or in a separate operation through condensation of an amine and a carbonyl compound, α-fragmentation of iminium ion precursors, or oxidation of tertiary amines.¹⁻⁵ The latter method (i.e., oxidative Mannich-type reactions; see Figure 1A) employs organometallic catalysts (e.g., Ru, Rh, Cu, V

A: Oxidative Mannich-Type Reactions

C-C bond formation

complexes) and stoichiometric oxidants (e.g., *t*-BuOOH, 2,3dichloro-5,6-dicyano-1,4-benzoquinone, O_2) to convert *N*alkylamines (I) to their corresponding iminium ions, which then react with various enolate equivalents (II).^{2,3} Such a process, while notable, requires external oxidants, and the scope of amines is largely confined to tetrahydroisoquinoline and *N*,*N*-dimethylaniline derivatives.^{2,3}

We surmised that an attractive alternative to the oxidative Mannich-type reaction would entail rupture of an α -amino C– H bond of an *N*-alkylamine (1) by a boron-based Lewis acid (Figure 1B). Hydride abstraction from an *N*-alkylamine by organoborane compounds to furnish an iminium ion (**IV**) has been previously investigated.^{6–12} An important advantage of this approach is that an array of *N*-alkylamines (including those that lack the fused *N*-aryl groups) can be converted to **IV** without the use of an external oxidant.^{6–10} Reaction of **IV** with an enol equivalent (2) would forge a C–C bond (**V**), subsequently releasing the β -amino carbonyl product 3, the Lewis acid catalyst, and a hydrosilane as an environmentally benign byproduct (**VI**). Here, we disclose the results of our studies regarding the realization of the above catalytic cycle.

To initiate our investigations, we needed an appropriate combination of acid catalyst and amine substrate that is capable of undergoing hydride transfer, as opposed to forming a stable acid/base adduct. Accordingly, we considered pairing the strongly Lewis acidic $B(C_6F_5)_3$ with a hindered amine (Scheme 1). We first probed the ability of $B(C_6F_5)_3$ to convert a *N*,*N*-dimethylaniline to its derived iminium ion, which could then be trapped by a silyl ketene acetal (Scheme 1). Treatment of *N*,*N*-dimethylaniline (1a) and 1-methoxy-2-methyl-1-(trimethylsiloxy)propene (2a) with 20 mol % $B(C_6F_5)_3$ afforded 3a in 31% yield (DCE, 22 °C). We reasoned that

Received: December 11, 2018

отмя

Figure 1. Coupling of N-alkylamines and silicon enolates.

"Conditions: *N*,*N*-dimethylaniline (0.1 mmol), 1-methoxy-2-methyl-1-(trimethylsiloxy)propene (0.2 mmol), $B(C_6F_5)_3$ (20 mol%), dichloroethane (0.25 mL), under N_2 , 22 °C, 12 h. ^bYields were determined by ¹H NMR analysis of unpurified product mixtures with mesitylene as the internal standard. See the Supporting Information for details.

electron-donating *N*-aryl substituents might improve the efficiency of $B(C_6F_5)_3$ -catalyzed hydride abstraction by enhancing the hydride donor ability of the α -amino C–H bond and by stabilizing the resultant iminium ion intermediate. In the event, the reaction with electron-donating *para*-methoxy-substituted **1b** afforded **3b** in 25% yield. None of the desired product was observed with electron-deficient *para*-trifluoromethylphenyl-substituted **1c**. With 3,5-di-*tert*-butyl-substituted **1d**, the C–C bond forming product **3d** was obtained in 38% yield.

To evaluate the effect of using more-hindered amines, we tested a range of *ortho*-disubstituted anilines. Whereas 2,6-difluoro-*N*,*N*-dimethylaniline (1e) gave none of the Mannich-type product, reaction of the larger and more electron-rich *N*,*N*-2,6-tetramethylaniline (1f) resulted in the formation of 3f in 78% yield, which marks a considerable improvement in efficiency. Encouraged by this finding, we studied the reaction with 4-methoxy-*N*,*N*-2,6-tetramethylaniline (1g), which gave 3g in 56% yield; the *N*-aryl substituent in 3g was removed under oxidative conditions.¹³ By using the less-hindered and more-electron-deficient 2,6-difluoro-4-methoxyphenyl-substituted 1h, we were able to obtain 3h in 51% yield.

With the aim to further increase efficiency, we set out to identify the optimal conditions with the transformation that affords 3g, serving as the representative process (Table 1). There were no products formed without any $B(C_6F_5)_3$ present (Table 1, entry 2). In some instances (Table 1, entries 1 and 3-9), secondary amine 4g was also obtained, probably through the cleavage of the N-Me bond, because of the reaction of insitu-generated iminium ion with water. Among the N,Ndimethylanilines evaluated, only in the cases of ortho-dimethylsubstituted 1f and 1g were the latter type of byproducts formed. At lower catalyst loading (10 mol %), loss of the methyl unit was minimized and 3g was formed more selectively in 71% yield (Table 1, entry 3). Next, we examined the effect of using ethereal solvents to investigate if these more polar solvents could facilitate the Mannich reaction, which involves ionic intermediates. In diethyl ether, and with 10 mol % catalyst loading, 3g was formed in 83% yield, but with 5.0 mol% catalyst, there was a considerable diminution in efficiency (22% yield; see Table 1, entries 4 and 5). With THF

Table 1. Evaluation of Various Reaction Parameters^{*a,b*}

MeO	He He 2a	cat. B(C ₆ F ₅) ₃ solvent, 22 °C	Me Me +	Ar N H Me		
1g		:	3g		4g	
					Yield (%)	
entry	Lewis acid	catalyst loading (%)	solvent	3g	4g	
1	$B(C_{6}F_{5})_{3}$	20	DCE	56	35	
2	none	0	DCE	0	0	
3	$B(C_{6}F_{5})_{3}$	10	DCE	71	22	
4	$B(C_{6}F_{5})_{3}$	10	Et ₂ O	83	17	
5	$B(C_{6}F_{5})_{3}$	5.0	Et ₂ O	22	<5	
6	$B(C_6F_5)_3$	10	THF	38	<5	
7	$B(C_{6}F_{5})_{3}$	10	toluene	75	21	
8	$B(C_6F_5)_3$	10	benzene	81	16	
9	$B(C_{6}F_{5})_{3}$	5.0	benzene	>95	<5	
10	$BF_3 \cdot OEt_2$	10	benzene	0	0	
11	BPh ₃	10	benzene	0	0	

^{*a*}Conditions: 4-methoxy-*N*,*N*,2,6-tetramethylaniline (0.1 mmol), 1methoxy-2-methyl-1-(trimethylsiloxy)propene (0.2 mmol), Lewis acid, solvent (0.25 mL), under N₂, 22 °C, 12 h. ^{*b*}Yields were determined by ¹H NMR analysis of unpurified product mixtures with mesitylene as the internal standard. See the Supporting Information for details.

as the solvent, **3g** was obtained in 38% yield (Table 1, entry 6). Use of less-polar aromatic hydrocarbons such as benzene and toluene as the solvent and with 10 mol % $B(C_6F_5)_3$ led to the formation of **3g** in 81% and 75% yield, respectively (Table 1, entries 7 and 8). With benzene and 5.0 mol % $B(C_6F_5)_3$ loading, **3g** was obtained with high selectivity (<5% of **4g**) and in >95% yield (Table 1, entry 9). Use of less-hindered BF₃· OEt₂ or less-acidic BPh₃ proved to be ineffective (Table 1, entries 10 and 11), providing support for the hypothesis that acidic $B(C_6F_5)_3$, along with sterically demanding and electronrich *N*-alkylamines, represent the most effective catalyst/ substrate combination.

A significant assortment of N,N-dialkylanilines may be used (Scheme 2). Reaction of N,N-dimethyl-substituted 1g afforded **3g** in 80% yield after purification (5.0 mol % $B(C_6F_5)_3$). With N-benzyl and N-cyclopropylmethyl-substituted substrates, 3i and 3j were isolated in 64% and 56% yield, respectively; thus, in these instances, α -amino methylene C–H bonds remained intact. α -Amino C-H bond of N-arylpyrrolidine 1k could be converted to a C–C bond by the use of 10 mol % $B(C_6F_5)_{34}$ affording 3k in 90% yield. 1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidin-3-ol (11), possessing an unprotected hydroxyl group, furnished the desired products in their O-silylated forms 31 (31% yield, 4.0:1 trans:cis) and 3m (23% yield, >20:1 *trans:cis*).¹⁴ Reaction with α -methyl-substituted pyrrolidine delivered 3n in 70% yield and trans:cis of 7.0:1. When Narylpiperidine 10 was used, 30 was isolated in 38% yield with the reaction being performed at 50 °C. A series of trialkylsubstituted amines that lack the fused N-aryl group were coupled efficiently with ((1-methoxyprop-1-en-1-yl)oxy)trimethylsilane (2b), leading to the formation of 5a-5d(88%-95% yield). Reaction of methyl (S)-3-(bis((S)-1phenylethyl)amino)-2-methylpropanoate with 2b delivered 5d as a 1.6:1 mixture of diastereomers, which were separable through silica gel chromatography, allowing us to produce the β -amino esters in enantiomerically pure form (see the Supporting Information for details).

^{*a*}Conditions: *N*,*N*-dialkylaniline (0.2 mmol), 1-methoxy-2-methyl-1-(trimethylsiloxy)propene (0.4 mmol), $B(C_6F_5)_3$ (10 mol %), solvent (0.5 mL), under N₂, 22 °C, 12 h. ^{*b*}Yield of purified products. ^{*c*}B(C_6F_5)₃ (5.0 mol %) was used. ^{*d*}Benzene was used. ^{*e*}THF was used. ^{*f*}Benzene was used and reaction was performed at 50 °C. ^{*g*}Benzene was used and reaction was performed at 70 °C. See the Supporting Information for details.

Next, we explored the range of silicon enolates (Scheme 3). Cyclopentyl- and cyclohexyl-substituted variants reacted with

^{*a*}Conditions: *N*,*N*-dialkylaniline (0.2 mmol), silicon enolate (0.4 mmol), B(C_6F_5)₃ (10 mol %), solvent (0.5 mL), under N₂, 22 °C, 12 h. ^{*b*}Yield of purified products. ^{*c*}Benzene was used. ^{*d*}THF was used. See the Supporting Information for details.

1g to give **3p** and **3q** in 73% and 79% yield, respectively. The less sterically demanding ketene acetal (**2b**) afforded **3r** in 66% yield. A broader range of ketene acetals proved to be applicable to reactions with *N*-arylpyrrolidine. *α*-Cycloalkylesters and methyl propionate could thus be installed, furnishing the corresponding 2-substituted pyrrolidine products **3s**-**3u** in 60% to >95% yield. Nucleophilic partners derived from isopropyl isobutyrate and 3-methyldihydrofuran-2(3*H*)-one were found to be compatible, as indicated by efficient synthesis of **3v** (90% yield) and **3w** (70% yield, 1.3:1 dr). In addition to silyl ketene acetals, trimethyl((1-(methylthio)vinyl)oxy)silane could be used, as the transformation affording *β*-amino thioester **3x** illustrates (52% yield).

The catalytic protocol is scalable, as highlighted by the 1.0 mmol synthesis of 3k, which was obtained in 95% yield by the use of 5.0 mol % $B(C_6F_5)_3$ (Scheme 4A). The 4-methoxy-2,6-

Scheme 4. Scale-Up Synthesis and Late-Stage Functionalization of Bioactive Molecules

^aSee the Supporting Information for details.

dimethylphenyl group of **3k** could be readily removed under oxidative conditions to deliver **6k** in 97% yield.¹³ This method is applicable in the late-stage functionalization of bioactive molecules containing an *N*-alkylamine moiety such as citalopram (antidepressant), atomoxetine (treatment for ADHD), and fluoxetine (antidepressant) (Scheme 4B). *N*-Methyl C–H bonds of these drug compounds were selectively converted to C–C bonds to afford a useful amount of β -amino carbonyl compounds **8a** (23% yield, 0.30 g), **8b** (25% yield, 92 mg), and **8c** (27% yield, 113 mg).

In summary, we have developed a catalytic method for a $B(C_6F_5)_3$ -catalyzed C–C bond forming process that provides access to an assortment of β -amino carbonyl compounds. Acyclic as well as cyclic amines may be used as proelectrophiles. On the basis of our mechanistic hypotheses, it should be possible to develop an enantioselective version of this C–C bond-forming reaction through design of a chiral Lewis acid catalyst,¹⁵ and also to expand the scope of nucleophiles. Investigations along these lines are currently underway.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.8b03959.

Experimental procedures and spectral data for all new compounds (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: wasa@bc.edu

ORCID ©

Masayuki Wasa: 0000-0002-3309-9129

Author Contributions

[†]These authors contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful for financial support from the National Institutes of Health (No. GM-128695) and Boston College. We are thankful to Professor Amir H. Hoveyda (Boston College), Ms. Diana C. Fager (Boston College), and Mr. Richard Y. Liu (MIT) for helpful discussions.

REFERENCES

(1) For reviews on various types of Mannich-type reactions, see: (a) Kobayashi, S.; Ishitani, H. Catalytic Enantioselective Addition to Imines. Chem. Rev. 1999, 99, 1069-1094. (b) Córdova, A. The Direct Catalytic Asymmetric Mannich Reaction. Acc. Chem. Res. 2004, 37, 102-112. (c) Sodeoka, M.; Hamashima, Y. Development of Catalytic Enantioselective Reactions via Palladium Enolates as Key Intermediates. Bull. Chem. Soc. Jpn. 2005, 78, 941-956. (d) Wenzel, A. G.; Jacobsen, E. N. In Enantioselective Synthesis of beta-Amino Acids, Juaristi, E., Soloshonok, V., Eds.; Wiley-VCH: New York, 2005; Chapter 4. (e) Shibasaki, M.; Matsunaga, S. Metal/linked-BINOL complexes: Applications in direct catalytic asymmetric Mannich-type reactions. J. Organomet. Chem. 2006, 691, 2089-2100. (f) Ting, A.; Schaus, S. E. Organocatalytic Asymmetric Mannich Reactions: New Methodology, Catalyst Design, and Synthetic Applications. Eur. J. Org. Chem. 2007, 2007, 5797-5815. (g) Verkade, J. M. M.; Hemert, L. J. C. v.; Quaedflieg, P. J. L. M.; Rutjes, F. P. J. T. Organocatalysed asymmetric Mannich Reaction. Chem. Soc. Rev. 2008, 37, 29-41. (h) Weiner, B.; Szymański, W.; Janssen, D. B.; Minnaard, A. J.; Feringa, B. L. Recent advances in the catalytic asymmetric synthesis of β-amino acids. Chem. Soc. Rev. 2010, 39, 1656-1691. (i) Karimi, B.; Enders, D.; Jafari, E. Recent Advances in Metal-Catalyzed Asymmetric Mannich Reactions. Synthesis 2013, 45, 2769-2812. (j) Shirakawa, S.; Maruoka, K. Recent Developments in Asymmetric Phase-Transfer Reactions. Angew. Chem., Int. Ed. 2013, 52, 4312-4348.

(2) For selected examples of oxidative Mannich-type reactions, see: (a) Catino, A. J.; Nichols, J. M.; Nettles, B. J.; Doyle, M. P. The Oxidative Mannich Reaction Catalyzed by Dirhodium Caprolactamate. J. Am. Chem. Soc. 2006, 128, 5648–5649. (b) Sureshkumar, D.; Sud, A.; Klussmann, M. Aerobic Oxidative Coupling of Tertiary Amines with Silyl Enolates and Ketene Acetals. Synlett 2009, 2009, 1558–1561. (c) Chu, L.; Zhang, X.; Qing, F.-L. CuBr-Catalyzed Oxidative Difluoromethylation of Tertiary Amines with Difluoroenol Silyl Ethers. Org. Lett. 2009, 11, 2197–2200. (d) Sud, A.; Sureshkumar, D.; Klussmann, M. Oxidative coupling of amines and ketones by combined vanadium- and organocatalysis. Chem. Commun. 2009, 3169–3171. (e) Rueping, M.; Vila, C.; Koenigs, R. M.; Poscharny, K.; Fabry, D. C. Dual catalysis: combining photoredox and Lewis base catalysis for direct Mannich reactions. *Chem. Commun.* **2011**, 47, 2360–2362. (f) Boess, E.; Sureshkumar, D.; Sud, A.; Wirtz, C.; Farès, C.; Klussmann, M. Mechanistic Studies on a Cu-Catalyzed Aerobic Oxidative Coupling Reaction with *N*-Phenyl Tetrahydroisoquinoline: Structure of Intermediates and the Role of Methanol As a Solvent. *J. Am. Chem. Soc.* **2011**, *133*, 8106–8109. (g) Boess, E.; Schmitz, C.; Klussmann, M. A Comparative Mechanistic Study of Cu-Catalyzed Oxidative Coupling Reactions with *N*-Phenyltetrahydroisoquinoline. *J. Am. Chem. Soc.* **2012**, *134*, 5317–5325. (h) Ratnikov, M. O.; Doyle, M. P. Mechanistic Investigation of Oxidative Mannich Reaction with *tert*-Butyl Hydroperoxide. The Role of Transition Metal Salt. *J. Am. Chem. Soc.* **2013**, *135*, 1549–1557.

(3) For reviews of amine functionalization by catalytic oxidation of α -amino C–H bonds, see: (a) Murahashi, S.; Zhang, D. Ruthenium catalyzed biomimetic oxidation in organic synthesis inspired by cytochrome P-450. *Chem. Soc. Rev.* **2008**, 37, 1490–1501. (b) Li, C.-J. Cross-Dehydrogenative Coupling (CDC): Exploring C–C Bond Formations beyond Functional Group Transformations. *Acc. Chem. Res.* **2009**, 42, 335–344. (c) Girard, S. A.; Knauber, T.; Li, C.-J. The Cross-Dehydrogenative Coupling of C_{sp3}–H Bonds: A Versatile Strategy for C–C Bond Formations. *Angew. Chem., Int. Ed.* **2014**, 53, 74–100.

(4) For recent advances of oxidant-free Mannich-type reactions through α -amino C–H functionalization, see: (a) Chen, W.; Seidel, D. The Redox-Mannich Reaction. Org. Lett. **2014**, 16, 3158–3161. (b) Ma, L.; Seidel, D. Intramolecular Redox-Mannich Reactions: Facile Access to the Tetrahydroprotoberberine Core. Chem. - Eur. J. **2015**, 21, 12908–12913. (c) Chen, W.; Seidel, D. Redox-Annulation of Cyclic Amines and β -Ketoaldehydes. Org. Lett. **2016**, 18, 1024–1027.

(5) (a) Chan, J. Z.; Yao, W.; Hastings, B. T.; Lok, C. K.; Wasa, M. Direct Mannich-Type Reactions Promoted by Frustrated Lewis Acid/ Bronsted Base Catalysts. *Angew. Chem., Int. Ed.* **2016**, *55*, 13877–13881. (b) Shang, M.; Cao, M.; Wang, Q.; Wasa, M. Enantioselective Direct Mannich-Type Reaction Catalyzed by Frustrated Lewis Acid/ Brønsted Base Complexes. *Angew. Chem., Int. Ed.* **2017**, *56*, 13338–13341.

(6) For reviews of frustrated Lewis pair chemistry, see: (a) Rokob, T. A.; Pápai, I. Hydrogen Activation by Frustrated Lewis Pairs: Insights from Computational Studies. *Top. Curr. Chem.* **2013**, 332, 157–211. (b) Ashley, A. E.; O'Hare, D. *Top. Curr. Chem.* **2012**, 334, 191–218. (c) Feng, X.; Du, H. Metal-free asymmetric hydrogenation and hydrosilylation catalyzed by frustrated Lewis pairs. *Tetrahedron Lett.* **2014**, 55, 6959–6964. (d) Stephan, D. W.; Erker, G. Frustrated Lewis Pair Chemistry: Development and Perspectives. *Angew. Chem., Int. Ed.* **2015**, 54, 6400–6441. (e) Stephan, D. W. Frustrated Lewis Pairs. *J. Am. Chem. Soc.* **2015**, 137, 10018–10032. (f) Oestreich, M.; Hermeke, J.; Mohr, J. A unified survey of Si–H and H–H bond activation catalysed by electron-deficient boranes. *Chem. Soc. Rev.* **2015**, 44, 2202–2220. (g) Stephan, D. W. The broadening reach of frustrated Lewis pair chemistry. *Science* **2016**, 354, aaf7229.

(7) For organoborane-mediated hydride abstraction from Nalkylamines, see: (a) Millot, N.; Santini, C. C.; Fenet, B.; Basset, J. M. Formation and Characterization of Zwitterionic Stereoisomers from the Reaction of $B(C_6F_5)_3$ and NEt_2Ph : (E)- and (Z)- $[EtPhN^+=CHCH_2-B^-(C_6F_5)_3]$. Eur. J. Inorg. Chem. 2002, 2002, 3328-3335. (b) Focante, F.; Mercandelli, P.; Sironi, A.; Resconi, L. Complexes of tris(pentafluorophenyl)boron with nitrogen-containing compounds: Synthesis, reactivity and metallocene activation. Coord. Chem. Rev. 2006, 250, 170-188. (c) Farrell, J. M.; Heiden, Z. M.; Stephan, D. W. Metal-Free Transfer Hydrogenation Catalysis by B(C₆F₅)₃. Organometallics **2011**, 30, 4497–4500. (d) Schwendemann, S.; Fröhlich, R.; Kehr, G.; Erker, G. Intramolecular frustrated N/B lewis pairs by enamine hydroboration. Chem. Sci. 2011, 2, 1842-1849. (e) Chen, J.; Chen, E. X.-Y. Reactivity of Amine/ $E(C_6F_5)_3$ (E = B, Al) Lewis Pairs toward Linear and Cyclic Acrylic Monomers: Hydrogenation vs. Polymerization. Molecules 2015, 20, 9575-9590. (f) Chen, G.-Q.; Kehr, G.; Daniliuc, C. G.; Bursch, M.; Grimme, S.; Erker, G. Intermolecular Redox-Neutral Amine C-H Functionalization Induced by the Strong Boron Lewis Acid $B(C_6F_5)_3$ in the Frustrated Lewis Pair Regime. *Chem. - Eur. J.* **2017**, *23*, 4723–4729. (8) For $B(C_6F_5)_3$ -catalyzed dehydrogenation of *N*-heterocycles, see: (a) Maier, A. F. G.; Tussing, S.; Schneider, T.; Flörke, U.; Qu, A.-W.; Grimme, S.; Paradies, J. Frustrated Lewis Pair Catalyzed Dehydrogenative Oxidation of Indolines and Other Heterocycles. *Angew. Chem., Int. Ed.* **2016**, *55*, 12219–12223. (b) Kojima, M.; Kanai, M. Tris(pentafluorophenyl)borane-catalyzed Acceptorless Dehydrogenation of *N*-Heterocycles. *Angew. Chem., Int. Ed.* **2016**, *55*, 12224–12227.

(9) For organoborane-catalyzed allylic C–H abstraction, see: (a) Chatterjee, I.; Oestreich, M. $B(C_6F_5)_3$ -Catalyzed Transfer Hydrogenation of Imines and Related Heteroarenes Using Cyclohexa-1,4-dienes as a Dihydrogen Source. *Angew. Chem., Int. Ed.* **2015**, *54*, 1965–1968. (b) Chatterjee, I.; Qu, Z.-W.; Grimme, S.; Oestreich, M. $B(C_6F_5)_3$ -Catalyzed Transfer of Dihydrogen from One Unsaturated Hydrocarbon to Another. *Angew. Chem., Int. Ed.* **2015**, *54*, 12158–12162. (c) Keess, S.; Oestreich, M. Cyclohexa-1,4-dienes in transition-metal-free ionic transfer processes. *Chem. Sci.* **2017**, *8*, 4688–4695.

(10) Shang, M.; Chan, J. Z.; Cao, M.; Chang, Y.; Wang, Q.; Cook, B.; Torker, S.; Wasa, M. C–H Functionalization of Amines *via* Alkene-Derived Nucleophiles through Cooperative Action of Chiral and Achiral Lewis Acid Catalysts: Applications in Enantioselective Synthesis. *J. Am. Chem. Soc.* **2018**, *140*, 10593–10601.

(11) For reviews regarding α -amino C–H functionalization, see: (a) Campos, K. R. Direct sp³ C–H bond activation adjacent to nitrogen in heterocycles. *Chem. Soc. Rev.* **2007**, *36*, 1069–1084. (b) Davies, H. M. L.; Manning, J. R. Catalytic C–H functionalization by metal carbenoid and nitrenoid insertion. *Nature* **2008**, *451*, 417– 424. (c) *Chiral Amine Synthesis: Methods, Developments and Applications*; Nugent, T. C., Ed.; Wiley–VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2010. (d) Mitchell, E. A.; Peschiulli, A.; Lefevre, N.; Meerpoel, L.; Maes, B. U. W. Direct α -functionalization of saturated cyclic amines. *Chem. - Eur. J.* **2012**, *18*, 10092–10142. (e) Girard, S. A.; Knauber, T.; Li, C.-J. The cross-dehydrogenative coupling of C_{sp3}–H bonds: A versatile strategy for C–C bond formations. *Angew. Chem., Int. Ed.* **2014**, *53*, 74–100. (f) Haibach, M. C.; Seidel, D. C–H Bond functionalization through intramolecular hydride transfer. *Angew. Chem., Int. Ed.* **2014**, *53*, 5010–5036.

(12) For representative examples of α -amino C-H bond functionalization, see: (a) Davies, H. M. L.; Hansen, T.; Hopper, D. W.; Panaro, S. A. Highly Regio-, Diastereo-, and Enantioselective C-H Insertions of Methyl Aryldiazoacetates into Cyclic N-Boc-Protected Amines. Asymmetric Synthesis of Novel C2-Symmetric Amines and threo-Methylphenidate. J. Am. Chem. Soc. 1999, 121, 6509-6510. (b) Li, Z.; Li, C.-J. CuBr-Catalyzed Efficient Alkynylation of sp³ C-H Bonds Adjacent to a Nitrogen Atom. J. Am. Chem. Soc. 2004, 126, 11810-11811. (c) DiRocco, D. A.; Rovis, T. Catalytic Asymmetric α -Acylation of Tertiary Amines Mediated by a Dual Catalysis Mode: N-Heterocyclic Carbene and Photoredox Catalysis. J. Am. Chem. Soc. 2012, 134, 8094-8097. (d) Cordier, C. J.; Lundgren, R. J.; Fu, G. C. Enantioconvergent Cross- Coupling of Racemic Alkylmetal Reagents with Unactivated Secondary Alkyl Electrophiles: Catalytic Asymmetric Negishi α-Alkylations of N-Bocpyrrolidine. J. Am. Chem. Soc. 2013, 135, 10946-10949. (e) Bergonzini, G.; Schindler, C. S.; Wallentin, C.-J.; Jacobsen, E. N.; Stephenson, C. R. J. Photoredox activation and anion binding catalysis in the dual catalytic enantioselective synthesis of β -amino esters. Chem. Sci. 2014, 5, 112-116. (f) Ruiz Espelt, L.; McPherson, I. S.; Wiensch, E. M.; Yoon, T. P. Enantioselective conjugate additions of α -amino radicals via cooperative photoredox and Lewis acid catalysis. J. Am. Chem. Soc. 2015, 137, 2452-2455. (g) Osberger, T. J.; Rogness, D. C.; Kohrt, J. T.; Stepan, A. F.; White, M. C. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis. Nature 2016, 537, 214-219. (h) Le, C.; Liang, Y.; Evans, R. W.; Li, X.; MacMillan, D. W. C. Selective sp3 C-H alkylation via polarity-match-based crosscoupling. Nature 2017, 547, 79-83. (i) Jain, P.; Verma, P.; Xia, G.; Yu, J.-Q. Enantioselective amine α -functionalization via palladiumcatalysed C-H arylation of thioamides. *Nat. Chem.* **2017**, *9*, 140–144. (j) Chen, W.; Ma, L.; Paul, A.; Seidel, D. Direct α -C-H bond functionalization of unprotected cyclic amines. *Nat. Chem.* **2017**, *10*, 165–169. (k) McManus, J. B.; Onuska, N. P. R.; Nicewicz, D. A. Generation and alkylation of α -carbamyl radicals via organic photoredox catalysis. J. Am. Chem. Soc. **2018**, *140*, 9056–9060. (l) Ye, J.; Kalvet, I.; Schoenebeck, F.; Rovis, T. Direct α -alkylation of primary aliphatic amines enabled by CO₂ and electrostatics. *Nat. Chem.* **2018**, *10*, 1037–1041.

(13) Jurberg, I. D.; Peng, B.; Wöstefeld, E.; Wasserloos, M.; Maulide, N. Intramolecular Redox-Triggered C-H Functionalization. *Angew. Chem., Int. Ed.* **2012**, *51*, 1950–1953.

(14) After isolation by silica gel column chromatography, **3l** and **3m** were treated with an aqueous solution of 4 N HCl and characterized as their corresponding nonsilylated compounds. See the Supporting Information for details.

(15) Süsse, L.; Hermeke, J.; Oestreich, M. The Asymmetric Piers Hydrosilylation. J. Am. Chem. Soc. 2016, 138, 6940–6943.