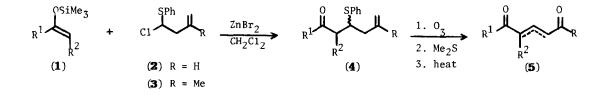
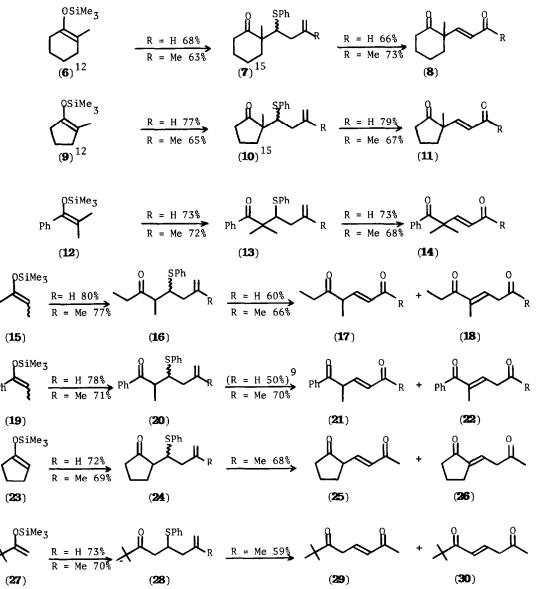
O-SILYLATED ENOLATE PHENYLTHIOALKYLATION: A NEW SYNTHESIS OF UNSATURATED 1,5-DICARBONYL COMPOUNDS.

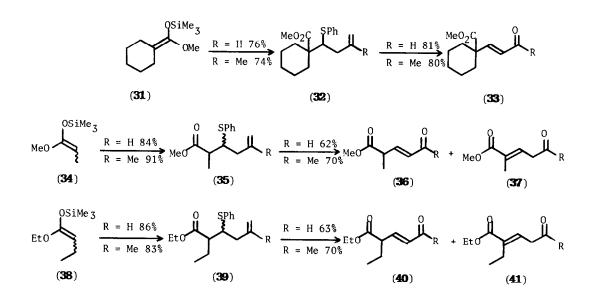

Hassan A. Khan and Ian Paterson

Department of Chemistry, University College London, 20 Gordon Street, London WC1H OAJ, England.

Summary: The 0-silylated enolates of ketones and esters can be phenylthicalkylated by the chlorides (2) and (3) under $2nBr_2$ -catalysis; ozonolysis and subsequent sulphoxide thermolysis then gives the corresponding unsaturated 1,5-dicarbonyl compounds.


O-Silylated enolates are, in many cases, useful alternatives to more electropositive metal enolates for the controlled α -substitution of carbonyl compounds.¹⁻³ For instance, they can be regiospecifically alkylated by α -chloroalkyl phenyl sulphides (PhSCHClR, R = H² or saturated alkyl³), in the presence of suitable Lewis acids, to give β -phenylthiocarbonyl compounds; reductive or oxidative sulphur-removal then leads to overall α -alkylation or α -alkylidenation.

As an extension of this work, we now report a novel method for the synthesis of various unsaturated 1,5-dicarbonyl compounds, useful synthetic intermediates *inter alia* for heterocycle construction⁴ and annulation.⁵ Phenylthioalkylation of O-silylated enolates (1) with the unsaturated α -chloroalkyl phenyl sulphides (2 and 3), under mild ZnBr₂-catalysis, gives the homoallylsulphides (4, R = H and R = Me). These are then transformed into the corresponding unsaturated aldehydes (4 \rightarrow 5, R = H) or methylketones (4 \rightarrow 5, R = Me) by ozonolysis with concomitant sulphur oxidation, followed by easy sulphoxide cycloelimination. The overall transformation is, therefore, the synthetic equivalent of enolate Michael addition to HCECCHO or HCECCOCH₃.⁵


The two alkylating agents (2 and 3) were prepared by chlorination of the respective homoallyl phenyl sulphides (NCS, CCl_4 , 20° , 4h; >95%), each of which are readily accessible.^{6,7} They reacted satisfactorily with *O*-silylated enolates in the presence of a catalytic amount of $ZnBr_2^{\ 8}$ in CH_2Cl_2 at room temperature (15min - 1h), essentially identical conditions to those already developed for the simple phenylthioalkylation of ketones and esters.³ The new alkylation reactions, as summarised in diagrams 6 to 28 for ketone systems and 31 to 39 for ester systems, appear to be as general as phenylthiobutylation,³ although yields are perhaps slightly lower.

Ozone treatment of the intermediate homoallylsulphide was best performed at -78° in CH_2Cl_2 -MeOH (4:1) for systems derived from electrophile (3), and in Me_2CO for those derived from 2, followed by normal Me_2S reduction $(-78^{\circ} \rightarrow 20^{\circ})$. Substantial elimination of benzene-sulphenic acid took place on warming up, and was completed by brief heating (CCl₄, 70°, 15min - 2h), to give the unsaturated 1,5-dicarbonyl compound. We have successfully prepared a range of unsaturated 1,5-diketones, ketoesters, and aldehydoesters using this procedure.

For the preparation of unsaturated 1,5-aldehydoketones, however, the method is usually restricted to blocked systems (e.g. 8, 11, and 14; R = H); enolisable systems, when formed, did not survive chromatography and were best isolated by microdistillation (e.g. 17 and 18; R = H).⁹ The ozonolysis of 24 and 28 for R = H gave only polymeric materials with no identifiable aldehyde products.

In blocked, non-enolisable 1,5-dicarbonyl compounds (8, 11, 14, and 33; R = H, Me) the products had exclusively E-stereochemistry. In all the remaining enolisable systems, there was generally significant (>5:1)¹¹ kinetic regioselectivity in sulphoxide elimination towards the didubstituted alkene isomer, while subsequent chromatographic isolation on SiO₂ usually led to equilibration towards the more stable trisubstituted alkene regioisomer. For example, the ratio of 17:18 (R = Me) after elimination (70°, 30min) was \sim 5:1 (¹H NMR),¹⁰ which reversed to 1:15 after flash chromatography. Both regioisomers had E-stereochemistry in all cases examined.

The O-silylated enolates used were prepared by standard methods.¹⁻³ The $2nBr_2$ -phenylthioalkylation procedure was identical to that already described,³ except that exactly one equivalent of electrophile (2 or 3)¹³ was now used (c.f. 1.2 equivalents previously).¹⁴ Typically, for the ozonolysis procedure, ozone (Wellsbach generator) was bubbled through a stirred solution of the homoallylsulphide (1 mmol) in CH_2Cl_2 -MeOH (4:1, 10ml) or dry Me₂CO (10 ml) at -78^o until the blue colour persisted, and then for a further 3 min. The solution was purged of excess O_3 by bubbling Ar through, Me₂S (1ml) was added, and the mixture allowed to warm to room temperature. The solvent was evaporated *in vacuo* to give usually a mixture of sulphoxides and eliminated products, which was then heated in CCl₄ (3ml) for 15min - 2h; flash chromatography on silica gel (or microdistillation) then gave the unsaturated 1,5dicarbonyl compound. In summary, this work further demonstrates the utility of O-silylated enolate phenylthicalkylation for the α -substitution of carbonyl compounds. The compatibility of these alkylations with other functionality in the α -chlorosulphide remains to be established.

We thank the S.E.R.C. for a Postdoctoral Research Assistantship (to H.A.K.).

NOTES AND REFERENCES

¹ J. K. Rasmussen, <i>Synthesis</i> , 91 (1977); I. Fleming in <i>"Comprehensive Organic Chemistry"</i> , Vol.3, D. H. R. Barton and W. D. Ollis, Pergamon Press (1979); E. W. Colvin, <i>Chem. Soc. Rev.</i> , 7 , 15 (1978)
2 I. Paterson and I. Fleming, <i>Tetrahedron Letters</i> , 993 and 995 (1979).
³ I. Paterson and I. Fleming, <i>ibid.</i> , 2179 (1979); for R = SiMe ₃ , see I. Fleming and S. Patel, <i>ibid.</i> , 2321 (1981).
⁴ K. T. Potts, M. J. Cipullo, P. Ralli, and G. Theodoridis, <i>J. Amer. Chem. Soc.</i> , 103 , 3584 and 3585 (1981), and references therein.
⁵ M. E. Jung, <i>Tetrahedron</i> , 32 , 3 (1976); R. B. Woodward and T. Singh, <i>J. Amer. Chem. Soc.</i> , 72 ,494 (1950).
⁶ 2 was prepared from reaction of 1-bromo-3-butene with NaSPh (EtOH, 20 ^o , 4h; 96%), or from allylbromide and PhSCH_Cu (TMEDA-THF, $-78^{\circ} \rightarrow 20^{\circ}$; 2h, 80%). ⁷ 3 was prepared from 3-methyl-3-buten-1-ol <i>via</i> tosylation (TsCl-pyridine, 20 ^o , 2h) followed by reaction with NaSPh (EtOH, 20 ^o , 16h; 88% overall).
⁷ E. J. Corey and M. Jautelat, <i>Tetrahedron Letters</i> , 5787 (1968).
⁸ The TiCl ₄ -promoted reaction, 3 in this case, was much inferior to the ZnBr ₂ procedure.
⁹ Unsaturated aldehydoketones (21 and 22 ; R = H) could not be satisfactorily purified and the quoted yield is estimated from the NMR spectrum. All other yields are isolated yields.
¹⁰ Microdistillation in the analogous aldehyde case gave $17:18$ (R = H) in better than 10:1 ratio without equilibration occurring.
¹¹ The elimination regioselectivity was generally more pronounced in aldehyde cases, presumably reflecting the greater acidity of the aldehyde α -hydrogens over that of ester or ketone functions (see ref 10).
12 6:regioisomer in the proportion 88:12; 9:regioisomer 93:7.
¹³ Compound 2 could be stored at -20° under N ₂ for 2 - 3 months without deterioration, however, 3 could only be kept for $\sqrt{3}$ weeks under similar conditions.
¹⁴ Concentration was important, 0.5 M (i.e. 2 ml CH ₂ Cl ₂ /mmol reactants) was found to be best.
¹⁵ The amount of regioisomer produced in the alkylation was proportional to the amount of the corresponding silyl enol ether present in the starting material. ¹²

(Received in UK 23 February 1982)

2402