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Abstract: A new efficient method to obtain various alkynylphos-
phanes RnP(–�–R��3–n� [R = Ar, Alk, alkoxy, amido R� = Ar, Het,
Alk, CH2Z (Z = OMe, NMe2), n = 0–2] has been developed by
means of cross-coupling reaction of chlorophosphanes RnPCl3–n

(R = Ar, Alk, Alkoxy) with terminal alkynes catalyzed by cuprous
salts.

Key words: phosphorus, cross-coupling, alkynes, copper, homoge-
nous catalysis

Alkynylphosphanes are an attractive class of compounds
useful in organic synthesis.1 They can be identified as
common building blocks in constructing a broad variety
of alkenyl- and alkylphosphanes2 bearing functional
groups and phosphorus heterocycles.3 Also alkynylphos-
phanes can be utilized for the preparation of neutral and
cationic, homo- and hetero-bridged complexes,4 metalla-
cycles,5 and transition metal clusters bearing polyyne
ligand.6

We have previously shown that alkynylphosphanes com-
prising one, two or three acetylenic substitutes at phos-
phorus atom, could be obtained by cross-coupling
reaction between terminal alkynes and aryl (or alkyl)
chlorophosphanes catalyzed by Ni or Pd complexes.7 The
reaction represents the heteroanalog of Sonogashira reac-
tion.8 

We report here a convenient method of preparing alky-
nylphosphanes which is based on utilizing Cu(I) salts as
catalyst in the reaction between terminal alkynes and
chlorophosphanes (Equation 1).

Equation 1 

The reaction proceeds smoothly by stirring a toluene solu-
tion of chlorophosphane 1, alkyne 2, Et3N and CuI or
CuBr (1 mol%) under argon at room temperature for 1–6

hours. The resulting phosphanes 3 are formed in nearly
quantitative yields.

Under optimal conditions terminal alkynes easily react
with diaryl- and dialkylchlorophosphanes (Table 1, en-
tries 1–12), aryldichlorophosphanes (Table 1, entry 14)
and PCl3 (Table 1, entries 15, 16). In all cases mono-, bis-
or tris(alkynyl)phosphanes are isolated in high yields with
the exception of phosphane 3m, which is formed from
bulky t-Bu2PCl in 50% yield only after heating at 120 °C
for 24 hours (Table 1, entry 13). Poor electrophiles such
as (RO)2PCl, (R2N)2PCl and R2NPCl2 also reacted with
terminal alkynes in the presence of Cu catalyst to give
alkynyl phosphonites and phosphinites in high yields.

Terminal alkynes bearing alkyl and aryl substitutes at the
triple bond could be introduced using this reaction with
halogenophosphanes under the above conditionsThe use
of Cu(I) catalyst makes it possible to carry out the reaction
with alkynes containing sensitive functional groups
(Table 1, entries 3, 10, 11) as well as alkynes bearing
heteroaryl substituents (Table 1, entries 7–9). One should
notice that the reaction with alkynes (Table 1, entries 3, 6,
10, 11) in the presence of Ni or Pd catalysts failed to pro-
vide efficiently products of cross-coupling since the reac-
tion led to complex mixture of unidentified compounds.7

The mechanism of Cu-catalyzed cross-coupling may in-
clude either P–Cl bond activation as it proceeds under ca-
talysis by Ni complexes7 or formation of copper-
acetylenic intermediate by reacting a Cu complex with a
terminal alkyne in the presence of Et3N.

We have demonstrated that the interaction of Ph2PCl with
CuI in toluene led to the formation of a complex. By per-
forming an X-ray analysis it was shown that the above
complex proved to be a tetrahedral complex bearing three
molecules of chlorophosphane (Ph2PCl)3CuI (Figure 1).9

Assuming the above intermediate, the mechanism of Cas-
tro reaction looks most reasonable10 (Scheme 1).

Phosphinoalkynes 3; General Procedure
Chlorophosphane 1, CuI (1 mol%), Et3N, alkyne 2, and solvent
were mixed in a Schlenk flask and stirred for an appropriate period
of time at r.t. (see Table 1 for molar amounts used). The progress of
the reaction was monitored by 31P NMR measurements every hour.
After completion of the reaction (disappearance of the signal of
chlorophosphane), the ammonium salt was removed by filtration,
and the solvent was evaporated under reduced pressure. The crude
product was then purified by passing through a silica gel column
(CH2Cl2–hexane) or distilled under reduced pressure (Table 1).
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Table 1 Cross-Coupling Chlorophosphanes and Chlorophosphites with Terminal Alkynesa

Entry Chlorophosphane R� in Product Yield (%)b

1 Ph2PCl (1a) Ph
3a

99 (95)c

2 1a 4-MeC6H4

3b

95 (92)c

3 1a 4-MeOC6H4

3c

99 (96)c

4 1a 4-Me2NC6H4

3d

96 (93)c

5 1a 2-Me2NC6H4

3e

98 (94)c

6 1a 3-CF3C6H4

3f

95 (92)c

7 1a 2-pyridyl

3g

99 (93)c

8 1a 2-thienyl

3h

94 (90)c

9 1a 6-quinolinyl

3i

96 (92)c

10 1a MeOCH2

3j

83 (49)c

11 1a Me2NCH2

3k

96 (92)c

12 i-Pr2PCl (1b) Ph

3l

98 (80)c

13 t-Bu2PCl (1c) Ph

3m

50c,d

14 PhPCl2 (1d) Ph

3n

99 (96)e

15 PCl3 (1e) Ph

3o

98 (78)f

16 PCl3 (1e) 4-MeC6H4

3p

95 (81)f

17

1f

Ph

3q

96 (42)c,g

18 (i-PrO)2PCl (1g) Ph

3r

98 (36)c,g

19 (Et2N)2PCl (1h) Ph

3s

98c,g

20 Et2NPCl2 (1i) Ph

3t

99c,g

a Reaction conditions: chlorophosphane (1 mmol), CuI (1 mol%), toluene, r.t. 
b Based on 31P NMR spectrum, isolated yields are given in parentheses. 
c Alkyne (1.25 mmol), Et3N (3 mmol), 6–8 h. 
d 120 °C, 24 h. 
e Alkyne (2.5 mmol), Et3N (6 mmol), 4 h. 
f Alkyne (3.75 mmol), Et3N (9 mmol), 45 min. 
g Decomposes during distillation.

R'

Ph2P Ph

C6H4Me-4Ph2P

C6H4OMe-4Ph2P
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C6H4CF3-3Ph2P

Ph2P Py-2

Thienyl-2Ph2P
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Compounds were obtained in sufficiently pure state as indicated by
their 1H and 13C NMR spectra.11
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Scheme 1 

Figure 1 X-ray crystal structure of (Ph2PCl)3CuI9
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(11) For example: 2-(2-Pyridyl)ethynyldiphenylphosphane(3g): 
Yield: 93%; light yellow solid; mp 32 °C. 31P{H} NMR 
(162.6 MHz, CDCl3): � = –34.44 (s). 1H NMR (400 MHz, 
CDCl3): � = 6.98 (m, 1 H), 7.19 (m, 1 H), 7.21 (m, 7 H), 7.37 
(m, 1 H), 7.61 (dt, 4 H, J = 1.4 Hz), 8.43 (m, 1 H). 13C NMR 
(100.6 MHz, CDCl3): � = 86.11 (d, J = 9.8 Hz), 106.22, 

122.74, 126.78, 128.15 (d, J = 7.6 Hz), 128.69, 132.30 (d, 
J = 21.3 Hz), 134.79 (d, J = 7.5 Hz), 135.55, 142.04, 149.46. 
(3-Methoxyprop-1-ynyl)(diphenyl)phosphane(3j): Yield: 
49%; light yellow oil; bp 160 °C/0.1 Torr. 31P{H} NMR 
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