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Abstract The inclusion complexes of a series of 4-
arylidenamino-5-phenyl-4H-1, 2, 4-triazole-3-thiols have
been prepared with β-cyclodextrin. The compounds and their
inclusion complexes have been characterized by studying
their physical and spectral properties. The thermodynamic
stability constant and free energy of activation have been de-
termined to know the stability of inclusion complexes and
type of host-guest relation. Finally, absorption, excitation
and emission spectra of the compounds (4-arylidenamino-5-
phenyl-4H-1, 2, 4-triazole-3-thiols) and their inclusion com-
plexes have been taken. It is found that inclusion complex
formation brings about a drastic change in absorption and
fluorescence characteristic (both excitation and emission
spectra) of newly synthesized compounds.

Keywords Triazole-3-thiol . Inclusion complex . Absorption
spectra . Excitation spectra . Emission spectra

Introduction

Fluorescence characteristics of fluorophores depend upon a
number of environmental factors including interactions be-
tween the fluorophore and surrounding solvent molecules
(dictated by solvent polarity), other dissolved inorganic and
organic compounds, temperature, pH, and the localized con-
centration of the fluorescent species. The effects of these pa-
rameters vary widely from one fluorophore to another. The

Experimental

Materials and Methods

All the chemicals used in the present work were procured
from local market. Double distilled water was used as solvent.
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exitation and emission spectra as well as quantum yields,
can be heavily influenced by environmental variables. In fact,
the high degree of sensitivity in fluorescence is primarily due
to interactions that occur in the local environment during the
excited state life time [1–7].

The drugs containing 1, 2, 4-triazole nucleus are reported to
exhibit a wide spectrum of pharmacological activities like
antimicrobial [8–12], anticancer [13, 14], antiviral [15],
anti-inflammatory [16], analgesic [17], anticonvulsant [18]
etc. It is known that the formation of inclusion complex of
drug molecules with β –cyclodextrin improves their solubili-
ty, stability as well as bioavailability [19–24]. But transference
of drug molecules which are usually nonpolar in nature, in to
hydrophobic core of β –cyclodextrin causes a drastic change
in its microenvironment. Since the spectral chacteristics of
molecules depend upon the molecular structure and its micro-
environment [6, 7] such a transference will definitely have
some impact on fluorescence characteristics of the molecules.

In view of these facts, an attempt has been made to synthe-
size some 4-arylidenamino −5-phenyl-4 H-1,2,4-triazole-3-
thiol (Schiff bases) in their purest forms and prepare their
inclusion complexes with β-cyclodextrin. The absorption,
excitation and emission spectra of the compounds and
their inclusion complexes are taken to examine whether
the inclusion complex formation has any impact on
absoption and emission characteristics of 4-arylidenamino-5-
phenyl-4H-1, 2, 4-triazole-3-thiols.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10895-015-1728-5&domain=pdf


Scheme 1 A: 4-Benzilidenamino −5-phenyl-4H-1, 2, 4-triazole-3-thiol.
B: 4-[2-Nitrobenzilidenamino] -5-phenyl-4 H-1,2,4-triazole-3-thiol. C:
4-[4-Bromobenylideneamino] -5-phenyl-4H-1, 2, 4-triazole-3-thiol. D:
4-[4-Methoxybenylideneamino] -5-phenyl-4H-1, 2, 4-triazole-3-thiol.

E: 4-[2-Hydroxybenzylideneamino] -5-phenyl-4H-1, 2, 4-triazole-3-
thiol. F: 4-[(furan-2-yl)methyleneamino] -5-phenyl-4H-1, 2, 4-triazole-
3-thiol

0.001 0.002 0.003 0.004 0.005 0.006
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

A
bs

or
ba

nc
e

Conc. of β-Cyclodextrin 

Comp-A
Comp-B
Comp-C
Comp-D
Comp-E
Comp-F

Fig. 1 Phase solubility study of
the synthesized compounds in
aqueous solution of β-
cyclodextrin
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The elemental analysis was performed in a CHN analyzer.
Melting points were recorded by open capillary method.
Absorption spectra were recorded in Shimadzu UV-1800
spectrophotometer and IR spectra were recorded in KBr
pellets in Shimadzu 8400 FT-IR spectrophotometer. 1HNMR
spectra were obtained with Brukers spectrophotometer model
ultra-shield at 300 MHz in DMSO- d6 solution with TMS as
internal standard. The purity of the newly synthesized com-
pounds were checked by TLC. Fluorescence emission and
excitation spectra were recordedy in a Shimadzu RF-1501
spectrofluorimeter equipped with a150W xenon lamp. The
synthesis of the titled compounds A, B, C, D, E and F
were carried out as per Panda et al. 2015 [24] as shown
in Scheme 1.

Phase Solubility Measurements

The aqueous phase solubility of the compounds at various
concentrations of β –cyclodextrin (0-10 mM) was studied
by Higuchi-Conner method [25].

Synthesis of Inclusion Complexes

Co-precipitation method was used for the preparation of
inclusion complexes of the compounds with β-cyclodextrin
[22, 26].

Study of Thermodynamic Properties

The thermodynamic stability constants of the complexes
were calculated from plot of inverse of change in absor-

bance versus inverse concentration of β-cyclodextrin using
Benesi-Hilderband relation [27].

1=ΔA ¼ 1=Δεþ 1=K
0
:Δε Guest½ �o: β − CD½ �

where ΔA is change in absorbance, Δε is change in
absorption coefficient, K is stability constant, [Guest]o is
the concentration of compound and [β-CD] is the concen-
tration of β-cyclodextrin. The values of K for all the
complexes are calculated using the relation

K ¼ Intercept=Slope

The value of ΔG at 298 K was calculated using the
equation:

ΔG ¼ −RTlnK

Table 1 Some physical properties of the synthesized compounds and their inclusion complexes

Sl No. Compound/Complex Molecular formula Molecular weight Colour M.P. (°C) Yield(%)

1 Compound- A C15H12N4S 280. 35 Light brown 180–185 73

I.C.A white 272–274 75

2 Compound- B C15H11N5O2S 325.35 Pale yellow 170–172 72

I.C.B Dull white 282–285 74

3 Compound- C C15H11 BrN4S 359.24 Light yelllow 178–180 77

I.C.C white 275–280 77

4 Compound- D C16H14N4OS 310. 37 Dull White 160–162 71

I.C.D white 280–285 77

5 Compound- E C15H12ON4S 296.35 Dull white 145–148 71

I.C.E white 278–280 75

6 Compound- F C13H10N4OS 270. 31 Dark gray 170–175 73

I.C.F white 281–283 77
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Results and Discussion

Six different 4-arylidenamino −5-phenyl-4 H-1, 2,
4-triazole-3-thiols (A, B, C, D, E and F) have been synthe-
sized (as shown in scheme 1) in their purest forms. The
inclusion complexes of A, B, C, D, E and F have been
prepared with β-cyclodextrin (β-CD) after determining the
optimum concentration of host and guest through aqueous
phase solubility study (Fig. 1). The structures of the com-
pounds (A, B, C, D, E and F) have been confirmed from the
study of their physical properties, elemental composition,
FT-IR and 1HNMR data (Tables 1 and 2). The elemental



Table 2 Spectral data and elemental composition of the compounds and their inclusion complexes

Sl No.
name

Compound/
Complexcase

IR (KBr) cm−1rcase NMR(DMSO-d6) Elemental Analysis Calculated (Found)

C H N

1 A 968.27 (N-C-S str), 3034.03, 3099.61,
(Ar-H str),1498.69(C = Cstr)696.38
(C-S str), 1350.17 (C-N str)0.1610.56
(C = Nstr)

7.52–7.90 (m, 10 H,
Ar-H),14.25(s, 1 H, SH),
9.70(s, 1 H, N = CH).

64.26 (64.46) 4.31 (4.02) 19.98 (19.92)

I.C.A 937.4 (N-C-S str), 2931.80 (Ar-H str),
1409.96(C = Cstr)756.10 (C-S str),
1332.81 (C-N str)0.1656.85(C = Nstr),
3398.57(OHstr, β-CD),2931.80
(C-Hstr, β-CD)

7.32–7.91 (m, 10 H,
Ar-H),3.35(s,1 H,β-CD),
3.43(s,1 H,β-CD),
3.45(s,1 H,β-CD),
3.57(s,1 H,β-CD),
3.59(s,1 H,β-CD)

2 B 943.27 (N-C-S str), 3115.04 (Ar-H str),
696.30(C-S str), 1498.69(C = Cstr)
1342.46 (C-N str). 1529.55,1342.46
(NO2), 1610(C = Nstr)

7.53–8.34(m, 9 H, ArH),
14.304 (s, 1 H, SH),10.499
(s, 1 H, N = CH).)

55.37 (55.27) 3.41 (3.32) 21.53 (21.50)

I.C.B 937.40(N-C-S str), 2933.80(Ar-H str),
1409.96(C = Cstr)704.02(C-S str),
1361.74 (C-N str)0.1409.96 (NO2),
1658.78(C = Nstr), 3367.71(OHstr,
β-CD),2931.80(C-Hstr, β-CD)

7.92–8.13 (m, 9 H,
Ar-H),3.37(s,1 H,β-CD),
3.61(s,1 H,β-CD),
3.63(s,1 H,β-CD),
3.64(s,1 H,β-CD),
3.66(s,1 H,β-CD),

3 C 968.27 (N-C-S str), 2941.44, 3113.11
(Ar-H str),1500.62 (C = Cstr)684.73
(C-S str), 1355.96 (C-N str)0.1510.56
(C = Nstr)609.51(C-Br)

7.54–7.89 (m, 9 H, Ar-H), 50.15 (50.19) 03.09 (3.14) 15.60 (15.51)

I.C.C 937.40 (N-C-S str), 2931.80 (Ar-H str),
1409.96(C = Cstr)756.10 (C-S str),
1332.81 (C-N str)0.1658.78(C = Nstr),
3385.07(OHstr, β-CD), 2931.80
(C-Hstr, β-CD), 613.36(C-Br)

7.36–7.96 (m, 9 H,
Ar-H),3.35(s,1 H,β-CD),
3.42(s,1 H,β-CD),
3.46(s,1 H,β-CD),
3.54(s,1 H,β-CD),
3.58(s,1 H,β-CD)

4 D 943.19(N-C-S str), 3076.46,3115.04
(Ar-H str), 1500.62(C = Cstr)696.30
(C-S str), 1352.10(C-N str), 1598.99
(C = Nstr)

7.04–8.62 (m, 9 H, Ar-H),
3.82–3.85(s, 3 H, OCH3)

61.92 (61.95) 04.55 (4.52) 18.05 (18.01)

I.C.D 937.40(N-C-S str), 2931.80, (Ar-H str),
1409.96(C = Cstr) 1658.78(C = Nstr),
756.10 (C-S str), 1332.81,(C-N str)
0.3371.57(OHstr, β-CD),2912.51
(C-Hstr, β-CD)

7.94–8.78(m, 9 H, Ar-H),
3.32(s,1 H,β-CD),
3.34(s,1 H,β-CD),
3.37(s,1 H,β-CD),
3.61(s,1 H,β-CD),
3.64(s,1 H,β-CD), 2.73–2.89
(s, 3 H, OCH3

5 E 941.26 (N-C-S str), 2951.09, 2993.52
(Ar-H str), 1446.61(C = Cstr), 696.30
(C-S str), 1350.17 (C-N str), 3134.33
(ArOH), 1610.56(C = Nstr)

7.49–7.88 (m, 9 H, Ar-H),
8.98 (s, 1 H, OH)

60.79 (60.84) 4.08 (4.12) 18.91 (18.93)

I.C.E 937.40 (N-C-S str), 2931.80 (Ar-H str),
1409.96(C = Cstr)756.10(C-S str),
1361.74 (C-N str),1658.78(C = Nstr)
3365.78(OHstr, β-CD), 3226.91(Ar-OH),
3236.55, 3294.42(C-Hstr, β-CD)

7.94–8.28 (m, 9 H,
Ar-H),3.34(s,1 H,β-CD),
3.54(s,1 H,β-CD),
3.57(s,1 H,β-CD),
3.62(s,1 H,β-CD),
4.46(s,1 H,β-CD)

6 F 941.26 (N-C-S str), 3099.61, 3134.33
(Ar-H str), 1571.99, (C = Cstr)
696.30(C-S str), 1350.17 (C-N str).
1610.56 (C = Nstr)

6.78–8.06(m, 8 H, ArH), 57.76 (57.64) 03.73 (3.76) 20.73 (20.70)

I.C.F 937.40(N-C-S str), 2931.80, (Ar-H str),
1656.85(C = Cstr)705.95 (C-S str),
1361.74 (C-N str). 1653.00 (C = Nstr),
3290.56.71(OHstr, β-CD),3167.12
(C-Hstr, β-CD)

7.95–8.23 (m, 8 H,
Ar-H),3.31(s,1 H,β-CD),
3.35(s,1 H,β-CD),
3.55(s,1 H,β-CD),
3.63(s,1 H,β-CD),
3.66(s,1 H,β-CD)
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composition of the compounds matches with theoretical data
(Table 2). The FT-IR and 1H NMR data of the compounds
confirm the expected structures. The preparation of inclusion
complexes of the compounds have been confirmed from the
changes in melting point, colour and FT-IR and 1H NMR
spectral characteristics (Tables 1 and 2). The IR- stretching
frequencies due to different bonds undergo downward shift
towards lower energy and the peaks become broader, weaker
and smoother. The 1H NMR signals due to different protons
undergo smaller shifts (small shift towards down field in
case of all the compounds) after their inclusion complex
formations. The changes in IR spectral characteristics may
be attributed to the restriction on the compounds for under-
going vibration within the cavity of β-CD due to the devel-
opment of weak interaction like H-bonding, vander-Waal
forces and hydrophobic interactions etc. [22]. This observa-
tion clearly demonstrates transference of the compound from
a more protic environment (aqueous media) to a less protic
environment (cavity of β-CD). The compound and β-CD
interaction leading to inclusion complex formation is further
supported by 1H NMR data (Table 2). The changes in the
microenvironment of the compound after encapsulation may
cause a small shift in 1H NMR signals.

The aqueous phase-solubility diagrams of the compounds
with β-cyclodextrin are shown in Fig. 1. It is seen that aque-
ous solubility of the compounds increases linearly as a func-
tion of the concentration of β-cyclodextrin up to 5th point
followed by a decline. This clearly indicates that the concen-
tration at 5th point is the optimum concentration for inclusion
complex formation. The plot of inverse change in absorbance
against inverse concentration of β-cyclodextrin gives straight
lines with definite slope and intercept for different compounds
(Fig. 2). The thermodynamic stability constants (K) have been
calculated from the slope and intercept [27] and are found to
be in the range of 194.91 to 878.32 (Table 3). Since all the
values are remaining within ideal range [28] all the inclusion
complexes formed are quite stable. Further, it is found that the
values of all the slopes are less than one indicating the inclu-
sion complexes to have 1:1 stoichiometry [21–23]. Negative
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Fig. 2 Plot of inverse absorbance
against inverse concentration of
β-cyclodextrin

Table 3 Thermodynamic stability constant and free energy change of
inclusion complexes

Sl.No. Inclusion complex Thermodynamic stability
Constant (M−1)

ΔG (kJ/mol)

1 I.C.A 773.76 −16.478
2 I.C.B 685.37 −16.178
3 I.C.C 810.06 −16.592
4 I.C.D 194.91 −13.063
5 I.C.E 878.32 −16.793
6 I.C.F 330.21 −14.369
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Table 4 Absorption, exitation and emission peak positon of the
compounds and their inclusion complexes

Sl. No. Compound/
Complex

Absorption
maximum
λMax(nm)

Exitation peak
position λ (nm)

Emission peak
position λ (nm)

1 Compound-A 294 299 448

I.C.A 270 295 445

2 Compound- B 295 313 451

I.C.B 275 286 437

3 Compound- C 295 326 453

I.C.C 270 307 433

4 Compound-D 294 307 451

I.C.D 278 294 445

5 Compound- E 294 294 449

I.C.E 265 283 439

6 Compound- F 292 316 452

I.C.F 287 303 439
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Fig. 9 Excitation and emission spectra of compound A and its inclusion comlex
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Fig. 10 Excitation and emission spectra of compound B and its inclusion comlex
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Fig. 11 Excitation and emission spectra of compound C and its inclusion comlex
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Fig. 12 Excitation and emission spectra of compound D and its inclusion comlex
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Fig. 13 Excitation and emission spectra of compound E and its inclusion comlex
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Fig. 14 Excitation and emission spectra of compound F and its inclusion comlex
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values of free energy changes for all the inclusion complexes
(Table 3) further suggest that the process of inclusion complex
formation is spontaneous and thermodynamically allowed.

It is interesting to note that the absorption and emission
characterestics of all the compounds (A, B, C, D, E and F)
undergo drastic changes after their inclusion complex forma-
tion. The absorption maxima shifts towards lower wavelength
(Table 4)and the intensity of the peaks becomes higher after
their inclusion complex formation (Figs. 3, 4, 5, 6, 7, and 8).
However, although the excitation and emission peaks shift
towards lower wavelength, the intensity of the peaks be-
comes lower after their inclusion complex formation
(Figs. 9, 10, 11, 12, 13, and 14). The shifting of absorp-
tion and excitation peak positions may be due to the fact
that more amount of energy is required for the compounds
for their excitation after encapsulation because the mole-
cules get stabilized within the cavity of β-cyclodextrin
through some weak intermolecular forces. The lowering
of fluorescence intensity may be due to lesser population
of molecules in the excited state than ground state.

Conclusion

The above results established the fact that the inclusion com-
plexes of the synthesized compounds alter the absorption and
emission characteristics of the molecules.
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