Tetrahedron Letters 54 (2013) 1412-1415

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Radiosynthesis of ¹⁸F-labeled *N*-desmethyl-loperamide analogues for prospective molecular imaging radiotracers

Xiaofeng Bao*, Duliang Liu

Department of Biochemical Engineering, Nanjing University of Science & Technology, Chemical Engineering Building, B302, 200 linwei, N

ARTICLE INFO

Article history Received 12 November 2012 Revised 13 December 2012 Accepted 28 December 2012 Available online 7 January 2013

Keywords: F-18 Radiosynthesis Loperamide PET Permeability-glycoprotein

Introduction

Progress in the synthesis of new fluorinated compounds to act as drugs and ¹⁸F-labeled analogues as priential intering agents has grown dramatically.^{1,2} Many druge acts as antibiour, seda-tives, antidepressants, and anti-tumor agents, the fluorinated com-pounds.^{3–5} Radiosynthesis methods to intrusive fluorine-18 ($t_{1/2} = 109.7$ min) into organic projecules have become increasingly important for the development of radiotracers for position emis-sion tomography (PET),^{6–8} a consistive and powerful technique that is valuable for both clinical rescues^{3,10} and using development.^{11,12} Permeability-glyuppers in (P-g-1) functions as a drug efflux pump at the block-brain carrier and at other tissues, including some tumors.¹ S Radiotracers for imaging P-gp function in vivo could be valuable to agents the tum of P-gp in neuropsychiatric disds to act Progress in the synthesis of new fluorinated co.

could be valuable bar uss the role of P-gp in neuropsychiatric dis-orders and in multi-targ resistance during cancer chemotherapy.¹⁵ Loperamide **1** (Fig. 1) is motent μ -receptor agonist that acts on the gastrointestinal tract;¹⁶ this molecule is a safe antidiarrheal drug with no undesirable central nervous system effects because it is excluded from the brain by the efflux transporter-glycoprotein (P-gp).¹⁷ Loperamide has been shown to be an avid substrate for P-gp,¹⁸ and its radiolabeled [¹¹C]loperamide has been proven to be a promising radiotracer to study the function of P-gp at the blood-brain barrier.¹⁹ In addition, its primary metabolite, [*N*-methyl-11C]*N*-desmethyl-loperamide **2**, has also been evaluated as a radiotracer for imaging P-gp function²⁰ and showed a

ABSTRACT

Gevelopeu. Standard compound **4** was such ized in user melds for radiolabeling analysis. [*N*-Ethyl-18F]*N*-desmethyl-loperamide, **3**, vas rapper and efficiently labeled with no-carrier added fluorine-18 ($t_{1/2} = 109.7$ min) by treatment of readily repared [¹⁸F]1-bromo-2-fluoro ethane with a *N*-desmethyl-loperamide precursor as posistent 7% believes to the radiosynthesis of **3** of [¹⁸F]atbulance to the radiosynthes A simple procedure for preparing fluoroethy -desmethy peram e **4** and its analogue **5** was © 2013 Elsevier Ltd. All rights reserved.

Loperamide,1,

¹¹C]dLop, **2**,

FEt-dLop,4

FPr-dLop.5

210094

China

greater promise because of its more favorable metabolic profile.²¹ In this Letter, we aimed to synthesize new fluoro derivatives of this metabolite, such as 4 and 5. We also reported the radiosynthesis of ¹⁸F-labeled analogue of *N*-desmethyl-loperamide **3**. We considered

Figure 1. The structure of loperamide and its analogs.

 $R^1 = Me, R^2 = Me$

 $R^1 = H$, $R^2 = {}^{11}CH_3$ $[^{18}F]FEt-dLop, 3, R^1 = H, R^2 = {}^{18}FCH_2CH_2$

 $R^1 = H$, $R^2 = FCH_2CH_2$

 $R^1 = H$, $R^2 = FCH_2CH_2CH_2$

that an ¹⁸F-labeled analog of [¹¹C]dLop, **3**, might also behave as a prospective radiotracer for imaging P-gp function and potentially offer the advantage of greater availability for a wider range of applications.

Result and discussion

Synthesis of compounds 4 and 5

To establish the reaction conditions for the preparation of **3**, we first tried a simple method to prepare the standard compounds 4 and **5** (Scheme 1). The intermediate compound **b** was prepared

^{*} Corresponding author. Tel./fax: +86 025 83415945. E-mail address: baoxiaofeng@mail.njust.edu.cn (X. Bao).

^{0040-4039/\$ -} see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2012.12.121

Scheme 1. Synthesis of standard compounds **4** and **5**. Reagents and conditions: (i) DIPEA, CH₃CN, 80 °C, 31 h, 60%; (ii) KOH, 'BuOH, 3 d, reflux, 87%; (iii) (CF₃SO₂)₂O, Et₃N CH₂Cl₂, rt, 1 h; (iv) **b**, NaH, DMF, 80 °C, 24 h.

from commercially available 4-(4-chlorophenyl)-4-hydroxyl piperidine and 4-bromo-2, 2-diphenylbutane nitrile as described previously.²⁰ Compound **7** was prepared without purification by slowly adding triflic anhydride (10 mmol) to a solution of 2-fluoroethanol (10 mmol) and Et₃N (10 mmol) in CH₂Cl₂ (2 mL). The reaction mixture was stirred for 1 h at room temperature, concentrated, and

Table 1

Synthesis of R(CH₂)_n-N-desmethyl-loperamide from the amide **b**

transferred to a mixture of the amide **b** (0.36 mmol) and NaH (0.39 mmol) in DMF (5 mL). This mixture was then stirred for 12 h at 80 °C. Chromatography (silica gel; hexane/EtOAc, 1:3 v:v; then EtOAc) of the crude mixture, followed by HPLC on a Luna C18 column (250×10 mm) eluted at 8 mL/min with 0.025% aq NH₄OH (A)-MeCN (B), with B increased from 30% to 100% over 30 min, gave 4 (t_R = 16.8 min) at a 25% yield with 99% purity. Other attempts to achieve the alkylation of amide **b**, either with 1-bromo-2-fluoroethane, fluoroethyl tosylate, or with 1-fluoro-2iodoethane, achieved lower yields. The synthesis of compound 5 was analogous to that of compound **4** through the activation of a hydroxyl group on 3-fluoropropan-1-ol with triflic anhydride, followed by coupling with the amide provisor **b** to obtain **5** at a 30% yield with 99% purity. The successful symbols of 4 and 5 confirmed the susceptibility of amin_alkylation N-desmethyl-loperamide. Although **4** was only unthesized a a 25% vield. the graphic reference amount was adequate to erve a chroma material.

Synthesis of radiola. Ving recursors

nucleophi sub cution reaction with [¹⁸F]fluo-An aliph ride ions on be eighly efficiency the leaving groups are sulfonates (tosylate, mesylate, or triflate, etc.) or other halides (Cl, Br, or I) and on is performed in a polar aprotic solvent, such as DMF, the r, DMSO, CH₃CN, etc² The aliphatic bromide and tosylate preursors used the radiolabeling of [18F]4 and [18F]5 were degned and triving via a number of reaction conditions, as shown in ired precursors 9, 10, and 11 were not successfully le 1. The d a reaction of amide **b** with ethylene ditosylate, 1, obt 2-dibromoethane, 1-bromoethyl tosylate, or 1-bromopropyl trinder various reaction conditions (Table 1). The unexpected cyclic byproducts 12 and 13 (Scheme 2) were isolated, and their structures were determined using ¹H NMR and HRMS. The failure to prepare the desired precursors probably due to the affection of the hydroxyl group on **b**. This group is also a strong nucleophile under basic conditions and is able to activate product decomposition through cyclization (Scheme 2), as the byproducts **12** and **13** have been detected by MS (Fig. 2) at the mass of the proposed cyclic. Because this approach to prepare the aliphatic bromide and tosylate precursors for aliphatic nucleophilic substitution with [¹⁸F]fluoride ions was not feasible, alternate strategies were adopted to achieve radiosynthesis through the use of other conditions and labeling agents, as shown in Scheme 3.

Radiosynthesis of [¹⁸F]FEt-dLop

A cyclotron-produced [¹⁸F]fluoride ion solution (100–120 mCi) was mixed with kryptofix 2.2.2 (5 mg) and K_2CO_3 (0.5 mg) in MeCN–H₂O (95:5 v:v; 0.1 mL) and then dried by two addition-evaporation cycles of MeCN (2 mL). 2-Bromoethyl tosylate (30 µL) in *t*-butanol plus 1,2-dichlorobenzene (1 mL; 1:9 v:v) was

Scheme 2. Hypothesized decomposition of R(CH₂)_n-N-desmethyl-loperamide by cyclization.

Scheme 3. Radiosynthesis of **3**. Reagents and conditions: (i) [¹⁸F]fluoride ion, K₂CO₃, K2.2.2, *t*-butanol and 1,2-dichlorobenzene, 90 °C, 10 min; (ii) NaH, DMF, 110 °C, 10 min, RCY ~7%; (iii) [¹⁸F]fluoride ion, K₂CO₃, K 2.2.2, CH₃CN, 110 °C, 10 min, 84%; (iv) NaH, DMF, 110 °C, 10 min, RCY ~3%.

added and then heated at 90 °C for 10 min. (Scheme 3). [¹⁸F] 2-Fluoroethyl bromide (20–25 mCi) was distilled out, passed through a silica Sep-Pak cartridge, and trapped in a sealed V-vial

containing amide **b** (2 mg) and NaH (0.5 mg) in DMF (250 μ L). The reaction mixture was heated to 110 °C for 10 min, cooled, and diluted with MeCN-H₂O (1:1 v:v). A sample was injected onto

References and

otes

Figure 3. Chromatograms from the HPLC analysis of crude [¹⁸F]-FEt

a Prodigy column (250 × 4.6 mm) and eluted at 1 mL/min with mobile phase A–B (3:7 v:v). The identity of [¹⁸F]FEt-dLop **3** (t_R = 11.5 min) was confirmed using LC–MS and the observation of co-elution with reference compound **4** in radio-HPLC analysis. The decay-corrected radiochemical yield (RCY) of **3** (t_R = 11.5 min) from the labeling agent was estimated from the radio-chromatogram (Fig. 3). The RCY of **3** was consistently observed to be 7% ± 2 (n = 6). Another approach to prepare **3** from ethylene ditosylate to form [¹⁸F]2-fluoroethyl tosylate, followed by a coupling with the amide precursor **b** to afford **3** was also attempted using a similar procedure (Scheme 3) with a 3% ± 1 RCY (n = 3).

Conclusion

In summary, we have developed a simple providure for preparing **4** and **5** in useful yields as standard compounds for a diolabeling analysis. We also developed a mild an opper dior a procedure for preparing [¹⁸F]FEt-dLop, **3**, at a constent 7% adiochemical yield by the alkylation of the radiolations g agent [¹⁸F] before the amide precessor **b**. This procedure was also adapted to the radiosynthesis of **3** using [¹⁸F] bylene tosylate, but this approach resulted in a lower radiochemical yield (3% RCY). The new fluoro compounds are expected to resist defluorination in vivo. The new [¹⁸F]FEt Lop prove be proven to be a useful radiotracer for imaging P-gp function.

Acknowledge Its

This research was supported by the Jiangsu Science Foundation BK2011704 and UST Research Funding (No. 2011ZDJH08).We thank Dr. Jiang Wert chelpful suggestions.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2012. 12.121.

- Maisonial L., uhnast, B.; Papar V. J. Sgard, R.; Bayle, M.; Vidal, A.; Auzeloux, P.; Rbay, C.; Box, t-Duquennoy, V.; Miot-Noirault, E.; Galmier, M. J.; Borel, M.; Askienazy, S.; Dox, F.; Tavitian, B.; Madelmont, J. C.; Moins, N.; Chezal, J. M. J. Mod. Chem. 2011, 54, 745–2766.
- Dorow, D. S.; Greguric, I., Gregoire, M. C.; Hicks, R. J.; Katsifis, A. J. Med. Chem. **2011**, *54*, 1864–1870.
- Yildiz-Oren, Marcalcin, I.; Aki-Sener, E.; Ucarturk, N. *Eur. J. Med. Chem.* **2004**, 39, 291–298.
- Wegner, F.; J. uther-Conrad, W.; Scheunemann, M.; Brust, P.; Fischer, S.; Hiller, Diekon, M.; Strecker, K.; Wohlfarth, K.; Allgaier, C.; Steinbach, J.; Hoepping, A. Eur. J. Pharmacol. **2008**, 580, 1–11.
- Brantley, E.; Antony, S.; Kohlhagen, G.; Meng, L.; Agama, K.; Stinson, S. F.; ville, E. A.; Pommier, Y. Cancer Chemother. Pharmacol. **2006**, 58, 62–72.
- Milicevic Sephton, S.; Mu, L.; Schweizer, W. B.; Schibli, R.; Krämer, S. D.; Ametamey, S. M. J. Med. Chem. 2012, 55, 7154–7162.
- Bao, X.; Lu, S.; Liow, J. S.; Zoghbi, S. S.; Jenko, K. J.; Clark, D. T.; Gladding, R. L.; Innis, R. B.; Pike, V. W. J. Med. Chem. 2012, 55, 2406–2415.
- Pathuri, G.; Hedrick, A. F.; Awasthi, V.; Gali, H. Nucl. Med. Biol. 2012, 39, 1195– 1201.
- 9. Heiss, W. D.; Zimmermann-Meinzingen, S. J. Neurol. Sci. 2012, 322, 268-273.
- Diehl, M.; Risse, J. H.; Brandt-Mainz, K.; Dietlein, M.; Bohuslavizki, K. H.; Matheja, P.; Lange, H.; Bredow, J.; Körber, C.; Grünwald, F. *Eur. J. Nucl. Med.* 2001, 28, 1671–1676.
- Cunningham, V. J.; Parker, C. A.; Rabiner, E. A.; Gee, A. D.; Gunn, R. N. Drug Discovery Today: Technol. 2005, 2, 311–315.
- 12. Seo, Y. Curr. Radiopharm. 2008, 1, 17–21.
- Schinkel, A. H.; Wagenaar, E.; Mol, C. A.; van Deemter, L. J. Clin. Invest. 1996, 97, 2517–2524.
- Szakács, G.; Paterson, J. K.; Ludwig, J. A.; Booth-Genthe, C.; Gottesman, M. M. Nat. Rev. Drug Disc. 2006, 5, 219–234.
- 15. Fromm, M. F. Trends Pharmacol. Sci. 2004, 25, 423–429.
- Awouters, F.; Megens, A.; Verlinden, M.; Schuurkes, J.; Niemegeers, C.; Janssen, P. A. J. Dig. Dis. Sci. **1993**, 38, 977–995.
- 17. Gottesman, M. M.; Fojo, T.; Bates, S. E. Nat. Rev. Cancer 2002, 2, 48-58.
- Zoghbi, S. S.; Liow, J. S.; Yasuno, F.; Hong, J.; Tuan, E.; Lazarova, N.; Gladding, R. L.; Pike, V. W.; Innis, R. B. J. Nucl. Med. 2008, 49, 649–656.
- Wilson, A. A.; Passchier, J.; Garcia, A.; Vasdev, N.; Stableford, W.; Lawrie, K.; Fellows, I.; Gee, A. D. J. Labelled Compd. Radiopharm. 2005, 48, S142.
- Lazarova, N.; Zoghbi, S. S.; Hong, J.; Seneca, N.; Tuan, E.; Gladding, R. L.; Liow, J. S.; Taku, A.; Innis, R. B.; Pike, V. W. J. Med. Chem. 2008, 51, 6034–6043.
- Seneca, N.; Zoghbi, S. S.; Liow, J. S.; Kreisl, W.; Herscovitch, P.; Jenko, K.; Gladding, R. L.; Taku, A.; Pike, V. W.; Innis, R. B. *J. Nucl. Med.* 2009, *50*, 807–813.
- 22. Cai, L.; Lu, S.; Pike, V. W. Eur. J. Org. Chem. 2008, 2008, 2853-2873.