

Tetrahedron Letters 42 (2001) 4207-4209

TETRAHEDRON LETTERS

An improved general synthetic approach to *cis*-clerodane diterpenoids. A more efficient total synthesis of (±)-6β-acetoxy-2-oxokolavenool

Jen-Dar Wu, Kak-Shan Shia and Hsing-Jang Liu*

Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043, ROC Received 21 December 2000; accepted 27 April 2001

Abstract—The previously developed general synthetic approach to *cis*-clerodane diterpenoids has been greatly improved using 4-(2-benzyloxy)ethyl-2-cyano-4-methyl-2,5-cyclohexadien-1-one (**4**) as the starting dienophile. This approach allows the direct incorporation of an angular methyl group via reductive alkylation of the α -cyano ketone system. The viability of this approach to *cis*-clerodanes has been demonstrated in the alternative total synthesis of (±)-6 β -acetoxy-2-oxokolavenool (**1**). © 2001 Elsevier Science Ltd. All rights reserved.

Clerodane diterpenoids are distributed widely in nature. More than eight hundred compounds have been isolated to date and many possess interesting biological activities.^{1,2} Clerodanes are further subdivided more or less equally into the *trans*- and *cis*-series according to the stereochemistry about the ring junction of the decalin core. In view of the abundance of these structurally closely related natural products, a general synthetic scheme which allows easy access to many target molecules is desirable.³ Such a scheme towards the *cis*-series has been developed in our laboratories recently, making use of a face-selective Diels–Alder reaction as the key operation^{4–6} as illustrated in Scheme 1 with (±)-6β-acetoxy-2-oxokolavenool (1)⁶ as a specific

Scheme 1. Reagents and conditions: (a) trans-piperylene, $ZnCl_2$, ether, 0°C, 68 h, 85%; (b) $(CH_3)_2CuLi$, ether, 0°C, 1 h; then LiAlH₄, 0°C, 0.5 h, 62%; (c) MsCl, Et₃N, THF, rt, 21 h; (d) NaI, Zn, DMF, 130°C, 28 h, 54% over two steps; (e) *p*-TsOH, CH₂Cl₂, rt, 40 min, 97%.

Keywords: reductive alkylation; α-cyano ketones; total synthesis. * Corresponding author.

0040-4039/01/\$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(01)00706-7

example. The generality of the scheme is apparent as it has been applied successfully to the total synthesis of several *cis*-clerodane diterpenoids.⁵⁻⁷ However, the efficiency of the synthetic approach suffers somewhat from the lengthy operation (four steps, 30% overall yield) required for the conversion of the ester group to the angular methyl group $(2\rightarrow 3)$. An improved synthetic approach has now been developed using cyano dienone **4** as the starting dienophile. This approach allows the direct installation of the required angular methyl group via a reductive alkylation process,⁸ whereby the efficiency of the general synthetic approach to *cis*-clerodane diterpenoids is greatly enhanced.

Cyano dienone 4 was readily prepared according to the sequence outlined in Scheme 2. 4-(2-Benzyloxy)ethyl-4methyl-2-cyclohexenone⁴ was formylated and the product converted to the corresponding isoxazole. Base induced rearrangement of the isoxazole ring followed by oxidation with 2,3-dichloro-5,6-dicyano-1,4-quinone (DDQ)⁹ gave cyano dienone 4.¹⁰ Under Lewis acid catalysis, compound 4 was shown to undergo faceselective Diels-Alder reaction with trans-piperylene. Several Lewis acids were effective including AlCl₃, CeCl₃, MgBr₂, ZnCl₂ and SnCl₄. In each case, the preferential formation of the desired adduct 5 along with its stereoisomer 6 (ca. 3-5:1 ratio, 85-95% yield) was observed. More interestingly, when boron trichloride was applied as the Lewis acid, the cycloaddition occurred extremely rapidly (ca. 5 min at -78°C in methylene chloride) with concomitant cleavage of the benzyl ether group, giving rise, after aqueous work-up, to cyclic ether 7^{11} as the only product in 86% yield. Treatment of Diels-Alder adduct 7 with 1,5-diazabicyclo[5.4.0]undec-7-ene (DBU) and *t*-butyldimethylsilyl chloride (TBDMSCl) in refluxing tetrahydrofuran effected the opening of the ether ring to regenerate the conjugated enone moiety. The product 8 thus obtained was then subjected to reductive removal of the cyano group with lithium naphthalenide in tetrahydrofuran at -25°C. Trapping of the ensuing enolate with methyl iodide⁸ proceeded with complete stereoselectivity giving directly the desired enone 9^{12} in 76% yield. This method of installing an angular methyl group represents a considerable improvement over the multistep process used in our original synthesis (vide supra) involving an ester group. Enone 9 was subjected to conjugate addition with lithium dimethylcuprate in ether in the presence of trimethylsilyl bromide¹³ as an activating agent, and the product thus obtained was treated with tetra-nbutylammonium fluoride in tetrahydrofuran to give keto alcohol 10. Lithium aluminum hydride reduction of 10 gave rise to diol 11, an advanced intermediate in our previous synthesis of (\pm) -6 β -acetoxy-2-oxokolavenool (1).⁶ The sequence outlined in Scheme 2 constitutes a more efficient total synthesis, in racemic form, of the naturally occurring clerodane 1.

The combination of Diels–Alder chemistry of the 2cyano-2-cyclohexenone system and subsequent reductive methylation of the resulting cycloadduct provides a

Scheme 2. *Reagents and conditions*: (a) NaH, ethyl formate, EtOH (cat.), THF, rt, 4 h; (b) NH₂OH·HCl, K₂CO₃, EtOH, reflux, 2 h, 73% over two steps; (c) NaOEt, EtOH, reflux, 2 h; (d) DDQ, THF, 1 h, 64% over two steps; (e) *trans*-piperylene, BCl₃, CH₂Cl₂, -78°C, 5 min, 86%; (f) DBU, TBDMSCl, THF, reflux, 8 h, 88%; (g) lithium naphthalenide, THF, -25°C; then CH₃I, rt, 24 h, 76%; (h) (CH₃)₂CuLi, TMSBr, -10°C, Et₂O, 24 h; (i) *n*-Bu₄N⁺F⁻, THF, rt, 2 h, 86% over two steps; (j) LiAlH₄, THF, 0°C, 30 min, 90%.

highly efficient access to the *cis*-decalin core found in *cis*-clerodane diterpenoids. The improved synthetic approach described above, in light of its efficiency and flexibility, represents a general solution to meet the synthetic challenge presented by the vast number of structurally closely related diterpenoids of the clerodane family.

Acknowledgements

We are grateful to the National Science Council of the Republic of China (NSC 88-2113-M-007-042) for financial support.

References

- 1. Merritt, A. T.; Ley, S. V. Nat. Prod. Report. 1992, 9, 243.
- 2. Tokoroyama, T. J. Synth. Org. Chem. Jpn. 1993, 51, 1164.
- 3. For a recent review on various synthetic approaches, see: Tokoroyama, T. J. *Synthesis* **2000**, 611.
- 4. Liu, H. J.; Shia, K. S.; Han, Y.; Wang, Y. Synlett 1995, 545.
- Liu, H. J.; Shia, K. S.; Han, Y.; Sun, D.; Wang, Y. Can. J. Chem. 1997, 75, 646.
- 6. Liu, H. J.; Shia, K. S. Tetrahedron 1998, 54, 13449.

- 7. Ly, T. W. Ph.D. Thesis, The University of Alberta, 2000.
- Liu, H. J.; Zhu, J. L.; Shia, K. S. Tetrahedron Lett. 1998, 39, 4183.
- Liu, H. J.; Sun, D.; Shia, K. S. J. Chin. Chem. Soc. 1999, 46, 453.
- 10. Satisfactory spectral and elemental or HRMS analytical data were obtained for all new compounds. Where necessary, the stereochemistry was further confirmed by NOE experiments.
- 11. Compound 7: IR (cast, CHCl₃): 1733 (ketone), 2224 cm⁻¹ (CN); ¹H NMR (300 MHz, CDCl₃): δ 5.55 (t, J=2 Hz, 2H), 4.16 (td, J=6, 3 Hz, 1H), 3.88 (m, 2H), 3.03 (m, 1H), 2.96 (dd, J = 16, 6 Hz, 1H), 2.66 (m, 1H), 2.64 (dd, J = 16, 6 Hz, 1H), 2.57 (dd, J = 10, 7 Hz, 1H), 2.48 (dm, J = 16 Hz, 1H), 1.87–1.81 (m, 2H), 1.41 (d, J = 6 Hz, 3H), 1.18 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 199.2, 128.9, 123.6, 120.3, 83.4, 65.7, 49.7, 44.8, 42.5, 39.8, 38.5, 26.4, 25.4, 16.7; HRMS M⁺: 345.1415. (calcd. for C₁₅H₁₉NO₂: 345.1415). Anal. calcd for C₁₅H₁₉NO₂: C, 73.44; H, 7.81; N, 5.71%. Found: C, 73.28; H, 7.70; N, 5.89%. The structure of this compound was further confirmed by a single crystal X-ray crystallographic analysis. The ether ring formation most likely occurred during the work-up and the chromatographic purification as the crude product consisted mainly of the alcohol precursor.
- 12. Compound 9: IR (cast, CHCl₃): 1672 (ketone), 1090 (SiO), 710 cm⁻¹ (SiC); ¹H NMR (400 MHz, CDCl₃): δ 6.56 (d, J = 10 Hz, 1H), 5.95 (d, J = 10 Hz, 1H), 5.64–5.71 (m, 1H), 5.49–5.52 (m, 1H), 3.56–3.60 (m, 2H), 2.18 (dm, J = 18 Hz, 1H), 2.08 (m, 2H), 2.03 (d, J = 8 Hz, 1H), 1.71–1.77 (m, 1H), 1.55–1.61 (m, 1H), 1.30 (s, 3H), 1.04 (s, 3H), 0.94 (d, J = 8 Hz, 3H), 0.85 (s, 9H), -0.006 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 204.4, 156.4, 130.5, 127.8, 123.9, 59.5, 45.7, 45.3, 40.5, 38.4, 36.8, 26.9, 25.8, 22.9, 22.4, 18.1, 17.6, -5.4; HRMS M⁺: 348.2483 (calcd. for C₂₁H₃₆O₂Si: 348.2484).
- 13. Piers, E.; Oballa, R. M. J. Org. Chem. 1996, 61, 8439.