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Abstract—The previously developed general synthetic approach to cis-clerodane diterpenoids has been greatly improved using
4-(2-benzyloxy)ethyl-2-cyano-4-methyl-2,5-cyclohexadien-1-one (4) as the starting dienophile. This approach allows the direct
incorporation of an angular methyl group via reductive alkylation of the �-cyano ketone system. The viability of this approach
to cis-clerodanes has been demonstrated in the alternative total synthesis of (±)-6�-acetoxy-2-oxokolavenool (1). © 2001 Elsevier
Science Ltd. All rights reserved.

Clerodane diterpenoids are distributed widely in nature.
More than eight hundred compounds have been iso-
lated to date and many possess interesting biological
activities.1,2 Clerodanes are further subdivided more or
less equally into the trans- and cis-series according to
the stereochemistry about the ring junction of the
decalin core. In view of the abundance of these struc-

turally closely related natural products, a general syn-
thetic scheme which allows easy access to many target
molecules is desirable.3 Such a scheme towards the
cis-series has been developed in our laboratories
recently, making use of a face-selective Diels–Alder
reaction as the key operation4–6 as illustrated in Scheme
1 with (±)-6�-acetoxy-2-oxokolavenool (1)6 as a specific

Scheme 1. Reagents and conditions : (a) trans-piperylene, ZnCl2, ether, 0°C, 68 h, 85%; (b) (CH3)2CuLi, ether, 0°C, 1 h; then
LiAlH4, 0°C, 0.5 h, 62%; (c) MsCl, Et3N, THF, rt, 21 h; (d) NaI, Zn, DMF, 130°C, 28 h, 54% over two steps; (e) p-TsOH,
CH2Cl2, rt, 40 min, 97%.
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example. The generality of the scheme is apparent as it
has been applied successfully to the total synthesis of
several cis-clerodane diterpenoids.5–7 However, the
efficiency of the synthetic approach suffers somewhat
from the lengthy operation (four steps, 30% overall
yield) required for the conversion of the ester group to
the angular methyl group (2�3). An improved syn-
thetic approach has now been developed using cyano
dienone 4 as the starting dienophile. This approach
allows the direct installation of the required angular
methyl group via a reductive alkylation process,8

whereby the efficiency of the general synthetic approach
to cis-clerodane diterpenoids is greatly enhanced.

Cyano dienone 4 was readily prepared according to the
sequence outlined in Scheme 2. 4-(2-Benzyloxy)ethyl-4-
methyl-2-cyclohexenone4 was formylated and the
product converted to the corresponding isoxazole. Base
induced rearrangement of the isoxazole ring followed
by oxidation with 2,3-dichloro-5,6-dicyano-1,4-quinone
(DDQ)9 gave cyano dienone 4.10 Under Lewis acid
catalysis, compound 4 was shown to undergo face-
selective Diels–Alder reaction with trans-piperylene.
Several Lewis acids were effective including AlCl3,
CeCl3, MgBr2, ZnCl2 and SnCl4. In each case, the
preferential formation of the desired adduct 5 along
with its stereoisomer 6 (ca. 3–5:1 ratio, 85–95% yield)
was observed. More interestingly, when boron trichlo-
ride was applied as the Lewis acid, the cycloaddition
occurred extremely rapidly (ca. 5 min at −78°C in
methylene chloride) with concomitant cleavage of the

benzyl ether group, giving rise, after aqueous work-up,
to cyclic ether 711 as the only product in 86% yield.
Treatment of Diels–Alder adduct 7 with 1,5-diazabi-
cyclo[5.4.0]undec-7-ene (DBU) and t-butyldimethylsilyl
chloride (TBDMSCl) in refluxing tetrahydrofuran
effected the opening of the ether ring to regenerate the
conjugated enone moiety. The product 8 thus obtained
was then subjected to reductive removal of the cyano
group with lithium naphthalenide in tetrahydrofuran at
−25°C. Trapping of the ensuing enolate with methyl
iodide8 proceeded with complete stereoselectivity giving
directly the desired enone 912 in 76% yield. This method
of installing an angular methyl group represents a
considerable improvement over the multistep process
used in our original synthesis (vide supra) involving an
ester group. Enone 9 was subjected to conjugate addi-
tion with lithium dimethylcuprate in ether in the pres-
ence of trimethylsilyl bromide13 as an activating agent,
and the product thus obtained was treated with tetra-n-
butylammonium fluoride in tetrahydrofuran to give
keto alcohol 10. Lithium aluminum hydride reduction
of 10 gave rise to diol 11, an advanced intermediate in
our previous synthesis of (±)-6�-acetoxy-2-oxo-
kolavenool (1).6 The sequence outlined in Scheme 2
constitutes a more efficient total synthesis, in racemic
form, of the naturally occurring clerodane 1.

The combination of Diels–Alder chemistry of the 2-
cyano-2-cyclohexenone system and subsequent reduc-
tive methylation of the resulting cycloadduct provides a

Scheme 2. Reagents and conditions : (a) NaH, ethyl formate, EtOH (cat.), THF, rt, 4 h; (b) NH2OH·HCl, K2CO3, EtOH, reflux,
2 h, 73% over two steps; (c) NaOEt, EtOH, reflux, 2 h; (d) DDQ, THF, 1 h, 64% over two steps; (e) trans-piperylene, BCl3,
CH2Cl2, −78°C, 5 min, 86%; (f) DBU, TBDMSCl, THF, reflux, 8 h, 88%; (g) lithium naphthalenide, THF, −25°C; then CH3I, rt,
24 h, 76%; (h) (CH3)2CuLi, TMSBr, −10°C, Et2O, 24 h; (i) n-Bu4N+F−, THF, rt, 2 h, 86% over two steps; (j) LiAlH4, THF, 0°C,
30 min, 90%.
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highly efficient access to the cis-decalin core found in
cis-clerodane diterpenoids. The improved synthetic
approach described above, in light of its efficiency and
flexibility, represents a general solution to meet the
synthetic challenge presented by the vast number of
structurally closely related diterpenoids of the clerodane
family.
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