- 4. V. I. Bregadze, A. Ya. Usyatinskii, and N. N. Godovikov, Dokl. Akad. Nauk SSSR, <u>241</u>, 364 (1978).
- 5. A. McKillor, J. D. Hunt, M. J. Zelesko, J. S. Fowler, E. C. Taylor, G. McGillivray, and F. Kienze, J. Am. Chem. Soc., 93, 4841 (1971).

REACTION OF INTERNAL FLUOROOLEFIN OXIDES WITH FLUOROSULFONIC ACID

T. I. Filyakova, A. Ya. Zapevalov,

UDC 542.91 : 547.422'161 : 546.226'161-325

- I. P. Kolenko, V. R. Polishchuk,
- É. P. Lur'e, and L. S. German

Previously it was shown [1] that hexafluoropropylene oxide (HFPO) reacts with the highly electrophilic reagent HSO₃F to give fluorosulfonoxypentafluoroacetone.

We established that internal fluoroolefin oxides (Ia-e) also react when heated with HSO_3F to give fluoroketones that contain a fluorosulfate group in the α -position (IIa-e):

 $R_{F}CF-CFCF_{3} + HSO_{3}F \xrightarrow{250-300^{\circ}}_{autoc lave} \xrightarrow{R_{F}CFCOCF_{3} + R_{F}COCFCF_{3} + HF}_{OSO_{2}F}$ $(Ia - d) \qquad (IIa - d)$ $R_{F} = CF_{3} (a), C_{2}F_{5} (b), n-C_{3}F_{7} (c), CF(CF_{3})_{2} (d)$ $F = OF_{3} (a) + HSO_{3}F \xrightarrow{300^{\circ}}_{autoc lave} F = OF_{3}CFCOCF_{3} + HF$

Perfluoro-2-butene oxide (Ia) forms a single ketone, namely 3-fluorosulfatoheptafluoro-2-butanone (IIa). Compound (IIa) was obtained previously [2] but not in the pure state. Similar to (Ia), perfluorocyclohexane oxide (Ie) forms one ketone, namely α -fluorosulfatoperfluorocyclohexanone (IIe).

Perfluoro-2-pentene oxide (Ib), perfluoro-2-hexene oxide (Ic), and perfluoro-4-methyl-2pentene oxide (Id) when reacted with HSO_3F give a mixture of approximately equal amounts of isomeric ketones (IIb-d), but (IId) is formed in low yield, evidently due to steric hindrance. Perfluoro-2-methyl-2-pentene oxide does not react with HSO_3F even at $300^{\circ}C$.

It should be mentioned that the opening of the oxide ring of internal oxides by HSO_3F is not catalyzed by Cr^{3+} ions, which noticeably facilitate the opening of HFPO [1]. Thus, oxide (Ic) does not react with HSO_3F in the presence of Cr_2O_3 even at $150^{\circ}C$.

EXPERIMENTAL

The ¹⁹F NMR spectra were recorded on Perkin-Elmer-Hitachi R-20 and Perkin-Elmer R-32 instruments (56.4 and 84.6 MHz) relative to CF_3COOH (external standard). The IR spectra were taken on a UR-20 instrument. The GLC analysis was run on a column packed with 5% SKTPT-100 deposited on Chromosorb G and 20% FS-1265 deposited on Chromosorb W.

<u>Preparation of α -Fluorosulfatoperfluoroketones.</u> A mixture of 0.05 mole of the oxide (Ia-e) and 45-50 ml of HSO₃F was heated in a rotated autoclave for 8-10 h at 250-300°C. The α -fluorosulfatoperfluoroketones were isolated from the reaction mixture by distillation.

<u>3-Fluorosulfatoheptafluoro-2-butanone (IIa).</u> The yield of (IIa) was 80%, bp 65-67°. Infrared spectrum (v, cm⁻¹): 1490 (S=0), 1800 (C=0). Found, %: C 16.55; F 51.69; S 11.02.

Institute of Chemistry, Urals Scientific Center of the Academy of Sciences of the USSR, Sverdlovsk. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 8, pp. 1878-1879, August, 1979. Original article submitted January 10, 1979.

1741

C₄F_BSO₄. Calculated, %: C 16.22; F 51.35; S 10.81. CF₃-CO-CF-CF₃. ¹⁹F NMR spectrum (δ, ppm): $F_a - 2.4$; F_b 57.5; F_c 3.5; $F_d - 129.0$; $J_{ab} = 14.6$, $J_{ac} = 3.8$, $J_{bc} = 2.3$, $J_{bd} = 11$ Hz. Reaction of HSO3F with Perfluoropentene Oxide (Ib). The yield of (IIb) was 60%, bp 85-87°. Infrared spectrum (v, cm⁻¹): 1490 (S=0), 1795 (C=0). Found, %: C 17.45; F 54.99. C₅F₁₀SO₄. Calculated, %: C 17.34; F 54.91. 3-Fluorosulfatoperfluoro-2-pentanone $C_{F_3}^{a}$ -CO-CF-CF₂-CF₃. ¹ F NMR spectrum (δ , ppm): F_a -2.4; F_b 55.4; F_c 46.2; F_d 3.3 or 3.5; F_e -128.4 or -128.0; J_{ab} = 14.5, J_{ac} = 6.8, $J_{be} = 11$ Hz. $\frac{2-F1uorosulfatoperfluoro-3-pentanone}{F_{s}-CF(OSO_{2}F)-CO-CF_{2}-CF_{3}} = \frac{d}{1.9}F \text{ NMR spectrum } (\delta, ppm): F_{a} 5.5; F_{b} 57.2; F_{c} 42.7; F_{d} 3.3 \text{ or } 3.5; F_{e} -128.4 \text{ or } -128.0; J_{ab} = 2.2, J_{ac} = 6.4, J_{bc} = 23.5, J_{be} = 11 \text{ Hz}.$ Reaction of HSO_3F with Perfluoro-2-hexene Oxide (Ic). The yield of (IIc) was 55%, bp 104-106°. Infrared spectrum (v, cm⁻¹): 1495 (S=0), 1795 (C=0). Found, %: C 18.04; F 57.62. C₆F₁₂SO₄. Calculated, %: C 18.18; F 57.68. <u>3-Fluorosulfatoperfluoro-2-hexanone</u> $CF_3-CO-CF-CF_2-CF_2-CF_3$. ¹⁹F NMR spectrum (δ , ppm): $F_a = -2.5$; $F_b = 57.1$; $F_c = 46.2$; $F_d = 48.3$; $F_e = 4.7$; $F_f = -128.5$ or -128.1; $J_{ab} = 15.2$, $J_{ac} = 7.6$, $J_{bd} = 8.5$, $J_{be} = 2.3$; $J_{bf} = 11$, $J_{ce} = 10.4$ Hz. F_a 3.3; F_b 55.6; F_c 39.6; F_d 49.2; F_e 4.2; F_f -128.5 or -128.1; J_{ab} = 2.3, J_{bf} = 11, J_{ce} = 11 Hz. Reaction of HSO3F with Perfluoro-4-methyl-2-pentene Oxide (Id). The yield of (IId) was 9.6%, bp 108-109°. Infrared spectrum (v, cm⁻¹): 1490 (S=0), 1810 (C=O). Found, %: C 17.95; F 57.45; S 7.98. C₆F₁₂SO₄. Calculated, %: C 18.18; F 57.58; S 8.08. Reaction of HSO3F with Perfluorocyclohexene Oxide (Ie). The yield of (IIe) was 37%, bp 113°. Infrared spectrum (v, cm⁻¹): 1490 (S=0), 1812 (C=0). Found, %: C 20.32; F 52.91; S 9.11. C₆F₁₀SO₄. Calculated, %: C 20.11; F 53.07; S 8.94. CONCLUSIONS Internal perfluoroolefin oxides react with fluorosulfonic acid to give perfluoroketones that contain a fluorosulfate group in the α -position. LITERATURE CITED I. P. Kolenko, T. I. Filyakova, A. Ya. Zapevalov, E. P. Mochalina, L. S. German, and 1. V. R. Polishchuk, Izv. Akad. Nauk SSSR, Ser. Khim., 1979, 667. B. L. Earl, B. K. Hill, and J. M. Shreeve, Inorg. Chem., 5, 2184 (1966). 2.