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Abstract." The first enantioselective synthesis of the title neo-trans-clerodanes 3 and 4b from (-)-verbenone 5 has been 
accomplished using the ene reaction and stereoselective conjugate addition reaction to the enone 13 as the key step. 
© 1999 Elsevier Science Ltd. All rights reserved. 
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Since the important characteristics of clerodane diterpenes are not only the unique biological activity such as 

insect antifeedant, but also a contiguously arranged four-chiral center, C(5)-C(10)-C(9)-C(8) in the 

stereostructure, 1 synthetic efforts toward clerodane natural products have been focused on realization of this 

characteristic carbon-carbon framework in a stereocontrolled fashion, lb We have recently established an 

efficient construction of this carbon-carbon arrangement as a model: stereoselective conjugate addition reaction 

of trans-octalone 1 with a vinyl Grignard reagent followed by kinetically controlled methylation and base- 

induced epimerization to give the thermodynamically stable decalone 2 which possesses the same 

stereochemistry as those of neo-trans-clerodanes (Scheme 1). 2 In an application of this methodology, we show, 

starting with acetoxy ketone 6, the first enantioselective syntheses of (-)-(5R,8S,9R, 10R)-7-oxo-cleroda-3,13E- 

dien-15-oic acid (7-oxo-kolavenic acid) 3 and (-)-solidagonic acid 4a as its methyl ester 4h, isolated as a minor 

component from an extract of the aerial part of Platychaete aucheri 3 and from the root of Solidago altissima L.,4 

respectively. 
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Stereoselective reduction of the acetoxy ketone 6, which has been prepared from (-)-verbenone 5 (>97% ee) 

in 7 steps and 36% overall yield, 2 with lithium tri-tert-butoxyaluminohydride provided alcohol 7 by exclusive 

attack of the hydride from the less-hindered 13 side (Scheme 2). Upon treatment with POCI3 in pyridine, 

dehydration of 7 proceeded smoothly to afford diene 8, whose hydrolysis followed by Swem oxidation of the 

resulting alcohol 9 gave aldehyde 10. Stereoselective ene reaction of 10 with Et2AIC1 proceeded cleanly to give 

trans-octalol 11 with an axially oriented hydroxy group, as can be assumed by the well-documented reaction 

mechanism. 5 Swem oxidation of 11 produced a mixture (a 1:4 ratio) of deconjugate enone 12 and conjugate 

enone 13. Upon treatment with DBU, the former was smoothly isomerized to the latter in quantitative yield. 

Finally, the compound 13 (98.9% ee) was prepared from 6 in 7 steps and more than 50 % overall yield. 
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Installation of a homoallyl group at the C(9) position in 13 was carried out next; the stereoselective conjugate 

addition reaction of 13 successfully proceeded upon treatment with a homoallylcopper-BF3 reagent to give the 

adduct 14 in 86% yield. 6 Methylation of 14 followed by epimerization of the newly-formed methyl group with 

a base provided the thermodynamically stable octalone 157 in ca. 50% overall yield. The stereochemistry of 15 

was confirmed as depicted in | by the NOE correlations. Palladium-catalyzed oxidation of the terminal olefin in 

15 provided diketone 16. Construction of an ~,~-unsaturated ester unit in the side chain was accomplished by 

treating 16 with the sodium salt of methyl dimethoxyphosphonoacetate in THF to give a mixture (a 5:1 ratio) of 

the (E)-unsaturated ester 18, [~]25 D -96.6 (CHC13), and the (Z)-isomer 17. It is worth mentioning that, in this 

Horner-Wadsworth-Emmons condensation, the ring carbonyl group in 16 was sterically hindered, so that upon 

exposure to a large excess of the phosphonate reagent, the condensation reaction occurred regioselectively at the 

ketone in the side chain to produce only a mixture of 17 and 18, together with unchanged 16. Hydrolysis of 

18 provided the target compound 3 as an oil, [~]19 D -95.2 (CHCI3). The IH NMR (400 MHz) spectral data of 

synthetic 3 and 18 were indistinguishable from those of the natural 3 and its methyl ester 18, 3 respectively. 

Finally, stereoselective reduction of the ketone in 18 followed by acetylation of the resulting alcohol 19 

provided methyl solidagonate 4b, [~] 19 D -83.4 (95% EtOH) {lit. 4 [or] 14 D -98.8 (95% EtOH)}, the spectral data 

of which were identical with those for the methyl ester of the natural isolate. 4 
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Scheme 2. Reagents and conditions a, LiAIH(Otert-Bu)3, THF; b, POCI 3, Py; c, K2CO 3, McOH;d, DMSO, (COCI) 2, 
CH2C12 then Et3N; e, Et2AICI, CH2CI2; f, DBU, CH2C12; g, CH2--CHCH2CH2MgBr ' BF3.OEt2 ' Cul, THF; h, LHMDS, 
Mel, THF; i, 5% KOH, MeOH; j, 02, PdC12, CuCI, DMF, H20; k, (MeO)2POCH2CO2Me, Nail, THF; l, KOH, MeOH, H20; 
m, NaBH 4, MeOH; n, Ac20, DMAP, Py. 
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