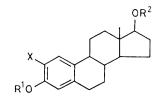
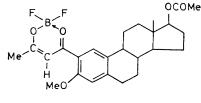
View Article Online / Journal Homepage / Table of Contents for this issue


New Routes for the Synthesis of Estra-1,3,5(10)-triene-2,3,17β-triols-(Catechol Estrogens)

Enzo Santaniello,*a Alberto Fiecchi,a and Patrizia Ferraboschib

^a Istituto di Chimica, Facoltà di Medicina, Università di Milano, Via Saldini, 50 I–20133 Milano, Italy ^b Istituto di Endocrinologia, Facoltà di Farmacia, Università di Milano, Via A. Del Sarto, 21 I–20133 Milano, Italy


2,3,17 β -Triacetoxyestra-1,3,5(10)-triene has been prepared in good yields either from 2-chloromercurio-3-methoxy-17 β -acetoxyestra-1,3,5(10)-triene by a novel hydroboration–oxidation route or by oxidation of a previously unknown 2-organoboron substituted estradiol.

It is now well established that 2- and 4-hydroxyestrogens play a most important role in the oxidative metabolism of estrogens in man.¹ We have already reported the regioselective mercuriation at C-2 of 3-methoxy- 17β -acetoxyestra-1,3,5(10)-triene (1a), which affords the 2-chloromercurio-derivative (1b) in 80% yield.² Direct replacement of the mercuriated function by a hydroxy-group proved unsuccessful in contrast with the successful oxygen substitution at C-4 in the 4-acetoxymercurio-analogue.³ We therefore considered the reaction of (1b) with diborane and oxidation

a; X = H, $R^1 = Me$, $R^2 = Ac$ b; X = HgCl, $R^1 = Me$, $R^2 = Ac$ c; X = OAc, $R^1 = Me$, $R^2 = Ac$ d; X = OAc, $R^1 = R^2 = Ac$ e; X = OH, $R^1 = R^2 = H$

(2)

of the intermediate organoborane, a process which works satisfactorily on simple aromatic substrates.⁴

Hydroboration of (1b) proved to be successful and oxidation of the intermediate organoborane with 30% hydrogen peroxide,† followed by treatment with acetic anhydride and pyridine afforded 2,17 β -diacetoxy-3-methoxyestra-1,3,5(10)triene (1c),‡ after chromatography on an ascorbic acid impregnated silica gel column,⁵ in 45% yield from (1a).

An alternative route for the preparation of (1c) arose from the consideration that acid anhydrides form bulky adducts with boron trifluoride.⁶ These complexes may act as regioselective Friedel–Crafts reagents and therefore attack the less hindered 2-position of (1a).

[†] Alkaline hydrogen peroxide was not used, owing to the instability of the catechol system; see ref. 1, p. 12.

[‡] All compounds have ¹H n.m.r., i.r., and mass spectra in complete agreement with the assigned structures. All new compounds gave correct microanalyses.

View Article Online

J. CHEM. SOC., CHEM. COMMUN., 1982

From the reaction of (1a) with acetic anhydride and boron trifluoride at 0 °C we isolated the expected compound (2)§ in 80% yield.⁷ The absence of the 4-isomer shows that the reaction is regiospecific. The ketonic nature of (2) and the presence of a Lewis acid moiety in the molecule suggests that (2) may be oxidized by neutral 30% hydrogen peroxide. The product of this oxidation (2 days, room temp.) was directly acetylated and after chromatography gave (1c).

Reaction of (1c) with pyridine hydrochloride⁸ followed by acetylation afforded, in 75% yield, the 2,3,17 β -triacetoxy-estra-1,3,5(10)-triene (1d).

The preparation of (2) leads to a practical and simple synthesis of the triacetate (1d), from which $2,3,17\beta$ -trihydroxyestra-1,3,5(10)-triene (1e) can be easily prepared.⁵

We thank Dr. M. Chiari for experimental assistance and C.N.R. (Rome) for financial support.

Received, 5th July 1982; Com. 766

References

- 1 P. Ball and R. Knuppen, Acta Endocrinol. (Copenhagen), 1980, Suppl. 32, 93, 1.
- 2 E. Santaniello and P. Ferraboschi, J. Chem. Soc., Chem. Commun., 1981, 217.
- 3 D. N. Kirk and C. J. Slade, J. Chem. Soc., Chem. Commun., 1982, 563.
- 4 S. W. Breuer, M. J. Leatham, and F. G. Thorpe, *Chem. Commun.*, 1971, 1475.
- 5 H. P. Gelbke and R. Knuppen, J. Chromatogr., 1972, 71, 465. On using normal silica gel the recovery of the products was dramatically lowered.
- 6 K. Figge, Fette, Seifen, Anstrichm., 1972, 74, 9.
- 7 For an analogous boron difluoride complex with benzoylacetone see: C. L. Mao, F. C. Frostick, Jr., E. H. Man, R. M. Manyick, R. L. Wells, and C. R. Hansen, J. Org. Chem., 1969, 34, 1425.
- 8 J. Fishman, M. Tomasz, and R. Lehman, J. Org. Chem., 1960, 25, 585.

§ Compound (2): m.p. 173—175 °C (from di-isopropyl ether); u.v. λ_{max} 320 (ϵ 19 000) and 380 nm (ϵ 12 800); i.r. ν_{max} 1 720 and 1 610 cm⁻¹; ¹H n.m.r. (CDCl₃, from Me₄Si) δ 0.90 (s, 3H, 18-H₃), 2.10 (s, 3H, -COMe), 2.40 (s, 3H, -COMe), 4.00 (s, 3H, -OMe), 4.75 (m, 1H, 17-H), 6.80 (s, 1H, aromatic), 7.10 (s, 1H, -CH=), and 8.10 (s, 1H, aromatic); ¹³C n.m.r. (CDCl₃, p.p.m. from Me₄Si) δ 12.1 (q), 21.1 (q), 23.2 (t), 24.7 (q), 26.1 (t), 26.8 (t), 27.6 (t), 30.3 (t), 36.6 (t), 38.3 (d), 42.8 (s), 43.5 (d), 49.8 (d), 55.8 (q), 82.5 (d), 101.9 (d), 112.1 (d), 117.7 (s), 129.0 (d), 133.7 (s), 147.6 (s), 158.9 (s), 171.0 (s), 180.6 (s), and 190.7 (s).