

DOI:10.1002/ejic.201201471

ChemPubSoc Europe

Rational Synthesis and Mutual Conversion of Bis-N-heterocyclic Diphosphanes and Secondary N-Heterocyclic Phosphanes

Oliver Puntigam,^[a] Daniela Förster,^[a] Nick A. Giffin,^[b] Sebastian Burck,^[a] Johannes Bender,^[a] Fabian Ehret,^[a] Arthur D. Hendsbee,^[b] Martin Nieger,^[c] Jason D. Masuda,^{*[b]} and Dietrich Gudat^{*[a]}

Keywords: Phosphanes / Diphosphanes / Heterocycles / Radicals / Reduction / Reaction mechanisms

Symmetrical N-heterocyclic 1,1',3,3'-tetrahydro-2,2'-bi-1,3,2-diazaphospholes and 2,2'-bi-1,3,2-diazaphospholidines are prepared by time-saving, sequential "one-pot" syntheses starting from 1,4-diazabutadienes or *N*-alkyl or *N*-aryl-substituted ethane-1,2-diamines. This method offers high selectivity and minimizes the loss of products owing to unwanted hydrolysis, and thus grants high product yields. In some cases, secondary phosphanes were formed together with or instead of diphosphanes. This reaction is explained by a follow-up process involving homolytic fission of diphosphanes

Introduction

Acyclic tetrakis(dialkylamino)diphosphanes of general composition $(R_2N)_2P-P(NR_2)_2$ have sporadically been studied during the past decades.^[1,2] The combination of potentially reactive P–N and P–P bonds offers good prospects for various synthetic applications. Lappert et al. reported^[2] that sterically encumbered bisphosphanes can undergo reversible homolytic dissociation to give phosphanyl radicals,^[3] which may be subsequently employed to generate stable phosphanido metal carbonyls. Crossairt and Cummins recently discussed the possibility to use the unique P–P bond reactivity to activate P₄ or AsP₃,^[4] which are starting materials for a variety of P- or As-containing species.

[a] Institut für Anorganische Chemie, University of Stuttgart, Pfaffenwaldring 55, 70550 Stuttgart, Germany Fax: +49-711-685-64241
E-mail: gudat@iac.uni-stuttgart.de Homepage: http://www.iac.uni-stuttgart.de/arbeitskreise/ akgudat
[b] The Atlantic Centre for Green Chemistry and Dent. of

- [b] The Atlantic Centre for Green Chemistry and Dept. of Chemistry, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada E-mail: jason.masuda@smu.ca Homepage: http://www.smu.ca/faculty/jasonmasuda/
- [c] Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki,
 P.O. Box 55 (A. L. Virtesen aukia 1), 00014 University of
- P. O. Box 55 (A. I. Virtasen aukio 1), 00014 University of Helsinki, Finland
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejic.201201471.

ONI INF LIBRARY

to give phosphanyl radicals, which then react with ammonium salts to give a mixture of secondary phosphanes and chlorophosphanes. Even if its synthetic scope is as yet limited, this approach seems promising in offering superior selectivity and higher yields than common synthetic protocols that rely on the use of complex hydrides as reducing agents. In addition to the reductive conversion of diphosphanes into secondary phosphanes, a reverse reaction under exposure of the reactants to light is also reported.

Recent studies have particularly focused on derivatives like 2,2'-bi-1,3,2-diazaphospholidines $3^{[5,6]}$ or 1,1',3,3'-tetrahydro-2,2'-bi-1,3,2-diazaphospholes $3'^{[7-9]}$ (Scheme 1), in which the (R₂N)₂P moieties form parts of five-membered N-heterocyclic rings.^[10] The introduction of bulky *N*-aryl or *N*-alkyl substituents at the rather rigid heterocyclic frameworks of these molecules offers excellent opportunities for the specific tuning of steric interactions and P–P bond reactivity.^[8,9] In this respect, heterocycles **3**' received particular attention as the stabilization of diazaphospholenyl radicals

Scheme 1. Synthesis of 3/3' R = tBu (a), *i*Pr (b), Cy (c), 2,6-dimethylphenyl (Dmp, d), 2-methylphenyl (*o*-Tol, e), Mesityl (f), 2,6-diisopropylphenyl (Dipp, g), *o*-*t*BuC₆H₄ (h); reactants and conditions: (i) THF, -78 °C, 1 equiv. PCl₃, 2.5 equiv. NEt₃; (ii) THF, -78 to 0 °C, 2 equiv. Li, 2 equiv. NEt₃HCl; (iii) -78 °C, 1 equiv. PCl₃; (iv) THF, 1.5 equiv. Mg.

by cyclic π -electron delocalization enables P–P bond cleavage processes to occur under extremely mild conditions.^[8] Quite interestingly, Förster et al.^[9] were able to show that, regardless of this disposition, specific substrates like electron-poor alkynes may also address P–N bond reactivity. This apparent dualism offers interesting prospects and stimulates extended studies of the chemical properties of species like 3'.

Up to now, only a few heterocyclic diphosphanes of type $3^{[5,6,10]}$ or $3'^{[7,8]}$ are known, and common synthetic approaches by reductive coupling of 2-chloro-1,3,2-diazaphospholenes 2' or 2-chloro-1,3,2-diazaphospholidines 2 often give only moderate yields. To improve the synthetic access to diphosphanes 3 and 3', we wanted to elaborate a time-saving, sequential "one-pot" synthesis from ethane-1,2-diamines 1 or 1,4-diazabutadienes 1'. This route should grant high product yields and minimize the effort required for work-up of the reaction mixtures. Surprisingly, we found that some of the reactions studied yielded N-heterocyclic secondary phosphanes rather than the targeted diphosphanes. Therefore, we performed more detailed studies, which allowed us to propose a mechanistic explanation for these at first glance puzzling results and to establish conditions for the mutual conversion between secondary heterocyclic phosphanes and the corresponding diphosphanes.

Results and Discussion

A convenient preparation of bisphosphanes **3** and **3'** proceeds by magnesium reduction of $2^{[6]}$ and **2'**, respectively.^[8] *P*-Chloro-substituted precursors are typically generated by condensation of ethane-1,2-diamines **1** with PCl₃ or by reduction of 1,4-diazabutadienes **1'** and subsequent condensation with PCl₃ and are isolated prior to the subsequent coupling step.^[11–13] Having previously developed a high-yield synthesis of **2'** that combines the reduction and coupling steps into a sequential one-pot procedure,^[13] we set out to extend this approach to the preparation of **3** and **3'** by performing all stages of the multistep synthesis in a one-pot manner without purification of the intermediates.

The reactions were carried out by using starting materials 1 and 1' with N-alkyl or N-aryl substituents of different steric bulk (Scheme 1). The condensation of diamines 1 with PCl_3 to give 2 was initiated by the addition of Et_3N , whereas 2' were prepared by the previously described onepot procedure, which involves quenching of the initially formed diazabutadiene dianion with an ammonium salt and the subsequent base-induced condensation of the α-aminoaldimine intermediate with PCl₃.^[13] Even if 2' is in principle also accessible by direct metathesis of diazabutadiene dianions with PCl₃,^[12] the two-step approach used here has been reported to give superior yields.^[13] We found that in most cases (2/2'a-f) the LiCl and NEt₃HCl formed in the previous steps did not interfere with the subsequent reductive coupling step. The removal of tetrahydrofuran (THF) and precipitated salts was thus unnecessary, and the Mg reduction was easily carried out at room temperature

in the same reaction vessel. The target diphosphanes were isolated by extraction into a nonpolar solvent, separation of the insoluble side products by filtration, and evaporation of the filtrate. The decision not to purify and crystallize the intermediate products results in substantial time saving and helps to minimize losses caused by hydrolysis upon potential contact with moisture.

In contrast to the cases described so far, the reactions of derivatives of 1 and 1' with very bulky N-aryl substituents (R = Dipp, o-tBuC₆H₄; 1g-h, 1'g) took a different course and yielded secondary phosphanes $(4g, 4'g)^{[13]}$ or mixtures of secondary phosphanes and diphosphanes (3/4h; Scheme 2). Phosphane 4g was isolated after a similar workup as that employed for 3/3'. Spectroscopic studies allowed us to establish that diphosphanes 3g-h/3'g were the initial reaction products and were later converted into 4g-h/4'g when the reaction went on. This last conversion could be suppressed when the precipitated solids (LiCl, Et₃NHCl), which had been formed as side products with chlorophosphanes 2g-h/2'g, were removed by filtration before the magnesium was added. The pure diphosphanes 3g,^[6] 3'g^[8,9] and 3h were readily isolated after appropriate work-up when the reaction was conducted under these conditions.

Scheme 2. One-pot synthesis of phosphanes **4g**, **4'g** and **4h**; (i) THF, -78 °C, 1 equiv. PCl₃, 2.5 equiv. Et₃N; (ii) 1.5 equiv. Mg, cat. I₂, room temp. (iii) THF, -78 to 0 °C, 2 equiv. Li, 2 equiv. Et₃NHCl; (iv) -78 °C, 1 equiv. PCl₃; (v) Et₃NHCl/Mg.

The isolated highly air and moisture sensitive diphosphanes and phosphanes were found to be spectroscopically pure, and their identity was unequivocally confirmed by NMR and MS data. The diphosphanes 3a and 3h (Figure 1) and the secondary phosphane 4g (Figure 2) were also characterized by single-crystal X-ray diffraction studies of crystals obtained by recrystallization from THF/hexane at -20 °C. The molecular structures of 3a and 3h exhibit crystallographic C_i symmetry; the five-membered rings feature transoid alignment and a twist configuration. The P-P distances are somewhat shorter than those in the acyclic tetraaminodiphosphanes $(iPr_2N)_2P-P(NiPr_2)_2^{[1]}$ and (iPr_2N) - $[(Me_3Si)_2N]P-P(NiPr_2)[N(SiMe_3)_2]^{[2]}$ (2.29–2.30 Å) but are still far longer than the average P-P distance in diphosphanes $(2.217 \pm 0.08 \text{ Å}^{[14]})$. The endocyclic bond lengths match those in other bis-N-heterocyclic diphosphanes (Table 1). The P-P distances are equal for 3a and 3'a (and likewise for $3g^{[6]}$ and $3'g^{[9]}$) and increase in both series of

heterocycles with growing bulk of the *N*-aryl substituents. These parallel trends suggest that the bond lengthening is mainly induced by steric factors.

Figure 1. Crystal structure of **3a** and **3h**; H atoms partially omitted for clarity; 50% probability ellipsoids. Both molecules exhibit crystallographic C_i symmetry (symmetry-dependent atoms were generated with the operator -x + 1, -y + 1, -z + 1).

Figure 2. Molecular structure of **4g**; H atoms in the Dipp substituents omitted for clarity; 50% probability ellipsoids. Selected bond lengths [Å]: P(1)-H(1) 1.34(2), P(1)-N(5) 1.688(1), P(1)-N(2) 1.700(1), N(2)-C(3) 1.473(2), N(5)-C(4) 1.466(2), C(3)-C(4) 1.522(2).

Crystalline 4g contains isolated molecules that display a similar twist conformation of the five-membered ring as that in 3a and 3h (Figure 2). The P-N bonds are somewhat shorter but are similar to those in the C-C unsaturated analogue (4'g, 1.69-1.71 Å).^[13] In contrast, the P-H bond in 4g [1.34(2) Å] is much shorter than that in 4g' [1.48(1) Å] and is closer to the "normal" P-H distance in phosphanes $(1.288 \pm 0.09 \text{ Å})$.^[13] The bond lengthening in 4'g was attributed to the hydride character of the P-H unit and is intimately connected with the possibility of stabilization of a negative formal charge on the hydrogen atom by hyperconjugation between the $\sigma^*(PH)$ orbital with the 6π electrons in the heterocycle (σ^* aromaticity).^[13,15] In this respect, the relative shortening (with respect to 4'g) of the P-H distance in 4g is in accord with the concept that the interruption of the cyclic π delocalization by the C–C saturated backbone renders the hyperconjugative stabilization less efficient and, thus, diminishes the hydride character of the P-H moiety.

Table 1. Selected bon	d lengths [Å]	and angles [°]	for 3a, 3d, 3f, 3g,
3h, 3'a, 3'f and 3'g.			

	R	P1P1'	P1–N2, P1–N5	C3–C4	N2–P1– N5	Ref.
3a	tBu	2.240(1)	1.716(1),	1.509(1)	94.93(1)	this work
3d	Dmp	2.301(1)	1.724(1) 1.706(1),	1.512(2)	90.30(6)	[5]
3f	Mes	2.283(1)	1.710(1) 1.712(1),	1.498(2)	90.66(6)	[5]
3g	Dipp	2.321(1)	1.716(1) 1.700(2),	1.525(2)	91.74(9)	[6]
3h	o-tBuC ₆ H ₄	2.270(2)	1.727(2) 1.716(2),	1.504(4)	91.35(11)	this work
3'a	tBu	2.244(1)	1.735(2) 1.739(1),	1.338(1)	94.28(4)	[7,8]
3′f	Mes	2.316(2)	1.739(1) 1.723(3),	1.328(4)	89.51(1)	[8]
3′g	Dipp	2.320(1)	1.726(3) 1.737(3), 1.718(3)	1.330(5)	90.83(15)	[9]

To understand the reason for the special behaviour of 2g, 2h and 2'g in the one-pot reaction, we attempted to obtain a consistent explanation for the ongoing processes. Both the intermediacy of 3g, 3h and 3'g and the formation of 4g, 4h and 4'g is readily explained by the mechanism displayed in Scheme 3. The in-situ-formed chlorophosphanes 2/2' react as expected with Mg by reductive coupling to give 3/3', which are stable species if the substituents R are small or medium sized. However, sterically demanding groups (R = Dipp, *o*-tBuC₆H₄) induce cleavage of 3g, 3h and 3'g to phosphanyl radicals, which then react with NEt₃HCl to give a combination of 4g, 4h and 4'g and 2g, 2h and 2'g. The chlorophosphanes can re-enter the reaction cycle and are eventually transformed into secondary phosphanes 4g, 4h and 4'g.

Scheme 3. Radical-induced formation of phosphanes 4 and 4' by recursive reductive coupling of 2 and 2' with Mg.

Support for this mechanistic proposal was gained from further experimental studies, which finally allowed us to confirm the feasibility of each individual step in the proposed reaction sequence. In particular, we found that:

(a) Treatment of chlorophosphanes 2g, 2h and 2'g with magnesium in the absence of Et_3NHCl provides isolable quantities of the expected diphosphanes.

(b) The dissociation of the diphosphanes by homolytic P–P bond cleavage had already been established for 3'g,^[8] and electron paramagnetic resonance (EPR) studies also

confirmed the formation of radicals at room temperature for 3g and 3h (Scheme 3; generation of radicals from 3g has recently been discovered by Masuda et al.).^[6]

(c) The isolated diphosphanes **3g**, **3h** and **3'g** react with Et₃NHCl in THF or toluene in the absence of Mg to give a 1:1 mixture of **2g**, **2h** and **2'g** and **4g**, **4h** and **4'g**. Monitoring of the reaction by ³¹P NMR spectroscopy revealed further that i) a mixture of chlorophosphanes **2g** and **2h** and secondary phosphanes **4g** and **4h** also formed after unreacted magnesium was removed from the appropriate one-pot reaction mixtures before the reaction had gone to completion, and ii) the consumption of the chlorophosphane resumed after magnesium was re-added to the mixture.

(d) Even for diphosphanes such as 3a and 3'a, which do not undergo homolytic dissociation at room temperature, formation of secondary phosphanes as side products can be enforced at elevated temperature under conditions for which the formation of small quantities of phosphanyl radicals has been established by EPR studies.^[8]

The EPR data of 5g [g = 2.013, $a(^{31}P) = 61.3$ G, $a(^{14}N)$ = 3.6 G, $a(^{1}\text{H})$ = 3.1 G; values were obtained from spectral simulations and match the previously reported ones]^[6] and 5h (Figure 3) reveal that the hyperfine couplings to phosphorus are some 20 G higher than those reported for the C-C unsaturated diazaphosphanyl radicals 5'a, 5'f and 5'g.^[8] This is in accord with the fact that the unpaired electron can no longer be delocalized around the entire heterocycle as it is in $5'^{[8]}$ and is more or less confined to the NPN moiety. We further explain the low $a(^{31}P)$ and $a(^{14}N)$ values for 5g and 5h, which are both close to the bottom end of the range of known couplings in acyclic diaminophosphanyl radicals $[a(^{31}P) = 63-108 \text{ G}, a(^{14}N) = 3.7-5.1 \text{ G}^{[3]}],$ as a consequence of conformational constraints in the heterocyclic structures, which improve NPN π delocalization and, therefore, increase the π character of the unpaired electron.

Figure 3. Experimental and simulated EPR spectrum of **5h** at 390 K in toluene. Simulation parameters: g = 2.014, $a(^{31}P) = 63.8$ G (1 P), $a(^{14}N) = 4.3$ G (2 N), $a(^{1}H) = 3.8$ G (2 H).

The most striking deviation between the EPR spectra of **5g** and **5h** concerns the different hyperfine splitting patterns: the signal of **5g** appears as a doublet of nonets owing to coupling with one ³¹P, two ¹⁴N and four equivalent ¹H nuclei, whereas that of **5h** is split into a doublet of septets attributable to interaction with one ³¹P, two ¹⁴N and only

two ¹H nuclei. This, at first glance surprising, finding is conveniently explained in the light of a computational analysis of the hyperfine interactions in 5g.^[6] The computed splitting to protons of axial CH bonds at the twisted ring are clearly larger than those to protons of equatorial CH bonds, and the equivalence of all ring protons was explained as resulting from dynamic averaging owing to rapid ring inversion. If one assumes that 5h exhibits a similar alignment of N-aryl rings and central heterocycle as 3h, dynamic averaging in this case requires a combination of ring inversion and rotational reorientation of the asymmetrical substituents. As it is reasonable to assume that this process occurs on a much longer time scale, the observed spectrum is considered to represent the hyperfine interactions in a "quasistatic" five-membered ring and is dominated by the two large couplings to the axial protons.

The generation of secondary aminophosphanes **4g**, **4h** and **4'g** during the magnesium reduction of chlorophosphanes in the presence of a weak Brønsted acid can be compared with common synthetic protocols such as the reduction with the complex hydrides $\text{LiAlH}_4^{[16]}$ or $\text{NaBH}_4^{[17]}$. The LiAlH_4 reduction frequently suffers from the formation of substantial amounts of side products, which complicate the work-up protocol and lowers the achievable product yields,^[15,16] although species such as **4'g**^[13] or **4'd** are accessible in reasonable yield. The serendipitous isolation of

Figure 4. Molecular structure of **6g**:THF; H atoms in the Dipp substituents omitted for clarity; 50% probability ellipsoids. Selected distances [Å]: P(1)-H(1) 1.33(3), P(1)-H(2) 1.36(3), P(1)-N(5) 1.685(2), C(3)-C(4) 1.522(4), N(2)-Al(1) 1.813(2), Al(1)-H(3) 1.51(3), Al(1)-H(4) 1.53(3), Al(1)-O(1) 1.916(2).

Scheme 4. Synthesis of **6g** and phosphane–boranes **7g** and **8g** ($\mathbf{R} = \text{Dipp}$): (i) LiAlH₄, THF; (ii) NaBH₄, THF; (iii) H₃B·SMe₂, THF; (iv) H₃B·SMe₂ (**7g**) or B(C₆F₅)₃ (**8g**), toluene.

a few crystals of side product 6g (Figure 4) during the attempted synthesis of 4g (Scheme 4) confirms that this low selectivity is related to the high chemical activity of the reactant, which is liable to induce over-reduction and ring cleavage. In contrast, the NaBH₄ reduction of 2g smoothly produced phosphane-borane 7g (Scheme 4), which was isolated in good yield as a stable white solid and characterized by spectroscopic data and a single-crystal X-ray diffraction study (Figure 5). Removal of the coordinated borane is feasible by heating a mixture of 7g and Et_3N in hexane to reflux for 12 h. Monitoring of the reaction by ³¹P NMR spectroscopy indicated, however, that this process is not free of side reactions. No attempts to separate Et₃NBH₃ and isolate 4g were made. The use of super hydride (Li[BHEt₃]) as an alternative hydride transfer agent^[15] allows for the formation of the secondary aminophosphane 4g from 2g without coordination of the borane. From this route, 4g can be isolated in good yield (80%), and this protocol can thus be considered as an alternative route to the one-pot method outlined in Scheme 2.

Figure 5. Molecular structure of **7g**; H atoms in the Dipp substituents omitted for clarity; 50% probability ellipsoids. Selected distances [Å] and angles [°]: P(1)–H(1) 1.36(3), P(1)–B(1) 1.884(4), P(1)–N(2) 1.652(2), C(3)–C(3)' 1.528(4), B(1)–P(1)–H(1) 109(1), N(2)–P(1)–N(2)' 93.3(1).

Compared to the commonly applied reduction protocols with complex hydrides,^[16,17] the magnesium/ammonium salt approach proceeded in our hands with much higher selectivity, facilitated the work-up procedure, and thus granted substantial time-saving and higher product yields. On the other hand, this method currently seems to be limited to the synthesis of a few sterically hindered target species (at least as long as only reactions at room temperature are considered), and one will have to see if the selectivity can be maintained in reductions of substrates with less bulky substituents at elevated temperatures. However, the operational advantages are clearly evident and should stimulate further studies to develop this protocol into a more widely applicable alternative to commonly used reaction schemes.

Based on the proven formation of phosphanyl radicals at room temperature by homolytic cleavage of the P–P bond in 3g, we desired to further investigate the reaction of this species with boranes. We were interested in the possibility of trapping a phosphanyl radical by forming a Lewis acid– base complex. Thus, the reaction of 3g with borane–dimethyl sulfide in THF initially gave an NMR silent species when analyzed by ³¹P NMR spectroscopy. However, after several minutes, the broad doublet of $7g (^{1}J_{P,H} = 357 \text{ Hz})$ appeared, which indicated that the addition of a hydrogen atom to the phosphanyl radical to give a P-H bond had occurred. The phosphane-borane 7g was isolated (Scheme 4) and unambiguously identified by analytical and spectroscopic data and a single-crystal X-ray diffraction study. Similarly, the reaction of 3g with $B(C_6F_5)_3$ gave the secondary phosphane-borane complex 8g as revealed by ³¹P NMR spectroscopy (${}^{1}J_{P,H}$ = 404 Hz) and single-crystal X-ray crystallography (Figure 6). Once again, a hydrogen atom has been added to the phosphanyl to give a closedshell species. The P-B distance of 2.106(3) Å in 8g is at the long end of the range for secondary phosphane– $B(C_6F_5)_3$ adducts (2.025-2.098 Å).^[18] The P-H distance is similar to those in 4g and 7g, which indicates that coordination of $B(C_6F_5)_3$ has little to no structural impact. The gradually increasing v(PH) vibrational frequencies of 4g (2025 cm⁻¹), 7g (2255 cm⁻¹) and 8g (2314 cm⁻¹) suggest, however, that the P-H bond strengthens perceptibly upon coordination of more and more Lewis acidic boranes.

Figure 6. Molecular structure of 8g; H atoms (other than on the phosphorus atom) omitted for clarity; 50% probability ellipsoids. Selected distances [Å] and angles [°]: P(1)–B(1) 2.106(3), P(1)–H(99) 1.33(2), N(1)–C(1) 1.482(3), N(1)–P(1) 1.671(2), N(2)–C(2) 1.475(3), N(2)–P(1) 1.677(2), P(1)–B(1) 2.106(3), C(1)–C(2) 1.508(4). C(1)–N(1)–P(1) 111.67(17), C(2)–N(2)–P(1) 111.62(16), N(1)–P(1)–N(2) 93.74(11), N(1)–P(1)–B(1) 121.16(12), N(2)–P(1)–B(1) 125.82(12), N(1)–C(1)–C(2) 104.6(2), N(2)–C(2)–C(1) 105.3(2).

Attempts to ascertain the source of the hydrogen atoms for the formation of **6g** and **8g** through a number of experiments proved to be fruitless. The reaction of **3g** with BH_3 ·THF in THF and BD_3 ·THF in THF gave inconclusive results, and BH_3 ·NMe₃ did not react at all. With this in mind, we studied the reaction of **3g** with $B(C_6F_5)_3$ in C_6F_6 as a hydrogen-free solvent, thus eliminating the borane and solvent as hydrogen-atom sources. This reaction resulted likewise in the formation of **8g**. As we see no evidence of

ligand decomposition in the NMR spectra, the hydrogen atom most likely originates from impurities in the reagents and glassware, or in the starting diphosphane **3g**.

The readily occurring conversion of some diphosphanes 3/3' into appropriate phosphanes 4/4' raised the question if a reverse transformation might also be feasible. Indeed, during the synthesis of the secondary phosphane 4'd by Li-AlH₄ reduction of 2'd, we noticed that the initially formed product was quantitatively (as monitored by ³¹P NMR spectroscopy) converted into diphosphane 3'd when the reaction mixture was stirred for a prolonged time with exposure to daylight. Partial conversion of secondary phosphanes to the corresponding diphosphanes under similar conditions was also observed for 4c and 3c, and it had previously been found that prolonged storage of pure 4'a with exposure to daylight resulted in partial conversion to diphosphane 3'a, which was isolated in crystalline form and characterized by spectroscopy and a single-crystal X-ray diffraction study.^[7] Control experiments confirmed that the phosphane-diphosphane conversion did not take place when the samples were protected from light. The failure to observe any spectroscopically detectable side products suggests that the conversion may be accompanied by the formation of molecular hydrogen, but a positive proof of this hypothesis is still pending.

Conclusions

Symmetrical 2,2'-bi-1,3,2-diazaphospholidines and 1,1',3,3'-tetrahydro-2,2'-bi-1,3,2-diazaphospholes can be prepared from the appropriate ethane-1,2-diamines or 1,2diimines in overall yields of 70 to 91% in a short period of time. Most syntheses can be performed as one-pot procedures without isolation of intermediates, but preparation of a few products with sterically demanding N-aryl groups requires removal of the ammonium salt (Et₃NHCl), formed as a by-product of a preceding reaction step, prior to the final reductive coupling. In these cases, failure to remove Et₃NHCl results in the reduction of the applied chlorophosphanes to the corresponding secondary phosphanes. Mechanistic studies suggest that this reaction is initiated by homolytic dissociation of the diphosphanes. The phosphanyl radicals formed then react with Et₃NHCl to produce 1:1 mixtures of secondary phosphanes and chlorophosphane starting material, which may then re-enter the reaction sequence. Despite its as yet limited scope, the magnesium/ammonium salt reduction protocol offers some clear advantages over the commonly applied reduction with complex hydrides and, thus, offers interesting prospects for its development into a more generally applicable synthetic method. Preliminary studies reveal that in addition to the reductive conversion of diphosphanes to appropriate secondary phosphanes, a reverse transformation is also feasible upon prolonged exposure of the appropriate secondary phosphanes to daylight. Further studies are needed to establish if these reactions involve the production of molecular hydrogen.

Experimental Section

General Remarks: All preparations were done under an atmosphere of dry, O2-free N2 or Ar, by employing both Schlenk-line techniques and an mBraun Labmaster SP inert atmosphere glove box. Solvents were purified by employing a Grubbs type solvent purification system manufactured by Innovative Technology. Hyflo Super Cel (Celite) was purchased from Sigma-Aldrich and dried for 24 h in an oven prior to use. Molecular sieves (4 Å) were purchased from Sigma-Aldrich. and dried overnight at 140 °C under vacuum. EI-MS: Varian MAT 711 instrument, 70 eV. (+)-ESI MS: Bruker Daltonics MicroTOF Q instrument, methanolic solution. Elemental analyses: Perkin-Elmer 2400 Series II CHN/O Analyzer. Some samples could not be prepared under an inert atmosphere, and we explain the rather large deviations between the found and calculated element compositions of some diphosphanes 3/3' as a consequence of the high oxidation sensitivity of these samples. Melting points were recorded with a Büchi Point B-545 or a Electrothermal MEL-Temp 3.0 apparatus with samples in glass capillaries prepared and sealed under inert conditions. Solution NMR spectra were recorded at 303 K with Bruker Avance 400 (¹H 400.1, ¹³C 100.5, ³¹P 161.9, ¹¹B 128.4 MHz), Avance 300 (¹H 300.1, ¹³C 75.4, ³¹P 121.4, ¹⁹F 282.4, ¹¹B 96.3 MHz) or Avance 250 (¹H 250.1, ¹³C 62.8, ³¹P 101.2, ¹¹B, 80.2 MHz) NMR spectrometers. Chemical shifts are referenced to external Si(CH₃)₄ (¹H, ¹³C), 85% H₃PO₄ (Z = 40.480747 MHz, ³¹P), CFCl₃ (Ξ = 94.094011, ¹⁹F) or BF₃·OEt₂ $(\Xi = 32.083974 \text{ MHz}, {}^{11}\text{B})$. Coupling constants are given as absolute values; positive chemical shift values denote shifts to lower frequencies, i-, o-, m-, p- denote positions in N-aryl rings. EPR spectra were measured with a Bruker EMX X-band spectrometer. The EasySpin software^[19] was used for spectral simulations. 2-Chloro-1,3,2-diazaphospholidines and 2-chlorodiazaphospholenes were synthesized as described elsewhere. The analytical, spectroscopic and single-crystal X-ray diffraction data of previously unknown 2c and 2h are included in the Supporting Information

General Procedure for the Preparation of 2,2'-Bi-1,3,2-diazaphospholidines 3

From Ethane-1,2-diamines (1): The appropriate diamine (5-15 mmol) was added dropwise at -78 °C to a solution of PCl₃ (5-15 mmol, 1 equiv.) and Et₃N (15-40 mmol, 3 equiv.) in THF (50 mL). A white precipitate of Et₃NHCl formed, and the mixture was stirred for 15 min at -78 °C and another 6 h at room temperature to allow complete reaction. Magnesium chips (7.5-22 mmol, 1.5 equiv.) were then added, and the mixture was stirred until completion of the reaction was confirmed by ³¹P{¹H} NMR spectroscopy (ca. 24 h; 96 h for 1c). The volatiles were then removed under reduced pressure, and the residue was suspended in hexane (50 mL). The solids were removed by filtration and washed with hexane or toluene to extract precipitated 3. The filtrate was evaporated to dryness. The spectroscopically pure products were obtained as white-to-yellow solids or yellow oils (3b, 3c, and 3e). Crystals of 3a and 3h suitable for single-crystal X-ray diffraction studies were obtained by recrystallization from THF/hexane (1:3) at -20 °C.

From 2-Chloro-1,3,2-diazaphospholidines 2: The appropriate chlorodiazaphospholidine (2d 500 mg, 1.5 mmol; 2e 1.00 g, 3.2 mmol; 2g 4.40 g, 10 mmol) was dissolved in THF (20–50 mL). Magnesium turnings (1.5 equiv.) and a crystal of I₂ (2e: no I₂ added) were added to the solution. The mixture was stirred until completion of the reaction was confirmed by ³¹P NMR spectroscopy (approx. 24 h). The work-up was carried out as described above.

1,1',3,3'-Tetra-*tert***-butyl-2,2'-bi-1,3,2-diazaphospholidine** (3a): Yield 2.50 g (81%); m.p. 127 °C. ³¹P{¹H} NMR (C₆D₆): δ = 91.7

ppm. ¹H NMR (C₆D₆): $\delta = 1.26$ (s, 36 H, CH₃), 2.86 (m, 4 H, NCH₂), 3.23 (m, 4 H, NCH₂) ppm. ¹³C{¹H} NMR (C₆D₆): $\delta = 30.3$ (pseudo-t, ^{3/4}J_{P,C} = 4.7 Hz, CH₃), 48.5 (s, NCH₂), 53.5 [pseudo-t, ^{2/3}J_{P,C} = 9.3 Hz, NC(*t*Bu)] ppm. EI-MS (70 eV, 415 K): *m*/z (%) = 201.1 (100) [M/2]⁺, 402.3 (20) [M]⁺. C₂₀H₄₄N₄P₂ (402.54): calcd. C 59.67, H 11.02, N 13.92; found C 57.12, H 10.4, N 12.53.

1,1',3,3'-Tetraisopropyl-2,2'-bi-1,3,2-diazaphospholidine (3b): Yield 2.06 g (79%). ³¹P{¹H} NMR (C₆D₆): δ = 97.4 ppm. ¹H NMR (C₆D₆): δ = 1.18 (d, ³J_{H,H} = 6.3 Hz, 12 H, CH₃), 1.21 (d, ³J_{H,H} = 6.5 Hz, 12 H, CH₃), 2.75 (m, 2 H, NCH₂), 3.21 (m, 4 H, CH), 3.31 (m, 2 H, NCH₂) ppm. ¹³C{¹H} NMR (C₆D₆): δ = 23.15 (pseudo-t, ^{3/4}J_{PC} = 3.8 Hz, CH₃), 23.4 (pseudo-t, ^{3/4}J_{PC} = 6.4 Hz, CH₃), 50.2 (pseudo-t, ^{2/3}J_{PC} = 0.7 Hz, NCH₂), 52.2 (pseudo-t, ^{2/3}J_{PC} = 10.5 Hz, CH) ppm. EI-MS (70 eV): *m*/*z* (%) = 333.28 (100) [M - CH₃]⁺.

1,1',3,3'-Tetracyclohexyl-2,2'-bi-1,3,2-diazaphospholidine (3c): Yield 920 mg (91%). ³¹P{¹H} NMR (C₆D₆): δ = 96.1 ppm. ¹H NMR (C₆D₆): δ = 0.90–1.57 (m, 20 H, C₆H₁₁), 1.63–1.80 (m, 12 H, C₆H₁₁), 2.03–2.19 (m, 8 H, C₆H₁₁), 2.83 (m, 4 H, C₆H₁₁), 2.90 (m, 4 H, NCH₂), 3.40 (m, 4 H, NCH₂) ppm. ¹³C{¹H} NMR (C₆D₆): δ = 26.0 (br. s, C₆H₁₁), 26.4 (br. s, C₆H₁₁), 33.8 (pseudo-t, J_{PC} = 3.8 Hz, C₆H₁₁), 34.2 (pseudo-t, J_{PC} = 6.4 Hz, C₆H₁₁), 50.4 (br. s, NCH₂), 60.8 (pseudo-t, ^{2/3} J_{PC} = 9.6 Hz, NCH) ppm. MS (ESI+): *m/z* (%) = 539.36 (80) [MHO₂]⁺, 372.33 (30) [M – 2(C₆H₁₁)-HOCH₃]⁺.

1,1',**3,3**'-**Tetrakis**(**2,6-dimethylphenyl**)-**2,2**'-**bi-1,3,2-diazaphospholidine** (**3d**): Yield 340 mg (77%); m.p 155 °C. ³¹P{¹H} NMR (CDCl₃): δ = 98.6 ppm. ¹H NMR (CDCl₃): δ = 1.44 (s, 12 H, *o*-CH₃), 2.50 (s, 12 H, *o*-CH₃), 2.90 (m, 4 H, NCH₂) 3.63 (m, 4 H, NCH₂), 6.56 (d, ³J_{H,H} = 7 Hz, 4 H, *m*-CH), 6.89 (t, ³J_{H,H} = 7 Hz, 4 H, *p*-CH), 6.98 (d, ³J_{H,H} = 7 Hz, 4 H, *m*-CH) ppm. ¹³C{¹H} NMR (CDCl₃): δ = 18.6 (pseudo-t, ^{4/5}J_{PC} = 2.9 Hz, CH₃), 20.7 (pseudo-t, ^{4/5}J_{PC} = 5.9 Hz, CH₃), 53.1 (pseudo-t, ^{2/3}J_{PC} = 2.3 Hz, NCH₂), 124.3 (br. s, *p*-C), 128.2 (br. s, *m*-C), 129.6 (br. s, *m*-C), 135.0 (pseudo-t, ^{3/4}J_{PC} = 1.1 Hz, *o*-C), 137.3 (pseudo-t, ^{3/4}J_{PC} = 1.6 Hz, *o*-C), 141.9 (pseudo-t, ^{2/3}J_{PC} = 5.8 Hz, *i*-C) ppm. EI-MS (70 eV, 415 K): *m*/z (%) = 297.1 (50) [M/2]⁺, 121.1 (100) [NH₂ – Dmp]⁺, 314.1 (20) [M/2 + OH]⁺.

1,1',3,3'-Tetra-*o***-tolyl-2,2'-bi-1,3,2-diazaphospholidine (3e):** Yield 1.02 g (76%). ³¹P{¹H} NMR (C₆D₆): δ = 101.2 ppm. ¹H NMR (C₆D₆): δ = 2.01 (br. s, 12 H, *o*-CH₃), 2.79 (m, 4 H, NCH₂), 3.70 (m, 4 H, NCH₂), 6.85–7.00 (m, 12 H, C₆H₄), 7.24–7.29 (m, 4 H, C₆H₄) ppm. ¹³C{¹H} NMR (C₆D₆): δ = 19.0 (pseudo-t, ^{4/5}J_{P,C} = 2.8 Hz, CH₃), 54.0 (br. s, NCH₂), 123.5 (pseudo-t, J_{P,C} = 1 Hz, C₆H₄), 124.5 (pseudo-t, J_{P,C} = 6.4 Hz, C₆H₄), 126.6 (br. s, C₆H₄), 131.2 (br. s, C₆H₄), 133.5 (pseudo-t, J_{P,C} = 1.6 Hz, C₆H₄), 146.8 (pseudo-t, J_{P,C} = 7.2 Hz, C₆H₄) ppm. EI-MS (70 eV, 415 K): *m/z* (%) = 269.1 (70) [M/2]⁺, 120.1 (100) [C₈H₁₀N]⁺, 121.1 (55) [C₈H₁₁N]⁺.

1,1',**3,3**'-**Tetramesity1-2,2**'-**bi**-**1,3,2**-**diazaphospholidine (3f):** Yield 2.6 g (80%); m.p. 255 °C. ³¹P{¹H} NMR (C₆D₆): δ = 99.4 ppm. ¹H NMR (C₆D₆): δ = 1.65 (s, 12 H, *p*-CH₃), 2.26 (s, 12 H, *o*-CH₃), 2.57 (m, 4 H, NCH₂), 2.62 (s, 12 H, *o*-CH₃), 3.44 (m, 4 H, NCH₂), 6.50 (br. s, 8 H, *m*-CH), 6.67 (br. s, 8 H, *m*-CH) ppm. ¹³C{¹H} NMR (C₆D₆): δ = 19.2 (br. s, CH₃), 20.7 (dd, ⁴J_{PC} = 1.3 Hz, ⁵J_{PC} = 0.8 Hz, *o*-CH₃), 20.8 (br. s, CH₃), 53.3 (pseudo-t, ^{2/3}J_{PC} = 2.4 Hz, NCH₂), 129.2 (br. s, *m*-C), 130.4 (pseudo-t, ^{4/5}J_{PC} = 1.4 Hz, *m*-C), 134.7 (pseudo-t, ^{3/4}J_{PC} = 0.5 Hz, *o*-C), 137.1 (br. s, *o*-C), 139.9 (pseudo-t, ^{2/3}J_{PC} = 5.9 Hz, *i*-C) ppm. EI-MS (70 eV, 420 K): *m*/z (%) = 325.2 (100), [M/2]⁺, 650.4 (5) [M]⁺.

1,1',**3,3**'-**Tetradiisopropylphenyl-2,2**'-**bi-1,3,2-diazaphospholidine** (**3g**): Yield 2.95 g (72%); m.p. 215 °C. ³¹P{¹H} NMR ([D₈]THF): δ = 145.2 ppm. ¹H NMR ([D₈]THF): δ = 0.5 (d, ³J_{H,H} = 6.5 Hz, 6 H, CH₃), 0.91 (d, ³J_{H,H} = 6.5 Hz, 6 H, CH₃), 0.99 (d, ³J_{H,H} = 6.5 Hz, 6 H, CH₃), 0.99 (d, ³J_{H,H} = 6.5 Hz, 6 H, CH₃), 1.05 (d, ³J_{H,H} = 6.5 Hz, 6 H, CH₃), 1.08 (d, ³J_{H,H} = 6.5 Hz, 6 H, CH₃), 1.05 (d, ³J_{H,H} = 6.5 Hz, 6 H, CH₃), 1.22 (d, ³J_{H,H} = 6.5 Hz, 6 H, CH₃), 1.29 (d, ³J_{H,H} = 6.5 Hz, 6 H, CH₃), 1.22 (d, ³J_{H,H} = 6.5 Hz, 6 H, CH₃), 1.29 (d, ³J_{H,H} = 6.5 Hz, 6 H, CH₃), 3.36 (m, 4 H, NCH₂), 3.34 (m, 2 H, CH), 4.02 (sept, ³J_{H,H} = 6.5 Hz, 2 H, CH), 4.08 (sept, ³J_{H,H} = 6.5 Hz, 2 H, CH), 6.72 (m, 2 H, *m*-CH), 6.78 (m, 2 H, *m*-CH), 6.8–6.87 (m, 6 H, *m*/*p*-CH), 7.15 (m, 2 H, *m*-CH) ppm. EI-MS (70 eV, 430 K): *m*/*z* (%) = 409.3 (100) [M/ 2]⁺, 367.3 (70) [C₂₅H₃₈N₂]⁺. C₅₂H₇₆N₄P₂ (819.13): calcd. C 76.25, H 9.35, N 6.84; found C 73.91, H 9.43, N 6.25.

1,1',3,3'-Tetra-2-*tert*-butylphenyl-2,2'-bi-1,3,2-diazaphospholidine (3h): Yield 3.07 g (87%); m.p. >180 °C (decomp.). ³¹P{¹H} NMR (C₆D₆): δ = 120.8 ppm. ¹H NMR (C₆D₆): δ = 1.39 (s, 36 H, *t*Bu), 3.08 (m, 4 H, NCH₂), 3.77 (m, 4 H, NCH₂), 6.82 (t, ³J_{H,H} = 7.5 Hz, 4 H, C₆H₄), 6.94 (t, ³J_{H,H} = 7.5 Hz, 4 H, C₆H₄), 7.35 (d, ³J_{H,H} = 7.8 Hz, 4 H, C₆H₄), 7.67 (d, ³J_{H,H} = 7.5 Hz, 4 H, C₆H₄) ppm. ¹³C{¹H} NMR (C₆D₆): δ = 31.8 (pseudo-t, J_{PC} = 1.5 Hz, CH₃), 36.0 (s, *i*-C), 58.0 (s, NCH₂), 125.2 (s, C₆H₄), 126.8 (s, C₆H₄), 128.7 (s, C₆H₄), 130.8 (pseudo-t, J_{PC} = 8.5 Hz, C₆H₄), 146.2 (pseudo-t, J_{PC} = 2.5 Hz, C₆H₄), 147.0 (pseudo-t, J_{PC} = 5.3 Hz, C₆H₄) ppm. C₄₄H₆₀N₄P₂ (706.92): calcd. C 74.76, H 8.55, N 7.93; found C 72.60, H 8.30, N 7.24.

1,1',3,3'-Tetrahydro-2,2'-bi-1,3,2-diazaphospholes 3'

From Diazabutadienes 1': Lithium turnings (69 mg, 10 mmol) were added to a solution of the appropriate diazabutadiene 1'a-1'f(5 mmol) in THF (50 mL). The mixture was stirred for 24 h, and the excess Li was removed by filtration. The red solution was cooled to -78 °C, NEt₃HCl (1.38 g, 10 mmol) was added, and the stirred solution slowly warmed until the reaction was complete. The mixture was again cooled to -78 °C, and PCl₃ (690 mg, 5 mmol) was added dropwise. The mixture was warmed to room temperature and stirred for another 2 h. Magnesium turnings (182 mg, 7.5 mmol) and a few crystals of I2 were added, and the solution was irradiated in an ultrasonic bath for 2 h. The volatiles were then removed under reduced pressure, the residue was extracted with hexane, and the filtrate was evaporated to dryness. The spectroscopically pure products were obtained as yellow to light rose solids. Performing the same reaction sequence with 1'g as starting material resulted in quantitative (by ³¹P NMR spectroscopy) formation of **4**'g. No attempts were made to isolate this product.

From 2-Chloro-2,3-dihydro-1*H*-diazaphospholes 2': The appropriate chlorodiazaphospholene (2'a 1.17 g, 5 mmol; 2'f 940 mg, 2.6 mmol; 2'g 2.00 g, 4.5 mmol) was dissolved in THF (10–20 mL). Magnesium turnings (1.5 equiv.) and a crystal of I₂ were added. The mixture was irradiated in an ultrasonic bath for approx. 2 h. The workup was carried out as described above.

From Diazaphospholene 4'd: Compound 4'd was prepared in situ by the addition of LiAlH₄ (1.25 mmol, 1.25 mL, 1 M in THF) to a cooled (-78 °C) solution of 2'd (5 mmol, 1.65 g) in THF (50 mL); the mixture was stirred for 1 h. The quantitative formation of 4'd was established by ³¹P NMR spectroscopy. The mixture was stirred for 72 h with exposure to daylight and then evaporated to dryness. The residue was extracted with toluene (50 mL), the resulting suspension was filtered, and the filtrate was concentrated under reduced pressure to a total volume of 10 mL. The ³¹P NMR spectrum of the filtrate revealed the presence of 3'd as the only phosphorus-containing species. Crystallization at -20 °C produced a

moderate yield of orange crystals, which were isolated by filtration and dried under vacuum.

1,1',3,3'-Tetra-*tert***-butyl-1,1',3,3'-tetrahydro-2,2'-bi-1,3,2-diaza-phosphole (3'a):** Yield 920 mg (92%), m.p. 117 °C. $C_{20}H_{40}N_4P_2$ (398.51): calcd. C 60.28, H 10.12, N 14.06; found C 59.85, H 10.07, N 14.05. The spectroscopic data are identical to those reported elsewhere.^[8]

1,1',**3,3**'-**Tetrakis**(**2,6-dimethylphenyl)-1,1**',**3,3**'-**tetrahydro-2,2**'-**bi-1,3,2-diazaphosphole** (**3**'d): Yield 540 mg (37%), m.p. 140 °C. ¹H NMR (C₆D₆): δ = 6.99 (s, 8 H, *m*-CH), 6.73 (m, 4 H, *p*-CH), 5.68 (m, 2 H, NCH), 2.39 (s, 12 H, *o*-CH₃), 1.88 (m, 12 H, *o*-CH₃) ppm. ³¹P{¹H} NMR (C₆D₆): δ = 87.8 ppm. ¹³C{¹H} NMR (C₆D₆): δ = 141.1 (m, *o*-C), 139.9 (m, *i*-C), 136.7 (m, *o*-C), 131.4 (m, *m*-CH), 126.3 (m, *m*-CH), 123.1 (m, *p*-CH), 114.6 (m, NCH), 20.2 (m, *o*-CH₃), 19.7 (s, *o*-CH₃) ppm.

1,1',3,3'-Tetramesityl-1,1',3,3'-tetrahydro-2,2'-bi-1,3,2-diazaphosphole (3'f): Yield 640 mg (76%), m. p. >200 °C (decomp.). ³¹P{¹H} NMR (CDCl₃): δ = 74.1 ppm. ¹H NMR (CDCl₃): δ = 2.27 (br. s, 12 H, *p*-CH₃), 2.38 (br. s, 24 H, *o*-CH₃), 5.83 (br. d, ³J_{P,H} = 2.4 Hz, 4 H, NCH), 6.90 (s, 8 H, *m*-CH) ppm. C₄₀H₄₈N₄P₂ (646.78): calcd. C 74.28, H 7.48, N 8.66; found C 73.69, H 7.47, N 8.62.

1,1',3,3'-Tetradiisopropylphenyl-1,1',3,3'-tetrahydro-2,2'-bi-1,3,2-diazaphosphole (3'g): Yield 1.30 g (72%), m.p. 157 °C. $C_{52}H_{72}N_4P_2$ (805.12): calcd. C 76.62, H 8.90, N 6.87; found C 75.90, H 8.67, N 6.78. The spectroscopic data are identical with those reported elsewhere.^[9]

1,3-Bis(2,6-dimethylphenyl)-2,3-dihydro-1H-1,3,2-diazaphosphole (4'd): Compound 4'd was prepared as described above by the addition of LiAlH₄ (1.25 mmol, 1.25 mL, 1 M in THF) to a cooled (-78 °C) solution of 2'd (5 mmol, 1.65 g) in THF (50 mL). The mixture was warmed to ambient temperature and stirred for 1 h. During this time, the reaction flask was wrapped with aluminium foil to protect the reaction mixture from light. The solids were removed by filtration and washed with hexane. The filtrates were evaporated to dryness, and the residue was recrystallized from MeCN. Yield 830 mg (56%); m.p. 38 °C. ³¹P NMR (C₆D₆): δ = 64.3 (d, ${}^{1}J_{P,H}$ = 138 Hz) ppm. ${}^{1}H$ NMR (C₆D₆): δ = 2.29 (br. s, 18 H, o-CH₃), 5.74 (d, ${}^{3}J_{P,H} = 2.0$ Hz, 2 H, NCH), 6.92 (s, 6 H, m/p-CH), 7.12 (d, ${}^{1}J_{P,H}$ = 138 Hz, 1 H, PH) ppm. ${}^{13}C{}^{1}H$ NMR (C_6D_6) : $\delta = 19.2$ (br. s, *o*-CH₃), 121.3 (d, ²J_{PC} = 6.3 Hz, NCH), 126.3 (d, ${}^{4}J_{PC}$ = 1.8 Hz, *m*-CH), 128.8 (d, ${}^{5}J_{PC}$ = 1.0 Hz, *p*-CH), 137.3 (br. s, o-C), 140.6 (d, ${}^{2}J_{PC}$ = 13.8 Hz, i-C) ppm. C₁₈H₂₁N₂P (296.35): calcd. C 72.95, H 7.14, N 9.45; found C 72.86, H 7.31, N 9.41

1,3-Bis(2,6-diisopropylphenyl)-1,3,2-diazaphospholidine 4g

From 1g in a One-Pot Procedure: Compound 1g (761 mg, 2 mmol) in THF (10mL) was added dropwise to a cooled (-78 °C) solution of PCl₃ (275 mg, 2 mmol) and Et₃N (607 mg, 6 mmol) in THF (50 mL). A precipitate of Et₃NHCl formed, and the mixture was stirred for 15 min at -78 °C and then for 6 h at room temperature. Magnesium turnings (73 mg, 3 mmol) were added, and the mixture was stirred for 24 h at room temperature and then for 60 h at 50 °C. Completion of the reaction was confirmed by ³¹P{¹H} NMR spectroscopy. The volatiles were then removed under reduced pressure, and the residue was suspended in hexane (20 mL). The solids were removed by filtration and washed with hexane. The filtrates were evaporated to dryness to give spectroscopically pure 4g as a pale yellow solid. Analytically pure single crystals were obtained by recrystallization from hexane. Yield 640 mg (78%), m.p. 138 °C. C₂₆H₃₉N₂P (410.58): calcd. C 76.06, H 9.57, N 6.82; found C 75.89, H 9.85, N 6.79.

From 2g and Super Hydride: Compound 2g (3.00 g, 6.7 mmol) was dissolved in THF (25 mL). With rapid stirring, Li[BHEt₃] (6.75 mL, 1.0 м in THF, 6.7 mmol) was added dropwise over 10 min. The reaction was allowed to stir for 30 min and remained colourless throughout. The volatiles were removed in vacuo, and the resulting white solid was dissolved in pentane (50 mL). The suspension was filtered through a pad of diatomaceous earth. The resulting colourless solution was evaporated to dryness to produce 4g as a white powder. Colourless crystals were grown from slow evaporation of a concentrated toluene solution at ambient temperature. Yield 2.20 g (80%), m.p. 139–140 °C. C₂₆H₃₉N₂P (410.58): calcd. C 76.06, H 9.57, N 6.82; found C 76.10, H 9.57, N 6.75. ³¹P NMR (C₆D₆): δ = 71.0 (d, ¹J_{P,H} = 141 Hz) ppm. ¹H NMR (C₆D₆): δ = 1.18 (d, ${}^{3}\!J_{\rm H,H}$ = 6.8 Hz, 6 H, CH_3), 1.22 (d, ${}^{3}\!J_{\rm H,H}$ = 6.8 Hz, 6 H, CH₃), 1.3 (d, ${}^{3}J_{H,H}$ = 7.0 Hz, 6 H, CH₃), 1.32 (d, ${}^{3}J_{H,H}$ = 7.0 Hz, 6 H, CH₃), 3.32 (m, 4 H, NCH₂), 3.41 (m, 2 H, CH), 3.69 (sept, ${}^{3}J_{H,H}$ = 7.1 Hz, 2 H, CH), 6.98–7.22 (m, 6 H, *m/p*-C₆H₃), 7.04 (d, $J_{P,H} = 141 \text{ Hz}, 1 \text{ H}, \text{PH}) \text{ ppm. } {}^{13}\text{C}{}^{1}\text{H} \text{NMR} (C_6\text{D}_6): \delta = 24.1 \text{ (s,}$ CH₃), 24.7 (d, $J_{P,C}$ = 2 Hz, CH₃), 24.9 (s, CH₃), 25.6 (d, $J_{P,C}$ = 1.3 Hz, CH₃), 28.6 (d, $J_{P,C}$ = 1.5 Hz, CH₃), 29.0 (s, CH₃), 56.0 (d, ${}^{2}J_{P,C}$ = 8.0 Hz, NCH₂), 124.0 (d, $J_{P,C}$ = 1.5 Hz, C₆H₃), 124.3 (s, C_6H_3), 128.1 (s, C_6H_3), 139.2 (d, $J_{P,C} = 14.7$ Hz, C_6H_3), 148.9 (d, $J_{P,C} = 2.9 \text{ Hz}, C_6 \text{H}_3), 150.7, (d, J_{P,C} = 2.8 \text{ Hz}, C_6 \text{H}_3) \text{ ppm. IR}$ (KBr): $\tilde{v} = 2958$ (s), 2924 (m), 2967 (m), 2025 (m, PH), 1464 (m), 1441 (m), 1381 (m), 1360 (m), 1321 (m), 1265 (m), 1205 (m), 1107 (w), 1063 (m), 1040 (m) cm⁻¹. IR (solution in heptane): $\tilde{v} = 2047$ (PH) cm^{-1} .

((2,6-Diisopropylphenyl){2-[(2,6-diisopropylphenyl)(phosphanyl)aminolethyl}amino)aluminum Dihydride (6g): LiAlH₄ (171 mg, 4.5 mmol) was added to a cooled (-78 °C) solution of 2g (1.33 g, 3 mmol) in THF (50 mL). The mixture was warmed to room temperature and stirred for 15 min. The volatiles were removed under reduced pressure, hexane (50 mL) was added, and the solids were separated by filtration. The ³¹P NMR spectrum of the solution showed the presence of a mixture of 4g (75%) and 6g (25%). Storage at -20 °C for 2 d produced a few colourless crystals of 6g, which were manually picked and found to be suitable for a singlecrystal X-ray diffraction study. ³¹P{¹H} NMR (C₆D₆): $\delta = -26.3$ (s) ppm. ³¹P NMR (C₆D₆): $\delta = -26.3$ (tt, ¹ $J_{P,H} = 197$, ³ $J_{P,H} = 6$ Hz) ppm. ¹H NMR (C₆D₆): δ = 1.06 (m, 4 H, THF), 1.13 (d, ³J_{H,H} = 7 Hz, 6 H, CH₃), 1.17 (d, ${}^{3}J_{H,H}$ = 7 Hz, 6 H, CH₃), 1.28 (d, ${}^{3}J_{H,H}$ = 7 Hz, 6 H, CH₃), 1.23 (d, ${}^{3}J_{H,H}$ = 7 Hz, 6 H, CH₃), 3.43 (m, 4 H, NCH₂) 3.47-3.61 (m, 4 H, CH), 3.52 (m, 4 H, THF), 5.44 (d, ${}^{1}J_{P,H} = 197 \text{ Hz}, 2 \text{ H}, \text{ PH}), 7.0-7.22 \text{ (m, 6 H, } m/p\text{-}C_{6}H_{3}) \text{ ppm}.$ The ¹H NMR signal of the protons attached to the aluminium atom could not be detected, and further analytical data are not available as macroscopic samples could not be obtained free from contamination by 4g and other species.

1,3-Bis(2,6-diisopropylphenyl)-1,3,2-diazaphospholidine–Borane (7g)

From 2g and NaBH₄: NaBH₄ (38 mg, 1 mmol) was added to a solution of **2g** (450 mg, 1 mmol) in THF (50 mL). The mixture was stirred for 48 h at room temperature, the solvent was removed under reduced pressure, and the residue was extracted with warm hexane. Pure **7g** was obtained from the extract after recrystallization from THF/hexane at -20 °C. Yield 420 mg (93%), m.p. 163.5 °C. C₂₆H₄₃BN₂P (425.42): calcd. C 73.58, H 9.97, N 6.60; found C 71.21, H 9.80, N 6.27.

From 3g and BH₃·SMe₂: In a 20 mL scintillation vial, **3g** (100 mg, 122 µmol) was dissolved in toluene (5 mL) and BH₃·SMe₂ (122 µL 2.0 M soln. in THF, 244 µmol) was added with rapid stirring. The orange solution was allowed to stir for 30 min, at which point it transitioned to yellow. The solution was filtered through a pad of

diatomaceous earth. Crystallization by slow evaporation of the solvent at ambient temperature yielded X-ray quality, colourless crystals of a solvate of composition 7g·THF [m.p. 156-159 °C. C₂₆H₄₂BN₂P·C₄H₈O (496.52): calcd. C 72.57, H 10.15, N 5.64; found C 72.18, H 10.17, N 6.24]. Complete removal of the solvent yielded 90 mg (yield 87%) of an off-white solid. ³¹P NMR (C_6D_6): δ = 81.7 (br. m, ¹J_{P,H} = 355 Hz) ppm. ¹¹B{¹H} NMR (C₆D₆): δ = -40.2 (br. d, ${}^{1}J_{P,B}$ = 70 Hz) ppm. ¹H NMR (C₆D₆): δ = 7.45 (br. d, ${}^{1}J_{P,H}$ = 355 Hz, PH), 7.10–7.17 (m, 4 H, *m*-CH), 6.96–7.06 (m, 2 H, *p*-CH), 3.73 (sept, ${}^{3}J_{H,H}$ = 6.9 Hz, 2 H, CH), 3.12–3.38 (m, 6 H, NCH₂ and CH), 1.45 (d, ${}^{3}J_{H,H}$ = 6.8 Hz, 6 H, CH₃), 1.23 (d, ${}^{3}J_{H,H}$ = 6.8 Hz, 6 H, CH), 1.21 (d, ${}^{3}J_{H,H}$ = 6.9 Hz, 6 H, CH), 1.17 (d, ${}^{3}J_{H,H} = 6.9$ Hz, 6 H, CH) ppm. ${}^{13}C{}^{1}H$ NMR (C₆D₆): $\delta =$ 24.0 (s, CH₃), 24.4 (s, CH₃), 25.0 (s, CH₃), 25.7 (s, CH₃), 28.5 (s, CH), 29.3 (s, CH), 52.1 (s, NCH₂), 124.1 (d, $J_{P,C} = 1.3$ Hz, C₆H₃), 124.8 (d, $J_{P,C} = 0.5 \text{ Hz}$, C₆H₃), 128.6 (d, $J_{P,C} = 1.5 \text{ Hz}$, C₆H₃), 135.0 (d, $J_{P,C}$ = 6.8 Hz, C₆H₃), 149.2 (d, $J_{P,C}$ = 1.6 Hz, C₆H₃), 149.8 (d, $J_{P,C} = 2.7 \text{ Hz}, C_6 \text{H}_3$) ppm. IR (KBr): $\tilde{v} = 2429, 2373, 2346 \text{ (BH}_3),$ 2255 (PH) cm⁻¹.

1,3-Bis(2,6-diisopropylphenyl)-1,3,2-diazaphospholidine Tris(pentafluorophenyl)borane (8g): In a 20 mL scintillation vial, 3g (30 mg, 37 µmol) was dissolved in toluene (5 mL). With rapid stirring, a solution of $B(C_6F_5)_3$ (37.5 mg, 73 µmol) in toluene (5 mL) was added dropwise over 5 min. The orange solution was allowed to stir for 30 min, at which point it transitioned to colourless. The solution was filtered through a pad of diatomaceous earth, and crystallization by slow evaporation of the solvent at ambient temperature yielded X-ray quality, colourless crystals. Yield: 55 mg (49%); m.p. 145–148 °C. ³¹P NMR (C₆D₆): δ = 66.8 (br. d, ¹J_{P,H} = 404 Hz) ppm. ¹H NMR (C₆D₆): δ = 8.35 (br. s, 0.5 H, PH) 7.13– 6.80 (br. m, 6 H, Ar-H), 3.54-2.86 (br. m, 8 H, CH/NCH₂), 1.16-0.84 (br. m, 24 H, CH₃) ppm. ¹³C{¹H} NMR (C₆D₆): δ = 150.30, 149.24, 147.34, 146.48, 139.02, 135.82, 129.06, 124.88, 54.68, 52.36, 29.63, 28.54, 28.38, 26.50, 24.17, 22.32 ppm. ¹¹B NMR (C_6D_6): δ = 74.3 (br. s) ppm. ¹⁹F NMR (C_6D_6): the signals were prohibitively broad at ambient temperature. IR (KBr): $\tilde{v} = 2314$ (PH) cm⁻¹. C44H39BF15N2P (922.57): calcd. C 57.28, H 4.26, N 3.04; found C 57.13, H 4.53, N 2.99.

Crystal Structure Determinations: Diffraction studies on 3a, 3h, 4g, 6g and 7g were carried out with a Nonius Kappa-CCD diffractometer at 100(2) K with Mo- K_{α} radiation ($\lambda = 0.71073$ Å). The structures were solved by direct methods (SHELXS-97^[20]) and refined with a full-matrix least-squares scheme on F^2 (SHELXL-97^[20]). Semi-empirical absorption corrections were applied for 3a, 3h and 4g. Non-hydrogen atoms were refined anisotropically, H atoms on phosphorus, boron, or aluminium atoms in 4g, 6g, and 7g were refined isotropically, and H atoms in CH bonds were refined with a riding model on F^2 . The hydrogen atoms attached to the phosphorus atoms in 4g and 7g were located and refined freely using isotropic thermal displacement parameters.

Crystals of 4g, 7g and 8g were mounted from Paratone-N oil in a nylon cryoloop or on a MiTeGen MicroMount. The data were collected at 130(2) K (7g) or 150(2) K (4g, 8g) with a Siemens/Bruker diffractometer equipped with an APEX II CCD-detector and a KRYO-FLEX cooling device with Mo- K_{α} radiation ($\lambda = 0.71073$ A). A hemisphere of data was collected with ω scans and with frame exposures of 5 to 30 seconds and 0.3° frame widths. Data collection and initial indexing and cell refinement were handled with the APEX II software.^[21] Frame integration, including Lorentz-polarization corrections, and final cell parameter calculations were carried out with the SAINT+ software.^[21] The data were corrected for absorption by using the SADABS program.^[21] The struc-

ture was solved (direct methods and difference Fourier techniques) and refined by using SHELXL.^[20] All hydrogen-atom positions were idealized and were allowed to ride on the atom to which they were attached. The final refinement included anisotropic temperature factors on all non-hydrogen atoms. The results of the additional studies on 4g and 7g are given in the Supporting Information

3a: Yellow crystals, $C_{20}H_{44}N_4P_2$, *M*: 402.53 gmol⁻¹, crystal size: 0.31 × 0.30 × 0.14 mm, triclinic, space group $P\overline{I}$, *a* = 6.2158(6) Å, *b* = 9.9562(9) Å, *c* = 10.3690(8) Å, *a* = 104.970(4)°, β = 107.243(4)°, γ = 94.332(5)°, *V* = 583.95(9) Å³, *Z* = 1, ρ_{calcd} = 1.145 Mgm⁻³, *F*(000) = 222, θ_{max} = 28.28°, μ = 0.198 mm⁻¹, 9622 reflections measured, 2879 unique reflections [R_{int} = 0.035] for structure solution and refinement with 118 parameters, *R*1 [$I > 2\sigma(I)$] = 0.038, *wR*2 = 0.082, largest diff. peak and hole: 0.502 and -0.246 e Å⁻³.

3h: Light yellow crystals, $C_{44}H_{60}N_4P_2$, $M = 706.90 \text{ gmol}^{-1}$, crystal size: $0.21 \times 0.12 \times 0.08 \text{ mm}$, monoclinic, space group C2/c, a = 29.019(5) Å, b = 7.0404(15) Å, c = 22.511(4) Å, $\beta = 122.750(5)^\circ$, V = 3868.0(13) Å³, Z = 4, $\rho_{calcd} = 1.214 \text{ Mgm}^{-3}$, F(000) = 1528, $\theta_{max} = 28.28^\circ$, $\mu = 0.149 \text{ mm}^{-1}$, 15184 reflections measured, 4755 unique reflections [$R_{int} = 0.110$] for structure solution and refinement with 227 parameters, R1 [$I > 2\sigma(I)$] = 0.062, wR2 = 0.115, largest diff. peak and hole: 0.335 and -0.351 eÅ⁻³.

4g: Colourless crystals, $C_{26}H_{39}N_2P M = 410.56 \text{ gmol}^{-1}$, crystal size: 0.49 × 0.26 × 0.25 mm, monoclinic, space group $P2_1/n$, a = 19.6355(13) Å, b = 6.4031(4) Å, c = 20.3670(14) Å, $\beta = 107.602(3)^\circ$, V = 2440.8(3) A³, Z = 4, $\rho_{calcd} = 1.117$ Mg m⁻³, F(000) = 896, $\theta_{max} = 28.28^\circ$, $\mu = 0.127$ mm⁻¹, 38687 reflections measured, 5991 unique reflections [$R_{int} = 0.039$] for structure solution and refinement with 256 parameters, R1 [$I > 2\sigma(I)$] = 0.043, wR2 = 0.102, largest diff. peak and hole 0.406 and -0.309 e Å⁻³.

6g: Colourless crystals, $C_{30}H_{50}AlN_2OP$, $M = 512.35 \text{ gmol}^{-1}$, crystal size: $0.25 \times 0.21 \times 0.13 \text{ mm}$, monoclinic, space group $P2_1/c$, a = 11.4877(14) Å, b = 16.524(2) Å, c = 16.392(2) Å, $\beta = 97.247(5)^\circ$, V = 3086.8(7) A³, Z = 4, $\rho_{calcd} = 1.103 \text{ Mgm}^{-3}$, F(000) = 1120, $\theta_{max} = 26.35^\circ$, $\mu = 0.141 \text{ mm}^{-1}$, 23075 reflections measured, 6279 unique reflections [$R_{int} = 0.092$] for structure solution and refinement with 328 parameters, R1 [$I > 2\sigma(I)$] = 0.060, wR2 = 0.108, largest diff. peak and hole: 0.734 and -0.357 eÅ⁻³.

7g: Colourless crystals, $C_{26}H_{42}N_2PB$, $M = 424.4 \text{ gmol}^{-1}$, crystal size: $0.46 \times 0.22 \times 0.19 \text{ mm}$, orthorhombic, space group *Pnma*, a = 11.9870(13) Å, b = 20.809(2) Å, c = 10.5990(9) Å, V = 2643.7(5) A³, Z = 4, $\rho_{calcd} = 1.066 \text{ Mgm}^{-3}$, F(000) = 928, $\theta_{max} = 26.38$, $\mu = 0.118 \text{ mm}^{-1}$, 17895 reflections measured, 2775 unique reflections [$R_{int} = 0.0795$] for structure solution and refinement with 149 parameters, $R1 \ [I > 2\sigma(I)] = 0.046$, wR2 = 0.091, largest diff. peak and hole: 0.223 and -0.265 eÅ⁻³.

8g: Colourless crystals, $C_{44}H_{39}BF_{15}N_2P$, $M = 922.55 \text{ gmol}^{-1}$, crystal size: $0.33 \times 0.31 \times 0.15 \text{ mm}$, monoclinic, space group $P2_1/c$, a = 11.410(3) Å, b = 17.962(5) Å, c = 20.961(6) Å, $\beta = 99.656(4)^\circ$, V = 4235(2) A³, Z = 4, $\rho_{calcd} = 1.447$ Mgm⁻³, F(000) = 1888, $\theta_{max} = 28.15^\circ$, $\mu = 0.166$ mm⁻¹, 41000 reflections measured, 7462 unique reflections [$R_{int} = 0.037$] for structure solution and refinement with 706 parameters (906 restraints), R1 [$I > 2\sigma(I)$] = 0.044, wR2 = 0.113, largest diff. peak and hole: 0.470 and -0.331 e Å⁻³.

CCDC-913787 (for **3a**), -913803 (for **3h**), -913802 (for **4g**), -913789 (for **6g**), -913868 (for **7g**), and -912900 (for **8g**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

2049

FULL PAPER

Supporting Information (see footnote on the first page of this article): Synthetic procedures and crystallographic and spectroscopic data for 2c,h; spectroscopic data for 4h; additional crystallographic data for 4g and 7g, crystallographic data for an oxidation product of 8g.

Acknowledgments

Financial support by Deutsche Forschungsgemeinschaft (DFG), Deutscher Akademischer Austauschdienst (DAAD) (to D. F.) and the Academy of Finland (to M. N.) is gratefully acknowledged. The authors thank Dr. Wolfgang Frey (Institut für Organische Chemie, University of Stuttgart) for measuring X-ray diffraction data sets and J. Trinkner and K. Wohlbold (Institut für Organische Chemie, University of Stuttgart) for recording the mass spectra.

- a) H. Nöth, H.-J. Vetter, Naturwissenschaften 1960, 204; b) H. Nöth, H.-J. Vetter, Chem. Ber. 1961, 94, 1505; c) H. Westermann, M. Nieger, E. Niecke, Chem. Ber. 1991, 124, 13–16; d) J. Niemann, W. W. Schoeller, V. von der Gönna, E. Niecke, Chem. Ber. 1991, 124, 1563–1565; e) H. R. G. Bender, E. Niecke, M. Nieger, H. Westermann, Z. Anorg. Allg. Chem. 1994, 620, 1194–1202; f) W. Domanska-Babul, J. Chojnacki, E. Matern, J. Pikies, J. Organomet. Chem. 2007, 692, 3640–3648; g) R. Grubba, L. Ponikiewski, J. Chojnacki, J. Pikies, Acta Crystallogr., Sect. E 2009, 65, 02214; h) R. Grubba, A. Wisniewska, K. Baranowska, E. Matern, J. Pikies, Dalton Trans. 2011, 40, 2017.
- [2] a) J.-P. Bezombes, P. B. Hitchcock, M. F. Lappert, J. E. Nycz, *Dalton Trans.* 2004, 499–501; b) J.-P. Bezombes, K. B. Borisenko, P. B. Hitchcock, M. F. Lappert, J. E. Nycz, D. W. H. Rankin, H. E. Robertson, *Dalton Trans.* 2004, 1980–1988.
- [3] M. J. S. Gynane, A. Hudson, M. F. Lappert, P. P. Power, H. Goldwhite, J. Chem. Soc., Dalton Trans. 1980, 2428.
- [4] B. M. Cossairt, C. C. Cummins, J. Am. Chem. Soc. 2009, 131, 15501.
- [5] O. Puntigam, I. Hajdók, M. Nieger, M. Niemeyer, S. Strobel, D. Gudat, Z. Anorg. Allg. Chem. 2011, 637, 988–994.

- [6] N. A. Giffin, A. D. Hendsbee, T. L. Roemmele, M. D. Lumsden, C. C. Pye, J. D. Masuda, *Inorg. Chem.* 2012, 51, 11837–11850.
- [7] A. Haghverdi, Dissertation, University of Bonn, Germany, 2000.
- [8] R. Edge, R. J. Less, E. J. L. McInnes, K. Müther, V. Naseri, J. M. Rawson, D. S. Wright, *Chem. Commun.* 2009, 1691–1693.
- [9] D. Förster, H. Dilger, F. Ehret, M. Nieger, D. Gudat, *Eur. J. Inorg. Chem.* 2011, 3989–3994.
- [10] Some derivatives containing six-membered rings have also been described, see: a) I. V. Komlev, A. I. Zavalishina, I. P. Chernikevich, D. A. Predvoditelev, E. E. Nifant'ev, *Zh. Obshch. Khim.* **1972**, *42*, 802; b) E. E. Nifantiev, N. S. Vyazakin, S. F. Sorokina, L. A. Vorobiev, O. A. Vyazankina, D. A. Bravo-Zhivotovsky, A. R. Bekker, J. Organomet. Chem. **1984**, *277*, 211–225.
- [11] M. K. Denk, S. Gupta, A. J. Lough, Eur. J. Inorg. Chem. 1999, 41–49.
- [12] C. J. Carmalt, V. Lomeli, B. G. McBurnett, A. H. Cowley, *Chem. Commun.* 1997, 2095–2096.
- [13] S. Burck, D. Gudat, M. Nieger, W.-W. du Mont, J. Am. Chem. Soc. 2006, 128, 3946–3955.
- [14] S. Burck, D. Gudat, M. Nieger, Angew. Chem. 2004, 116, 4905– 4908; Angew. Chem. Int. Ed. 2004, 43, 4801–4804.
- [15] D. Gudat, A. Haghverdi, M. Nieger, Angew. Chem. 2000, 112, 3211–3214; Angew. Chem. Int. Ed. 2004, 39, 3084–3086.
- [16] a) R. B. King, N. D. Sadanani, P. M. Sundaram, *Phosphorus Sulfur Relat. Elem.* **1983**, *18*, 125; b) R. B. King, N. D. Sadanani, P. M. Sundaram, J. Chem. Soc., Chem. Commun. **1983**, 477.
- [17] R. T. Paine, H. Nöth, Chem. Rev. 1995, 95, 343-479.
- [18] a) S. J. Lancaster, A. J. Mountford, D. L. Hughes, M. Schormann, M. Bochmann, J. Organomet. Chem. 2003, 680, 193–205; b) G. C. Welch, T. Holtrichter-Roessmann, D. W. Stephan, Inorg. Chem. 2008, 47, 1904–1906; c) G. C. Welch, R. Prieto, M. A. Dureen, A. J. Lough, O. A. Labeodan, T. Holtrichter-Rossmann, D. W. Stephan, Dalton Trans. 2009, 1559–1570.
- [19] S. Stoll, A. Schweiger, J. Magn. Reson. 2006, 178, 42-55.
- [20] G. M. Sheldrick, Acta Crystallogr., Sect. A 2008, 64, 112-122.
- [21] APEX II, SAINT+ and SADABS, Bruker AXS Inc., Madison, WI 2008.

Received: December 5, 2012

Published Online: February 11, 2013