

Cascade Radical Cyclization on Alkynyl Vinylogous Carbonates for the Divergent Synthesis of Tetrasubstituted Furans and Dihydrofurans

Santosh J. Gharpure,*[©] Padmaja,[©] V. Prasath, and Yogesh G. Shelke[©]

Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India

Supporting Information

ABSTRACT: A single alkynyl vinylogous carbonate was elaborated to tetrasubstituted furan or dihydrofuran via a cascade inter-intramolecular radical reaction by changing the radical being added. The strategy could be used in the synthesis of polycyclic heterocycles as well as bis-furan exhibiting atropisomerism. Installation of a new furan motif on the existing one was feasible by iteration. Stannyl dihydrofuran derivative was used in Stille coupling, whereas intramolecular Friedel-Crafts acylation on the furan gave furanonaphthol.

ensely substituted furans constitute important congeners present in many natural products and are fast emerging as an important class of therapeutic agents.¹ These scaffolds are also found in vital fragrances and in various biologically active molecules (Figure 1).² They have also proved to be efficient

Figure 1. Biologically active substituted furans.

synthons in the total synthesis of various natural products.³ Not surprisingly, synthesis of furans has attracted enormous attention in recent past.⁴ However, transformation of furan to afford tetrasubstituted furans is extremely challenging due to regioselectivity issues, thus necessitating development of new methods consisting of appropriately substituted precursors.⁵

In this context, vinylogous carbonates/esters have been used in the synthesis of substituted furans, which typically involves a metal-assisted Claisen rearrangement (or its variant), followed by cyclization.⁶ Interestingly, even though the vinylogous carbonates (β -alkoxy acrylates) are excellent radical precursors for the synthesis of cyclic ethers,⁷ their utility for furan/ dihydrofuran synthesis remains unexplored. It is also pertinent to mention that general strategies that give access to tetrasubstituted dihydrofuran are uncommon. While radical cyclization using thiyl or stannyl radical addition to terminal alkynes has been explored exhaustively, the same is not true for internal alkynes, perhaps due to regioselectivity problems encountered in these reactions.⁸ Recently, we disclosed a highly regioselective addition of thiyl radical to internal alkynes, followed by cyclization for the synthesis of N-fused indole and indoline derivatives.⁹ In another study, we had used a tandem radical cyclization to vinylogous carbonates for the stereoselective synthesis of angular triquinanes.¹⁰ Herein, we disclose an approach for the divergent synthesis of tetrasubstituted furan/dihydrofuran by a cascade radical cyclization on alkynyl vinylogous carbonates, wherein the outcome is dependent on the hydrogen abstraction ability of the radical being added.

Our initial studies began with the idea of synthesizing tetrasubstituted dihydrofuran 1a using a cascade radical cyclization from an alkynyl vinylogous carbonate 2a initiated by an appropriate radical precursor $(X = PhS and n-Bu_3Sn)$ (Table 1). It was envisaged that the problem of regioselectivity could be circumvented by employing aryl alkynes. To test our hypothesis, alkynyl vinylogous carbonate 2a was subjected to radical cyclization using PhSH (1.0 equiv) and AIBN (0.3 equiv) in toluene at reflux. Interestingly, the tetrasubstituted dihydrofuran 1a (X = SPh) was obtained as only minor product along with the tetrasubstituted furan 3a (X = SPh)

Received: November 16, 2018

Table 1. Optimization of Cascade Radical Cyclization^a

^{*a*}In all the cases **2a** (0.39 mmol) was reacted with AIBN and thiophenol/*n*-Bu₃SnH at reflux in dry toluene (15 mL) for ca. 6 h. ^{*b*}Isolated yield. ^{*c*}dr = 1:1, measured on the crude reaction mixture by ¹H NMR.

(Table 1, entry 1). Increasing the amount of PhSH resulted in an exclusive formation of furan **3a** (Table 1, entry 2). Reducing the amount of AIBN resulted in poorer yield, whereas increasing equivalents of both PhSH and AIBN resulted in an efficient formation of furan (Table 1, entries 3–6).

Interestingly, when n-Bu₃SnH was used in place of PhSH, no formation of furan derivative was observed, instead dihydrofuran **4a** (X= SnBu₃) was obtained as the only product (Table 1, entries 7 and 8) (see, Supporting Information for details). Given this divergence in the outcome, we decided to explore both these reactions to study their scope and utility.

To begin with, attention was turned toward the synthesis of furan derivatives 3. Various alkynyl vinylogous carbonates 2bg bearing aliphatic substitution at the α position of the oxygen were subjected to optimized reaction conditions to furnish the corresponding tetrasubstituted furans 3b-g in good to excellent yield (Scheme 1). The structure of furan 3f was also confirmed by single crystal X-ray diffraction studies.¹¹ The efficiency of the reaction was found to be unaffected by the steric bulk of the substitution. On the other hand, aromatic substitution at the α position led to tetrasubstituted furans 3h-i with slightly diminished yields. Electron-donating and -withdrawing groups at the para position of the phenyl ring tethered to the alkynyl vinylogous carbonate had little impact on the formation of tetrasubstituted furans 3j-k. Heterocycles namely, benzothiophene and N-methylindole bearing tetrasubstituted furans 31-m could also be accessed readily. Trimethylsilyl group too survived the radical cyclization and gave the corresponding tetrasubstituted furans 3n-o in excellent to good yield. Alkynyl thioethers participated in the reaction with complete regioselectivity, and corresponding bisthiophenyl-substituted furan 3p was formed as the sole product. Unfortunately, alkynes having alkyl, ester, or amino groups (ynamide) when subjected to optimized radical cyclization condition resulted in only decomposition of the starting compounds, and the corresponding tetrasubstituted furans 3q-s could not be isolated. Alkynyl vinylogous ester and enol ethers too were found to be good substrates, and corresponding furans 3t-u were obtained in good yield highlighting that the scope of the reaction is not limited to varied vinylogous carbonates. Moreover, ester-substituted vinylogous carbonate gave the corresponding dihydrofuran

^{*a*}Isolated yield. ^{*b*}Numbers in parentheses refer to dr measured by ¹H NMR on the crude reaction mixture.

1v with excellent diastereoselectivity. Interestingly, 2-naphthalenethiol and thiophenols bearing electron-donating as well as -withdrawing substituents proved to be good radical precursors, and the tetrasubstituted furans 3w-y were obtained in moderate yields. This suggested that differentiation can be brought about in the structure of the furan from very same precursors.

Next, the cascade radical cyclization for the synthesis of tetrasubstituted dihydrofuran was explored using tributyltinhydride as the radical precursor. As anticipated, substitution at the α position of the alkynyl vinylogous carbonate affected the diastereoselectivity of the reaction. Thus, while ethylsubstituted dihydrofuran 4a was formed with poor diastereoselectivity (cf. Table 1), the cyclohexyl and t-butylsubstituted dihydrofurans 4b-c were obtained with improved diastereoselectivity, with the latter being better (Scheme 2). However, the phenyl group as substitution furnished the dihydrofuran 4d with reduced diastereoselectivity (dr = 1.6:1). The silyl group survived the radical reaction to form the tetrasubstituted dihydrofuran 4e-f in excellent yield. Interestingly, the ester-substituted alkynyl vinylogous carbonate, which failed to give furan 3r under thiyl radical conditions, participated smoothly in stannyl radical-mediated cascade cyclization to form dihydrofuran 4g in good yield and diastereoselectivity (15:1). Further, alkynyl vinylogous carbonate with ester substitution also gave the corresponding stannyl-substituted dihydrofuran 4i in good yield as a single

^{*a*}Numbers in parentheses refer to dr measured by ¹H NMR on the crude reaction mixture. ^{*b*}Isolated yield.

diastereomer. Dihydrofurans **4h**–**i** are noteworthy as they contain tertiary ether linkages, which are otherwise difficult to access in good yields and diastereoselectivity by conventional methods.

The divergent outcome of thiyl and stannyl radical initiated radical cyclization leading to furan or dihydrofuran could be explained as follows (Scheme 3): The intermolecular addition

of initial thivl or stannyl radical to alkyne in a regioselective manner generates the aryl vinyl radical A. The regioselectivity is perhaps the outcome of the relative stability of the vinyl radical.⁸ Alternatively, the reversible addition of the thiyl or stannyl radical to the alkyne followed by the favored 5-exo-trig radical cyclization to vinylogous carbonate enables the equilibrium to shift in the forward direction to furnish B. This radical, formed α to the ester, **B** abstracts hydrogen from n-Bu₃SnH or PhSH to give the dihydrofuran derivative C. When the reaction is carried out with excess of PhSH and AIBN, another radical process is initiated in which PhS[•] picks up hydrogen from the (either of the) second position of the dihydrofuran C (only one side abstraction of H is shown) to generate resonance stabilized allylic radical D. Abstraction of another hydrogen from the (corresponding) fifth position of the dihydrofuran D to gain aromaticity results in the formation of a highly substituted furan skeleton 3.

We carried out some experiments to test the proposed step of conversion of the dihydrofuran to furan (cf. $C \rightarrow D \rightarrow 3$ in Scheme 3). Thus, the vinylogous carbonate 2l was subjected to radical condition, and reaction was stopped after 3 h to furnish the tetrasubstituted dihydrofuran 1l (Scheme 4). When this dihydrofuran 1l was further subjected to radical reaction using

Scheme 4. Support for the Proposed Mechanism

PhSH/AIBN in refluxing toluene, the corresponding oxidized tetrasubstituted furan **3I** was obtained quantitatively. On the other hand, when the stannyl-substituted dihydrofurans were resubjected to the radical conditions using *n*-Bu₃SnH/AIBN (or PhSH/AIBN), it only resulted in decomposition. Thus, it was apparent that thiyl radical enables *5-exo-trig* cyclization as well as oxidation to give furan. It could be argued that since the bond energy of PhS-H is greater than that of *n*-Bu₃Sn-H, the thiyl radical can participate in oxidation of dihydrofurans to the corresponding furans.¹²

In one of the experiments, when β -methoxy naphthylsubstituted alkynyl vinylogous carbonate 2z was subjected to cascade radical cyclization under optimized conditions, formation of an inseparable mixture of the dihydrofuranyl tetracyclic-fused framework **5** along with the corresponding tetrasubstituted furan 3z was observed. The mixture upon reduction with LiAlH₄ furnished a separable mixture of alcohols **6** and **7** in 95% over two steps (Scheme 5).

Formation of the fused dihydrofuran **5** could be explained by the fact that, due to the proximity of the aryl ring tethered onto the alkyne, the radical α to the ester (cf. intermediate **B**, Scheme 3) adds to the former giving a six-membered ring stereoselectively. These experiments gave further support to the proposed mechanism. Interestingly, based on ¹H NMR, we observed that compound 7 demonstrated atropisomerism.

To probe this atropisomeric behavior further, we subjected diyne vinylogous carbonate **8a** to cascade 5-*exo-trig* radical cyclization and obtained the tetrasubstituted bis-furan **9a** in moderate yield. Surprisingly, this molecule **9a** also exhibited atropisomerism, which could be identified by the occurrence of an AB quartet for the CH₂ protons α to the ester in ¹H NMR spectrum. To the best of our knowledge, such atropisomerism displayed by a bis-furan molecule **9a** is unprecedented to date,¹³ thus enhancing the uniqueness and importance of the method developed (Scheme 6). Further, 2,5-disubstituted Scheme 6. Cascade Radical Cyclization on Diynes To Form Polyheterocycles

thiophene alkynyl vinologous carbonate **8b**, under the standard thiophenyl radical cascade condition, gave the tricyclic tetrasubstituted furanyl thiophene **9b** in moderate yield, which did not exhibit atropisomerism.

We envisioned that the ester group of the product furan is a good handle for allowing iteration of the reaction sequence. To test this, the tetrasusbstituted furan **3a** was reduced to the corresponding alcohol **10** (Scheme 7). Oxidation of alcohol **10**

followed by addition of lithiated phenylacetylene to the resultant aldehyde furnished the secondary alcohol 11. DABCO catalyzed Michael addition of the alcohol 11 to ethyl propiolate (12) gave the corresponding vinylogous carbonate 13, which when subjected to cascade radical cyclization installed the second tetrasubstituted furan 14 in moderate overall yield.

We also explored functionalization of the furans **3** and dihydrofurans **4**. Thus, desulfurization of the furan **30** led to the disubstituted silyl-furan **15**, which could be a potential synthon for rosefuran or its sila-analogue.² In another direction, acid-mediated destannylation of **4f** gave trisubstituted dihydrofuran **16**, a potential synthon for Hagen's gland lactone.¹⁴ Stannyl-dihydrofuran **4a** also proved to be an excellent Stille coupling partner, and the tetrasubstituted dihydrofuran **17** was obtained in good yield (Scheme 8). Finally, base-mediated hydrolysis of the ester **3c** gave the acid **18**. Conversion of the acid **18** to its acid chloride followed by intramolecular Friedel–Crafts acylation gave a furanonaphthol derivative **19**.

Scheme 8. Functionalization of Furans 3 and Dihydrofurans 4

In conclusion, we have developed a robust, chemodivergent, cascade thiyl and stannyl radical cyclization on alkynyl vinylogous carbonates to gain an expeditious access to tetrasubstituted furans and dihydrofurans, respectively. The reaction displayed broad substrate scope even with thiophenols. Interestingly, PhSH not only acts as radical precursor but also acts as an oxidant (along with AIBN) converting the dihydrofurans to furans. Cascade radical cyclization on diynes gave the first example of atropisomeric bis-furan and is applicable to the synthesis of polyheterocyclic systems. The reaction sequence could be iterated to install a new furan ring. The dihydrofurans and furans could be elaborated to useful derivatives such as furanonaphthols.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.8b03668.

Synthetic procedures and characterization data of products (PDF)

Accession Codes

CCDC 1878359 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

*E-mail: sjgharpure@iitb.ac.in ORCID [®]

Santosh J. Gharpure: 0000-0002-6653-7236 Padmaja: 0000-0001-8988-2553 Yogesh G. Shelke: 0000-0003-3157-1159 Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank SERB, New Delhi, for financial support. We acknowledge the efforts of Mr. Pradeep Billas (M.Sc., IIT Bombay) for carrying out the initial experiments in this project. We thank Mr. Darshan Mhatre of the X-ray facility of the Department of Chemistry, IIT Bombay, for collecting the crystallographic data and IRCC, IIT Bombay, for funding. We are grateful to IIT Bombay for the award of research fellowship to Padmaja and CSIR, New Delhi, to V.P. and Y.G.S.

REFERENCES

(1) Banerjee, R.; Kumar, H.; Banerjee, M. Int. J. Rev. Life. Sci. 2012, 1, 7.

(2) (a) Ohloff, G.; Pickenhagen, W.; Kraft, P. Scent and Chemistry: The molecular world of odors; Wiley-VCH: Zürich, Switzerland, 2012; Chapter 7, pp 324–325.

(3) For selected recent examples, see: (a) Maddaford, S. P.; Andersen, N. G.; Cristofoli, W. A.; Keay, B. A. J. Am. Chem. Soc. 1996, 118, 10766. (b) Oblak, E. Z.; VanHeyst, M. D.; Li, J.; Wiemer, A. J.; Wright. J. Am. Chem. Soc. 2014, 136, 4309. (c) Bel, M. D.; Abela, A. R.; Ng, J. D.; Guerrero, C. A. J. Am. Chem. Soc. 2017, 139, 6819.
(d) Hao, H.-D.; Trauner, D. J. Am. Chem. Soc. 2017, 139, 4117.
(e) Reddy, M. D.; Kobori, H.; Mori, T.; Wu, J.; Kawagishi, H.; Watkins, J. J. Nat. Prod. 2017, 80, 2561. (f) Mohamed, O. G.; Khalil, Z. G.; Capon, R. J. Org. Lett. 2018, 20, 377.

(4) Reviews: (a) Kirsch, S. F. Org. Biomol. Chem. 2006, 4, 2076.
(b) Blanc, A.; Bénéteau, V.; Weibel, J.-M.; Pale, P. Org. Biomol. Chem. 2016, 14, 9184.

(5) For selected recent examples, see: (a) Fournier, J.; Arseniyadis, S.; Cossy, J. Angew. Chem., Int. Ed. 2012, 51, 7562. (b) Xue, C.; Huang, X.; Wu, S.; Zhou, J.; Dai, J.; Fu, C.; Ma, S. Chem. Commun. 2015, 51, 17112. (c) Li, H.-L.; Wang, Y.; Sun, P.-P.; Luo, X.; Shen, Z.; Deng, W.-P. Chem. - Eur. J. 2016, 22, 9348. (d) Liu, J.; Ye, W.; Qing, X.; Wang, C. J. Org. Chem. 2016, 81, 7970. (e) Liu, S.; Yang, P.; Peng, S.; Zhu, C.; Cao, S.; Li, J.; Sun, J. Chem. Commun. 2017, 53, 1152. (f) Han, Y.-Y.; Jiao, Y.-Y.; Ren, D.; Hu, Z.; Shen, S.; Yu, S. Asian J. Org. Chem. 2017, 6, 414. (g) Naveen, T.; Deb, A.; Maiti, D. Angew. Chem., Int. Ed. 2017, 56, 1111. (h) Wang, Q.; Liu, Z.; Lou, J.; Yu, Z. Org. Lett. 2018, 20, 6007. (i) Wang, X.; Lerchen, A.; Daniliuc, C. G.; Glorius, F. Angew. Chem., Int. Ed. 2018, 57, 1712.

(6) (a) Suhre, M. H.; Reif, M.; Kirsch, S. F. Org. Lett. 2005, 7, 3925.
(b) Cao, H.; Jiang, H.; Yao, W.; Liu, X. Org. Lett. 2009, 11, 1931.
(c) Cao, H.; Jiang, H.; Mai, R.; Zhu, S.; Qi, C. Adv. Synth. Catal. 2010, 352, 143. (d) Jiang, H.; Yao, W.; Cao, H.; Huang, H.; Cao, D. J. Org. Chem. 2010, 75, 5347. (e) Gille, A.; Rehbein, J.; Hiersemann, M. Org. Lett. 2011, 13, 2122. (f) Tejedor, D.; Cotos, L.; Garcia-Tellado, F. Org. Lett. 2011, 13, 4422. (g) Cui, X.; Xu, X.; Wojtas, L.; Kim, M. M.; Zhang, X. P. J. Am. Chem. Soc. 2012, 134, 19981. (h) Palisse, A.; Kirsch, S. F. Eur. J. Org. Chem. 2014, 2014, 7095.

(7) (a) Taniguchi, T.; Fujii, T.; Idota, A.; Ishibashi, H. Org. Lett.
2009, 11, 3298. (b) Lee, E. Pure Appl. Chem. 2005, 77, 2073.
(c) Kang, E. J.; Cho, E. J.; Ji, M. K.; Lee, Y. E.; Shin, D. M.; Choi, S. Y.; Chung, Y. K.; Kim, J. S.; Kim, H. J.; Lee, S. G.; Lah, M. S.; Lee, E. J. Org. Chem. 2005, 70, 6321. (d) Song, H. Y.; Joo, J. M.; Kang, J. W.; Kim, D. S.; Jung, C. K.; Kwak, H. S.; Park, J. H.; Lee, E.; Hong, C. Y.; Jeong, S. W.; Jeon, K.; Park, J. H. J. Org. Chem. 2003, 68, 8080.
(e) Suzuki, K.; Matsukura, H.; Matsuo, G.; Koshino, H.; Nakata, T. Tetrahedron Lett. 2002, 43, 8653. (f) Evans, P. A.; Raina, S.; Ahsan, K. Chem. Commun. 2001, 2504. (g) Evans, P. A.; Roseman, J. D. J. Org. Chem. 1996, 61, 2252. (h) Lee, E.; Tae, J. S.; Lee, C.; Park, C. M. Tetrahedron Lett. 1993, 34, 4831.

(8) Reviews: (a) Wille, U. Chem. Rev. 2013, 113, 813. (b) Dénes, F.; Pichowicz, M.; Povie, G.; Renaud, P. Chem. Rev. 2014, 114, 2587. Zard, S. S. Radical Reactions in Organic Synthesis; Oxford University Express: Oxford, U.K., 2003; p 256.

(9) Gharpure, S. J.; Shelke, Y. G. Org. Lett. 2017, 19, 5022.

(10) Gharpure, S. J.; Niranjana, P.; Porwal, S. K. Org. Lett. 2012, 14, 5476.

(11) CCDC 1878359 **3f** contains the supplementary crystallographic data for this paper. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/datarequest/cif.

(12) Crich, D.; Grant, D.; Krishnamurthy, V.; Patel, M. Acc. Chem. Res. 2007, 40, 453.

(13) Review: Bonne, D.; Rodriguez, J. *Eur. J. Org. Chem.* **2018**, 2018, 2417. For an example of enantioenriched atropisomeric aryl furans, see: Raut, V. S.; Jean, M.; Vanthuyne, N.; Roussel, C.; Constantieux, T.; Bressy, C.; Bugaut, X.; Bonne, D.; Rodriguez, J. *J. Am. Chem. Soc.* **2017**, 139, 2140.

(14) Gharpure, S. J.; Nanda, L. N.; Shukla, M. K. Eur. J. Org. Chem. 2011, 2011, 6632.