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Synopsis. Cyclization of N,N’-[N-(benzyloxycarbonyl)
(Z)-iminobis(methylenecarbonyl)]bis[glycine] dimethyl ester
to the hydantoin derivative took place easily under mild
ammonolysis conditions. Replacement of Z by p-methoxy-
benzyloxycarbonyl also led to the cyclization. Influence of
different substituent groups on the cyclization was studied
with some N-Z-dipeptide methyl esters.

The benzyloxycarbonyl (Z) has been used frequently
in peptide synthesis as an amino-protecting group.
However, elimination of Z has been reported in some
instances. For example, some N-Z-peptide esters give
hydantoins or urea derivatives with the loss of benzyl
alcohol by alkaline saponification, where glycine is
next to N-terminal residue.l-® In addition, N-Z-
dipeptide esters carrying glycine as C-terminus were
converted to 3-(carbamoylmethyl)hydantoins, when
the side chain of the N-terminal amino acid is rather
large such as benzyl, 2-(methylthio)ethyl, or isobutyl
group.4® The present study concerns enhanced cycli-
zation of N-Z- and N-p-methoxybenzyloxycarbonyl
(Z(OMe))-N-substituted glycylglycine methyl esters
with ammonia.

Results and Discussion

In an attempt to obtain N,N’-[N-Z-iminobis-
(methylenecarbonyl)]bis[glycinamide] (2), the corre-
sponding dimethyl ester (1) was subjected to ammonol-
ysis in methanol (MeOH) containing dry ammonia
(ca. 6 M) (1 M=1 mol dm—3) at room temperature for
24 h. Contrary to expectation, the product was soluble
in water, H and 3C NMR spectra of which no longer
showed signals characteristic of phenyl group. The
amino acid analysis of the acid hydrolyzate revealed
the presence of glycine and ammonia in a molar ratio
of 1:2, and the absence of iminodiacetic acid (IDAA).
The findings suggested that cyclization with a loss of Z
group took place during the ammonolysis. The 1H
NMR spectrum was well consistent with a cyclic struc-
ture, 3-(carbamoylmethyl)-1-(carbamoylmethylamino-
carbonylmethyl)hydantoin (3). The signals could be
assigned as follows: A doublet at 6=3.66 is ascribed to
NHCH: protons; three singlets at 3.94, 4.02, and 4.07
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to the three CHz, respectively; a pair of singlet at 7.08
and 7.35 to CONHa; a pair of singlet at 7.22 and 7.56 to
CONHy3; a triplet at 8.32 to NH.

For further identification of the product, the acid
hydrolyzate was trimethylsilylated with N,O-bis(tri-
methylsilyl)(TMS)-trifluoroacetamide (BSTFA) and
then analyzed by the gas chromatography-mass spectro-
metry (GC-MS). On GC, two peaks eluted: The first
peak was identified as an N,N,O-tri-TMS derivative of
glycine. In the mass spectrum of the second peak, the
molecular (M*) and M—15 (CHs) ions were observed at
m/z 360 and 345, respectively, indicating that this
compound is the 0,0’-di-TMS derivative of 1,3-
bis(carboxymethyl)hydantoin (mol. wt.=360). Thus
the ammonolysis product was confirmed not to be the
linear diamide (2), but the cyclic amide (hydantoin
derivative, 3).

As shown in Scheme 1, ring closure to 3 involves
proton abstraction from nitrogen of the peptide bonds
of 2. Then, the resulting anion (4) attacks the carbonyl
carbon of the Z group, giving 3 along with the
benzyloxyde anion. The ring closure is completed
when the benzyloxyde anion abstracts a proton from
the conjugate acid BH* forming benzyl alcohol. The
hydantoin ring is not opened by the excess of
ammonia because of its weak basicity.® The time
course of the ammonolysis at room temperature was
followed by HPLC. Benzyl alcohol and 3 were the
final products. In contrast, 2 was found to be an inter-
mediate product, which disappeared completely in 8 h.

When Z(OMe) was used as an N-protecting group
(5) instead of Z, the cyclization also took place, but that
was not the case for t-butoxycarbonyl (Boc) group (6);
in the latter instance, the N-protected linear diamide
(7) was obtained. This difference can be explained in
terms of the nature of the N-protecting groups. The
phenyl group of Z and Z(OMe) stabilizes the ben-
zyloxyde-type anion by electron-withdrawing, leading
to the cyclization. In contrast, the ¢-butyl group of Boc
makes the corresponding anion very unstable by
electron-repelling, and it consequently prevents the
cyclization.
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A possible mechanism for cyclization.
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Fig. 1. 'HNMR spectrum for the ammonolysis product of 9.
Table 1. Results of the Ammonolysis of N-Z-dipeptide Methyl Esters

Parent ester

Ratio of the product

Linear amide Cyclic amide

Z-prL-Ala-Gly-OMe (8)
Z-Sar-Gly-OMe (9)
Z-CEGIly-Gly-OMe (10)
Z-CEAla-Gly-OMe (11)
Z-CEGly-pi-Ala-OMe (12)
Z(OMe)-CEGly-Gly-OMe (13)®

100 —
54 46
40 60

8 92

100 —

60 40

a) N-Z(OMe) derivative.

In order to investigate the influence of different sub-
stituent groups, some N-Z-dipeptide methyl esters
were subjected to ammonolysis at room temperature
for 24 h (Table 1). The NH of peptide bond was al-
lowed to be free, because this NH plays an important
role in the cyclization (Scheme 1). The ratio between
linear and cyclic amides in the products was deter-
mined by the 'H NMR spectroscopy.

Figure 1 shows the 'HNMR spectrum for the
ammonolysis product of Z-Sar-Gly-OMe (9). The
absence of singlet at =3.6 indicated that ammonolysis
of the ester was completed under these conditions.
From the comparison of the spectrum (Fig. 1) with
that of authentic Z-Sar-Gly-NHg, the signals marked
as L were assigned to the linear amide. But one of the
two signals of CONH:; overlaps with phenyl protons
of Z. The remaining signals marked as C were well
consistent with the cyclic amide, 3-(carbamoylmethyl)-
1-methylhydantoin (14) as follows: A singlet at §=2.91
was ascribed to NCH3 protons; a singlet at 3.91 to CHp;
a singlet at 3.99 to CHyg; a pair of singlets at 7.19 and
7.55 to CONHa:. In this instance, the ratio of the two
amides was determined by comparing the integrated
value of CH20 protons at 6=5.04 and 5.08 (linear
amide) with that of NCHs at 6=2.87 and 2.91 (both
amides). The formation of 14 was also confirmed by

GC-MS after trimethylsilylation of the hydrolyzate of
the reaction mixture.

As can be seen in Fig. 1, the absorption of the phenyl
and CH20 protons appeared like a doublet, respective-
ly, thouth they must be singlets normally. For exam-
ple, these two appeared as singlets for Z-Gly-Gly-
NH.. However, we found that 9 also exhibited such a
signal splitting in the 200 MHz spectrum. Therefore,
it seems plausible to consider that the signal splitting
is due to the presence of the two conformational
isomers in a DMSO solution of N-Z-N-substituted
glycylglycine methyl esters and amides. In the 60 MHz
spectra, such a signal splitting was not observed be-
cause of low resolution.

Table 1 presents the results of the ammonolysis. As
we expected, the cyclization was not observed for
Z-Gly-Gly-OMe and Z-prL-Ala-Gly-OMe (8), which
carry no N-substituent groups. On the other hand,
N-Z-N-substituted dipeptide esters having glycine
residue as C-terminus were generally prone to ring
closure. For example, 9 gave a mixture of the linear
and cyclic amides in a ratio of 54:46, while its isomer 3
yielded only the normal linear amide. This difference
could be explained in terms of the resonance effect.
The contribution of resonance structure B increases
the electron density on the carbonyl carbon of Z, so
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that the amide anion cannot attack it (Scheme 1). In
contrast, such resonance is no longer possible with
N-Z-N-substituted dipeptide esters, the carbonyl car-
bons of which remain electron-lacking.

The cyclization seems to depend on the nature of the
N-substituent groups. For example, the extent of the
cyclization of Z-CEGly-Gly-OMe” (10) was higher
than that of 9. This finding could be explained in
terms of the difference in electron-repelling ability of
the two substituent groups, CH:CH2CN and CHz; the
latter repels electron more strongly than the former,
increasing electron density of the carbonyl carbon of Z
of 9. The substitution on a-carbon of the N-terminal
glycine enhanced the cyclization significantly, as
shown for Z-CEAla-Gly-OMe? (11). In contrast, the
substitution on a-carbon of the C-terminal glycine
prevented the cyclization completely, as shown for
Z-CEGly-pL-Ala-OMe (12). This finding indicates
that glycine residue carrying a reactive amino group
must be present as C-terminus for the cyclization,
because the hydantoin is a secondary amide, the diacyl
derivative of C-terminal amino acid.

As we can expect, the corresponding N-Z(OMe)-
dipeptides were also found to cyclize under the
ammonolysis conditions. In the instance of Z(OMe)-
CEGIly-Gly-OMe (13), the extent of the cyclization
was comparable with that of the corresponding N-Z
derivative (10).

In conclusion, a special care in ammonolysis of N-Z-
and N-Z(OMe)-N-substituted dipeptide esters was
suggested. Such cyclization, however, will provide a
convenient method for the synthesis of 1,3-disubsti-
tuted hydantoins.

Experimental

All the melting points determined by a Yanagimoto
micro-melting point apparatus were not corrected. 'H NMR
spectra were obtained by a JEOL FX-200 (FT 200 MHz)
spectrometer using tetramethylsilane as an internal refer-
ence. GC-MS was carried out as previously reported® to give
20 eV spectra. HPLC was carried out by a JASCO 880 pump
connected with a JASCO 875 UV monitor (column, Finepak
SIL Cis).

N-Protected IDAAs. Introduction of Z, Z(OMe), and -
Boc to IDAA was carried out using Z-Cl,® MZ-SDP,? and
Boc-SDP,? respectively, according to the conventional
methods.

Z-IDAA: Yield 73%; mp 82—84°C. Anal. (Ci12H13NOs)
C, H, N.

Z(OMe)-IDAA: Yield 85%; mp 121—122°C. Anal. (Cis-
HisNO7) H, C, N.

t-Boc-IDAA: Yield 65%; mp 117—120°C. Anal. (CoHs-
NOg) C, H, N.

N-Protected IDAA Disuccinimido Esters. These were
prepared by the dicyclohexylcarbodiimide method.

Z-IDAA Disuccinimido Ester: Yield 93%; mp 178—
181 °C. Anal. (C20H19N3010) C, H, N.
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Z(OMe)-IDAA Disuccinimido Ester: Yield 64%; mp
201—203 °C. Found: C, 51.03; H, 4.44; N, 8.96%. Calcd for
C21H21N301:: C, 51.33; H, 4.31; N, 8.55%.

t-Boc-IDAA Disuccinimido Ester: Yield 96%; mp 171—
174°C. Anal. (C17H21N3Oy0) C, H, N.

N,N’-[N-Protected Iminobis(methylenecarbonyl)]bis[gly-
cine] Dimethyl Esters. These were prepared by coupling of
the N-protected IDAA disuccinimido ester with glycine
methyl ester.

Z-N(CH:CONHCH:COOCH:3); (1):
92°C. Anal. (C1sH23N30s) C, H, N.

Z2(OMe)-N(CH:CONHCH:COOCH3): (5):
mp 82—84 °C. Anal. (C19H2sN3O9) C, H, N.

t-Boc-N(CH2CONHCH:COOCH:); (6):
120—123 °C. Anal. (Ci5H2sN3Os) C, H, N.

Ammonolysis of 1, 5, and 6. The N-protected ester (1 g)
was dissolved in MeOH (5 ml) and then 50 ml of MeOH
containing dry NHj (ca. 6 M) was added. After standing at
room temperature for 24 h, the solution was evaporated to
dryness and then the residue was recrystallized. The time
course of 1 was followed with HPLC by analyzing the
aliquots of the reaction mixture at appropriate intervals.

Ammonolysis of 1: Yield 56%; mp 209—211°C. Anal.
(CoH13N50s (cyclic amide)) C, H, N.

Ammonolysis of 5:  Yield 65%; mp 207—209 °C. Found:
C, 39.98; H, 4.80; N, 25.34%. Calcd for CoH13N50s5 (cyclic
amide): C, 39.86; H, 4.83; N, 25.82%.

Ammonolysis of 6: Yield 90%; mp 87—90°C. Anal.
(C13H23N50¢ (linear amide)) C, H, N. The amino acid anal-
ysis of the hydrolyzate revealed the presence of glycine and
IDAA in a molar ratio of 2:1.

N-Z- and N-Z(OMe)-dipeptide Methyl Esters. Com-
pounds 8—13 were prepared by the conventional method of
peptide synthesis. The elemental analyses were well agreed
with the calculated values except 12. Melting points were as
follows: Z-pL-Ala-Gly-OMe (8), 74—76 °C; Z-Sar-Gly-OMe
(9), 74—77°C; Z-CEGIly-Gly-OMe (10), 60—63°C; Z-
CEAla-Gly-OMe (11), 103—105 °C; Z-CEGly-pL-Ala-OMe
(12), oil; Z(OMe)-CEGIly-Gly-OMe (13), 83—85 °C.

Ammonolysis of N-Z- and N-Z(OMe)-dipeptide Methyl
Esters. The ester (1 g) was dissolved in MeOH (6 ml) and
then 50 ml of MeOH containing dry NHs (ca. 6 M) was
added. After ammonolysis at room temperature for 24 h, the
solution was evaporated to dryness with a rotary evaporator.
The residue was dried in vacuum. A part of the residue was
dissolved in DMSO-ds and 'H NMR spéctra were obtained.

Yield 51%; mp 89—
Yield 53%;

Yield 50%; mp
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