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Synthesis of a non-charged analogue of guanosyldiphosphofucose†
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Abstract—Methylene sulfonoamide is used as a non-charged surrogate of the diphosphate moiety to prepare an analogue of the
fucosyl donor guanosyldiphosphofucose of potential use as inhibitor of fucosyltransferases. © 2001 Published by Elsevier Science
Ltd.

The inhibition of fucosyltransferases (FucT) has
become of interest since it has been demonstrated that
fucose-containing oligosaccharides are over-expressed
in tumor cells. On the other hand fucosylated oligosac-
charides such as sialyl LewisX are involved in the
inflammatory process.1 Thus, oligosaccharide biosyn-
thesis blockade by inhibition of fucosyltransferases is a
possible strategy for the intervention on these disorders.
Fucosyltransferases have a substrate, guanosyldiphos-
phofucose 1 (GDP-fucose) from which the fucose
residue is transfered in general to an N-acetyl glu-
cosamine residue of the oligosaccharide. Non-func-
tional analogues of this substrate,2,3 transition
state-multisubstrate analogues4 have been proposed as
candidates for the inhibition of FucT. In this context,
we tried to devise new analogues of GDP-fucose in
which the crucial diphospho linkage would be replaced
by a non-charged isostere group,3,5 the non-charged
character being of help to penetrate the cells. Our
attention was attracted by methylene disulfones which
are isosteric of pyrophosphate and are non-charged.6

Nevertheless the partial negative charge located on the
oxygen atoms of the sulfone would allow complexation
of these oxygen atoms with the manganese ion that
FucTs use normally as a cofactor. Sulfur containing
linkages have been used in the synthesis of nucleotide
analogues.7

Compounds such as 2 with methylene disulfone bridge
were therefore good targets,8 but exploratory experi-
ments on model compounds showed that this moiety
was rather difficult to synthesize in an efficient way.

Here we report our preliminary results in the synthesis
of a non functional analogue 3 of GDP-fucose (Scheme
1) in which the diphospho linkage is replaced by a
methylene sulfono amide tether. In order to have a
non-functional analogue of the donor 1 it was necessary
to replace the anomeric oxygen by a carbon atom thus
an efficient synthesis of a C-glycosyl fucose moiety was

Scheme 1.
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Scheme 2.

needed. This compound should be suitable for the
construction of the carboxy methylene sulfonyl group.

Finally a suitable derivative of the guanosine residue
was required which would allow the formation of a
stable amide linkage with the fucosyl residue. A ret-
rosynthetic analysis of compound 3, depicted on
Scheme 2, shows three different building blocks. The
synthetic plan was thus: (i) construction of the C-glyco-
syl moiety, (ii) coupling of this moiety with the mer-
capto acetic acid and (iii) coupling of the resulting
fucosyl part with 5�-amino-guanosine.

Instead of starting from L-fucose to prepare a C-glyco-
syl derivative like 7, we tried to exploit the strong
analogy between L-fucose and D-mannose.9 Thus, it
turned out that branching an anomeric methyl group
on a mannose derivative should provide a straightfor-
ward solution to our problem. Moreover we had previ-
ously described a short method for the synthesis of
1-C-methyl glycosyl derivatives by using the Wittig
olefination of sugars.10

The known 2,3:4,6-di-O-isopropylidene manno deriva-
tive11 was oxidized with CrO3–pyridine into the
lactone 4 in 70% yield (Scheme 3). Treatment of 4
according to our reported procedure gave the
dichloroolefin 5 in 75% yield.12 Hydrogenation of 5
gave the expected C-glycosyl derivative 6 as the single
compound in 65% yield, the methyl group being in a cis
relationship (J2,3 2.4 Hz) with the neighboring acetal
group. Selective removal of the six-membered acetal of
the L-C-fucosyl derivative 6 proved unsuccessful and
led mainly to the free tetrahydroxy compound 7. This
compound was then selectively tosylated at the primary
position to give 8, which was subsequently acylated to
give 9 in 80% overall yield. Substitution of the tosylate
by iodide gave the iodo derivative 10 in 98% yield. The
spacer was then grafted to the fucose unit by treatment
of 10 with methyl mercaptoacetate in the presence of
cesium carbonate to give almost quantitatively the ester
11. The sulfone 12 was obtained from mCPBA oxida-
tion in 92% yield. Finally saponification of all the ester
groups with sodium methoxide in methanol gave the
expected free acid 13 after acidification.13 It is worthy
of note, that the proton of the methylene group are
relatively acidic as shown on the 1H NMR spectrum

which exhibited a signal at 8.3 ppm corresponding to
the enolic form upon standing in D2O. This should
reinforce our hypothesis of a possible chelation of our
analogue with manganese ions at the active site of
FucT.

The guanosine part was prepared using modifications
of the procedures developed by Sasaki for 8-bromo-
guanosine.14 The diol function was first protected as an
acetal and the guanidine group was protected as an
amidine to provide 14.

Introduction of a nitrogen atom at C-5� by nucleophilic
substitution required protection of the second nitrogen
group at N-1 with a MOM group by treatment with

Scheme 3. Reagents : (i) methoxypropene, DMF, PTSA; (ii)
CrO3, pyridine; (iii) PPh3, CCl4, THF; (iv) Raney Ni, EtOAc;
(v) AcOH, H2O; (vi) TsCl, pyridine; (vii) BzCl, pyridine; (viii)
NaI, butanone; (ix) HSCH2COOMe, CsCO3, DMF; (x)
mCPBA, EtOAc; (xi) MeONa, MeOH.
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methoxymethyl chloride in the presence of sodium
hydride (1 equiv.) to give 15. Finally the azido group
was introduced at position 5� using standard activation
by a mesyl group. Reduction of the azido group using
Staudinger conditions or better by catalytic hydrogena-
tion with Pd/C 5% provided 18 in 65% yield. The last
steps of the synthesis consisted in the coupling of the
acid 13 with amine 18 using BOP to provide the
protected derivative 19 in 48% yield. Silylation of the
free OH groups of the fucose residue gave the less polar
20 which can be purified by standard column chro-
matography.15 Final removal of all protecting group
was achieved by treatment with trifluoroacetic acid
gave the fully deprotected compound 3.16 Purification
by column chromatography on reverse phase gave pure
compound 317 (Scheme 4).

This compound did not show any significant inhibition
of fucosyltransferase using a soluble recombinant form
of human FucT-III.18

In summary, we have prepared a non-functional ana-
logue 3 of the natural fucosyl donor GDP-fucose hav-
ing a methylene sulfono amide as a surrogate of the
diphosphate link. One of the key features of our synthe-
sis is the route developed for the preparation of a
L-C-fucosyl unit from D-mannose. Different explana-
tions can be invoked for the absence of inhibitory
activity. The methylene sulfono amide tether is unable
to mimic the diphosphate linkage because of the

absence of formal negative charges like in the phos-
phate group. Moreover, the presence of an amide func-
tion in the tether used is this work may induce an
improper spatial arrangement of the fucose and the
guanosine residue. Compounds with significant affinity
should be obtained by mimicking the transition state of
the enzymatic reaction, tacking into account the pres-
ence of the acceptor and/or the planar geometry of the
intermediate glycosyl cation.19 This approach is cur-
rently under investigation in our group.
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