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Abstract—Geometrically pure alkynyl, alkenyl and alkyl substituted branched enynes were prepared by the Sonogashira coupling
followed by Sonogashira, Suzuki–Miyaura, and Kumada–Tamao–Corriu coupling reactions. © 2001 Elsevier Science Ltd. All
rights reserved.

Enyne is an important structural unit for biologically
active organic compounds, including anticancer anti-
biotics,1 and other natural products,2 and also for new
functional materials.3 The functional unit has been
prepared by the cross-coupling reaction of haloalkene
with terminal alkyne,4 Wittig olefination of aldehyde
with alkynylmethylidene ylide,5 or homologation of
enal to terminal enyne.6 However, such synthetic meth-
ods are sometimes not so effective for the stereoselec-
tive preparation of branched enynes, I–III and there
have been few efforts made to develop a general
method for the synthesis of branched enynes (Fig. 1).7

A differentiation of two carbon�halogen bonds of 1,1-
dihalo-1-alkene under metal-catalyzed reactions has
been successfully performed in Kumada–Tamao–Corriu
coupling,8 Suzuki coupling,9 Stille coupling,10 and
hydrogenolysis11 (Scheme 1). However, a few stereose-
lective Sonogashira couplings of 1,1-dibromo-1-alkene
were reported, in which a combination of Pd(PPh3)4

and alkynyl metals were employed.12 The couplings
using free terminal alkyne were poorly chemoselec-
tive,13 and the next cross coupling reaction of the
resultant trisubstituted bromoenyne (Scheme 2) has not
been examined. If the second cross-coupling reaction of
the resultant bromoenyne occurs with alkynyl, alkenyl
and alkyl reagents under Sonogashira, Suzuki–Miyaura
and Kumada–Tamao–Corriu conditions,4,14 a variety of
branched enynes will be obtained.

In this paper, we describe the synthesis of some
branched (E)- and (Z)-enynes in geometrically pure
form by stereoselective Sonogashira coupling reaction
of 1,1-dibromo-1-alkenes using terminal alkyne, and
the successive cross-coupling reaction of the resultant
bromoenyne.

Sonogashira coupling of 1,1-dibromo-1-alkene 1 with
(trimethylsilyl)acetylene in the presence of a

Figure 1.

Scheme 2.

Scheme 1.
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PdCl2(dppf) catalyst, copper iodide and diisopropyl-
amine gave enyne 2 in 87% yield stereoselectively along
with 1,1-dialkynyl-1-alkene in less than 10% yield.15

The same coupling reaction of 1,1-dibromo-1,3-diene 3
also proceeded very well to give dienyne 4 in 79% yield
and dialkynyldiene in 15% yield. Since the Sonogashira
reaction of 1,1-dibromo-1-alkene gave a mixture of
1-alkynyl-1-bromo-1-alkene, 1,1-dialkynyl-1-alkene and
some recovery of starting material13 under typical con-
ditions,16 the use of PdCl2(dppf) largely improved the
chemoselective formation of bromoenyne 2 or 4. In
fact, Pd catalysts such as Pd(PPh3)4, PdCl2(PPh3)2,
Pd(dppe)2 and other commercial catalysts provided a
mixture of bromoenyne, enediyne and the starting
dibromoalkene with poor selectivity (Scheme 3).

The second coupling reactions of 2 can take place
stereospecifically to give the corresponding substituted
enynes. Thus, 1,1-dialkynyl-1-alkene 5 was obtained as
a single stereoisomer in 95% yield by the second Sono-
gashira coupling of 2 with hexyne. Suzuki–Miyaura
coupling of 2 with 1-hexenylboronic acid provided
dienyne 6E exclusively in 82% yield, though the termi-
nal trimethylsilyl group was removed under the reaction
conditions. On the other hand, Kumada–Tamao–Cor-
riu coupling with ethylmagnesium bromide in the pres-
ence of NiCl2(dppp) gave (E)-alkene 7a exclusively in
71% yield. The coupling reaction of 2 with trimethyl-
silylmethyl Grignard reagent gave the corresponding
coupling products 7b in 53% yields. These three sp-,
sp2- and sp3-carbon coupling reactions occur to give a
single stereoisomer with retention of the configuration,
respectively (Scheme 4).

Pd-catalyzed cross-coupling reaction of 1 with 1-hex-
enylboronic acid took place smoothly to give bromo-
diene 8 stereoselectively in 85% yield.9 Although Roush
et al. noted that 2-bromo-1,3-diene was poorly reactive
for the second Suzuki coupling reactions,9a Sonogashira
coupling of 8 with trimethylsilylacetylene in the pres-
ence of PdCl2(dppf), CuI and diisopropylamine at 65°C
in benzene gave dienyne in 81% yield. Desilylation of
the product by Bu4NF afforded dienyne 6Z quantita-
tively, corresponding to the stereoisomer of 6E, which
was obtained in Suzuki coupling of 2 with hexynyl-
boronic acid shown in Scheme 4. Combinations of
Sonogashira and Suzuki cross-coupling reactions in
either order can provide either 6Z or 6E in stereochem-
ically pure form (Scheme 5).

We have demonstrated this methodology for the syn-
thesis of (2E,4Z)-3-ethyl-5-iodopentadienyl silyl ether
12. This iododiene is a C11–C15 part of a 13-ethyl
substituted analogue of (11Z)-retinal, which is an
important chromophore for the visual system. A silyl
ether of 3-hydroxy-1,1-dibromo-1-propene 917 having a
protected hydroxymethyl group, which can be trans-
formed to other functional groups and elongate a car-
bon chain in a later stage, was first coupled with
(trimethylsilyl)acetylene to give 10 in 81% yield. The
coupling reaction of 10 with ethylmagnesium bromide
followed by desilylation with Bu4NF gave branched

Scheme 3.

Scheme 4.

Scheme 5.

enyne 11 in 58% yield. Manipulation of the terminal
enyne to (Z,E)-iododiene was performed in two steps.
First, iodination with iodine in the presence of morpho-
line and then cis-reduction of the idodoalkyne with
diimide eventually gave 12 in 58% yield.18 Since there
have been no reports on the synthesis of 13-substituted
derivatives for (11Z)-retinal, this method should be
valuable for the stereocontrolled preparation of the
corresponding fragment (Scheme 6).

In conclusion, we have demonstrated a novel and
efficient preparation of geometrically pure branched
enynes from 1,1-dibromo-1-alkene by Pd- or Ni-cata-
lyzed cross-coupling reactions.
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Scheme 6. Reagents and conditions : (a) (trimethylsilyl)-
acetylene, cat. PdCl2(dppf), CuI, Pri

2NH, benzene, rt; (b)
ethylmagnesium bromide, cat. NiCl2 (dppp), THF, rt; (c)
Bu4NF, THF, −20°C; (d) iodine, morpholine, benzene, 50°C;
(e) diimide, THF, rt.
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