Notes

The spectra of acetanilide and its titanium (IV) chloride complex also leave little doubt that coordination takes place through the carbonyl oxygen. A strong carbonyl absorption band at 1686 cm⁻¹ in the spectrum of the free amide in chloroform solution was shifted to 1612 cm⁻¹ in the spectrum of the complex in chloroform. Assuming this was the shifted carbonyl band, there was a shift of 74 cm^{-1} to lower frequencies. A study of the spectra in the region in which N-H stretching bands appear, indicates some change. An absorption at 3440 cm^{-1} in the spectrum of the free amide completely disappears in the spectrum of the complex. This may be an indication that co-ordination also takes place through the nitrogen. The shifted band could be hidden by the strong chloroform absorption if the shift was about 400 cm^{-1} to lower frequencies. The fact that the shift in the carbonyl absorption is nearly three times greater than for any of the other complexes may also be an indication of co-ordination through the nitrogen. Co-ordination through the nitrogen would eliminate the suggested electronic rearrangement discussed earlier in this section. The result of this should be a greater shift in the carbonyl band. Molecular weight data for the titanium (IV) chloride-acetanilide complex obtained on chloroform solutions indicates that the complex is essentially a monomer. Assuming that titanium maintains its usual co-ordination number of six, it becomes necessary for co-ordination to take place through both the oxygen and nitrogen. The structure, then, may be illustrated below:

Four-membered ring chelates such as this have been postulated for the complexes of titanium (IV) chloride with esters.⁽¹⁵⁾

College of Chemistry and Physics North Dakota State University Fargo North Dakota U.S.A. D. SCHWARTZ R. HEYER

⁽¹⁵⁾ E. RIVEST, R. AUBIN and R. RIVEST, Can. J. Chem. 39, 2343 (1961).

J. inorg. nucl. Chem., 1967, Vol. 29, pp. 1389 to 1391. Pergamon Press Ltd. Printed in Northern Ireland

Substituted trinuclear ruthenium carbonyls

(Received 31 August 1966)

THE FIRST example of a phosphine derivative of ruthenium carbonyl, $Ru(CO)_{s}[P(C_{s}H_{s})_{s}]_{s}$, has been recently obtained⁽¹⁾ by reduction of $RuCl_{s}(CO)_{s}[P(C_{s}H_{s})_{s}]_{s}$ in the presence of carbon monoxide.

We wish now to report that by reacting $[Ru(CO)_4]_3$ in CH₃OH or acetone solution at 55-60°C with P(C₆H₅)₃, P(C₄H₉)₃ and P(OC₆H₅)₃ (hereafter indicated as L) in the molar ratio of 1:4 a new series of ruthenium carbonyls is obtained where the Ru/L ratio is equal to 1 and the CO/Ru ratio is equal to 3; the molecular weight determinations carried out in benzene (Mechrolab Osmometer) on these compounds are in agreement with a $[Ru(CO)_5L]_5$ formulation. By reacting $[Ru(CO)_5P(C_6H_5)_3]_5$ or $[Ru(CO)_5P(C_6H_5)_5]_5$ in methylethylketone solution at 130-140°C, under CO, with an excess of the corresponding ligand, complexes of the type $Ru(CO)_5L_2$ are obtained. Elemental analyses and molecular weight determinations of all compounds prepared are reported in Table 1 (see p. 1390).

⁽¹⁾ J. COLLMAN and W. R. ROPER, J. Am. chem. Soc. 87, 4008 (1965).

	l.wt. Calc.	1344-0 1164-1 1488-0 709-7 594-4
TABLE 1	Mo Found	1403 1127 1542 725 603
	% Calc.	22:7
	Ru Found	21.8
	% Calc.	6-91 7-98 6-25 10-49
	P, Found	6:76 7-92 6:30 10:42
	% Calc.	3·37 7·02 3·05 9·22
	Found	3-31 7-20 3-05 4-32 9-15
	% Calc.	56·29 46·43 50·87 66·01 54·93
	Found	56-15 46-72 51-40 65-67 54-71
	M.P. (°C)	174-176 62-63 77-78 250-251 42-43
	Colour	dark violet dark red orange yellow pale yellow
		[Ru(CO) ₈ P(C ₆ H ₆) ₃] ₅ [Ru(CO) ₈ P(C ₆ H ₆) ₄] ₅ [Ru(CO) ₈ P(OC ₆ H ₆) ₄] ₅ Ru(CO) ₈ [C ₆ H ₈) ₄] ₅ ⁴ Ru(CO) ₃ [P(C ₄ H ₆) ₅] ₅

<u>~</u>
52
<u>रू</u>
0
8
₫
5
ŏ,
~
E
he
U.
Ë.
Z.
5
Ē
5
Ř.
Ð
B
z
₹
E
Hangel
ŭ
>
a.
B
Ĕ
ď
ຂ່

Compound	Medium	CO stretching (cm ⁻¹)*			
$Ru(CO)_{3}[P(C_{6}H_{5})_{3}]_{2}$	nujol	1903 s		1895 s	
	CH ₂ Cl ₂			1895 s	
$Ru(CO)_{3}[P(C_{4}H_{9})_{3}]_{2}$	nujol	1884 s		1878 s	
	CH ₂ Cl ₂			1876 s	
$[Ru(CO)_{3}P(C_{6}H_{5})_{3}]_{3}$	nujol	1982 s	1969 s	1935 s	
	CH ₂ Cl ₂	1980 s	1969 s	1945 sh	
$[Ru(CO)_{3}P(C_{4}H_{9})_{3}]_{3}$	nujol	2035 w	1964 s	1930 m	
	CH ₂ Cl ₂	2035 vw	1960 s	1927 sh	
$[Ru(CO)_{3}P(OC_{6}H_{5})_{3}]_{3}$	nujol	2001 s	1985 s	1970 m	1945 sł

TABLE 2

* A 221 Model Perkin-Elmer spectrophotometer with prism-grating interchange was used.

The i.r. spectra in the C=O stretching region (Table 2) of the trimeric species are more complex than those of the monomeric one. For $Ru(CO)_{s}[P(C_{6}H_{5})_{s}]_{2}$ in $CH_{s}Cl_{2}$ one band at 1895 cm⁻¹ is found in agreement with COLLMAN and ROPER;⁽¹⁾ in nujol paste two strong bands at 1903 and 1895 cm⁻¹ are present.

Institute of Industrial Organic Chemistry Pisa University, Italy National Research Council Rome Italy F. Piacenti M. Bianchi E. Benedetti G. Sbrana