Highly Optimized β-Mannosylation via *p*-Methoxybenzyl Assisted Intramolecular Aglycon Delivery

Yukishige Ito^a*, Yuki Ohnishi^a, Tomoya Ogawa^a and Yoshiaki Nakahara^{a,b}

^aThe Institute of Physical and Chemical Research (RIKEN) and CREST, Japan Science and Technology Corporation (JST), 2-1 Hirosawa,

Wako-shi, Saitama 351-0198, Japan

Fax +81-48-462-4680; yukito@postman.riken.go.jp

^bDepartment of Industrial Chemistry, Tokai University, 1117 Kitakame, Hiratsuka-shi, Kanagawa 259-1292, Japan

Received 7 July 1998

Abstract: Highly efficient and stereoselective β -mannosylation was achieved by using mannosyl thioglycosides **5** and **19**. Intramolecular aglycon delivery (IAD) from mixed acetal **12**, **15** and **20**, obtainable by oxidative coupling of aglycon onto mannosyl thio-glycosides which carry *p*-methoxybenzyl (PMB) group at C-2 position, was performed by the action of MeOSO₂CF₃ to afford β -mannosides **13/16/21**. It is to be noted that efficiency of IAD was substantially improved by changing the protecting group at the 4- and 6- positions from previously utilized benzylidene to cyclohexylidene (**5**) or TIPDS (**19**) group. As a result, it is now possible to perform the β -manno glycosylation in a highly optimized manner to afford di- and trisaccharides with a backbone structure corresponding to asparagine-linked oligosaccharides in 75-85% yield as single stereoisomers.

In 1994, we reported a novel strategy¹ for the stereoselective synthesis of β -manno glycoside², as a new entry into the so called intramolecular aglycon delivery (IAD)³ approach. In our version of IAD, *p*-methoxybenzyl (PMB) group at 2-position of mannosyl donor **1** functions as a scaffold for the DDQ mediated⁴ formation of the tethered intermediate **2**. Subsequent activation of the anomeric position triggers IAD to afford β -manno glycoside **3** (Scheme 1). This strategy was subsequently applied to the completely stereocontrolled synthesis of the core structure of asparagine (Asn) linked glycoprotein oligosaccharides⁵. Selectively protected thioglycosides **4a/b** were used as mannosyl donors to afford di-, tri- and tetrasaccharide products in 49-60% yield. We report here the highly optimized version of PMB assisted IAD protocol which gives >80% yield of β -mannosides corresponding to the common structural units of Asn-linked oligo-saccharides [i.e. β Man1-4 β GlcNAc(±1-4GlcNAc)].

Scheme 1

At the earlier stage of our investigation by using 4,6-benzylidene protected (**4a/b**) as well as tribenzylated (**4c**) donors, it was quickly recognized that having a cyclic 4,6-*O*-protection is important in IAD using thioglycosides⁶. This observation lead us to the working hypothesis that the rigidity of hexopyranoside chair conformation may be responsible for successful IAD starting from **4a/b**. Therefore, 4,6-*O*cyclohexylidene protected **5** was designed, in which ${}^{4}C_{1}$ form should be frozen more rigidly compared to **4a**. Preparation of **5** was performed as depicted in **Scheme 2**. Thus, starting from methyl-thiomannoside **6**⁷, cyclohexylidene group was installed to give **7**. Subsequent formation of 2,3-*O*-*p*-methoxybenzylidene acetal was effected under Yonemitsu's conditions⁸ to afford **8** (77% yield), that was subjected to the reductive ring opening process effected by DIBAL which gave 2-*O*-PMB protected **9** in 60% yield as well as a minor amount of **10** in ca. 5:1 ratio. Further protection of the 3-position afforded **5**^{9,10}.

Reagents and conditions: (a) NaOMe, MeOH; (b) 1,1-dimethoxycyclohexane CSA, DMF, 50-55 °C, 3 h, 76% (2 steps); (c) p-MeOC₆H₄CH₂OMe, DDQ, MS 4A CH₂Cl₂, r.t., 18 h, 77%; (d) DIBAL, toluene, -40 °C, 0.5 h, 60%; (e) t-BuPh₂SiCl imidazole, DMF, 50 °C, 18 h, 84%

Scheme 2

β-Mannosylation by using **5** was examined under our standard conditions and proved to be highly efficient. (Scheme 3) Thus, treatment of glucosamine derived acceptor **11**¹¹ with **5** (1.3 equiv.) and DDQ (1.5 equiv.) in CH₂Cl₂ (25 ml/mmol of **11**) in the presence of molecular sieves 4A (room temp. 2 h) afforded mixed acetal **12** in an essentially quantitative yield (based on ¹H-NMR analysis). Subsequent IAD was effected by methyl trifluoromethanesulfonate¹² (MeOTf) and 2,6-di-*tert*-butyl-4-methylpyridine (DBMP) in 1,2-dichloroethane (ca. 10 mM concentration of **12**; 45°C, 24 h) to afford an 83% yield of disaccharide **13**¹⁰ which corresponds to βMan1-4GlcNAc. In a similar manner, the reaction with disaccharide **14**¹¹ gave **16**¹⁰ via **15**¹⁰ in 85% yield.

4,6-O-Isopropylidene protected donor 17, which was prepared from 5 (1. CSA/MeOH; 2. $Me_2C(OMe)_2$, CSA/MeCN), gave a less satisfactory result (61% yield of 18^{10}). Comparison of yields obtained by

Reagents and conditions: (a) 11 or 14, DDQ, MS 4A, CH₂Cl₂, r.t., 2 h; (b) MeOTf, DBMP, MS 4A, Cl(CH₂)₂Cl, 45 °C, 24 h, 83% (13), 85% (16)

glycosylation of 11 using 4a (60%), 5 (83%) and 17 (61%) suggests that rigidity of the pyranose ring system is actually a significant factor controlling the efficiency of our system.

During the course of IAD, rigid chair conformation of mannose residue would encourage the $S_N 2$ type reaction, thereby suppressing side reactions arising from oxocarbenium ion-like species 13 (Eq. 1).

On the other hand, 4,6-O-disiloxanylidene carrying 19 also gave us a highly satisfactory result (Scheme 4). Glycosyl donor 19 was assumed to represent the relaxed hexopyranose ring system compared to 4a, 5 and 17. Compound 19 was prepared from 6 in 5 steps (1. NaOMe, MeOH, 93%; 2. TIPDSCl₂, imidazole/DMF, 84%; 3. p-MeOC₆H₄CH(OMe)₂, PPTS/DMF, 85%; 4. DIBAL/toluene, 86%; 5. TMSCl, imidazole/DMF, 94%) and was subjected to the βmannosylation conditions to react with 11. Mixed acetal 20^{10} was isolated in 96% yield after purification by florisil and treated with MeOTf-DBMP to give 21^{10} in 78% yield, which can be compared quite favorably with the results obtained by 4a/17. The higher efficiency observed here may be ascribed to the concomitant formation of cyclic

acetal. In this case the 3-position of $\mathbf{19}$ is protected by trimethylsilyl and the C-3 oxygen traps intramolecularly the immediate product 22 to neutralize the positive charge effectively. Since similar transformation with 4,6-O-benzylidene counterpart 23 gave lower yield (55%) of the product 24, having a larger ring system bridging the 4- and 6-positions seems to be beneficial for the ring closure step.

 $\begin{array}{l} \mbox{Reagents and conditions: (a) 11, DDQ, MS 4A, CH_2Cl_2, r.t., 2 h, 96\%; \\ \mbox{(b) MeOTf, DBMP, MS 4A, Cl(CH_2)_2Cl, 60 °C, 14 h, 78\%. } \end{array}$

Due to their protection patterns, the potential utility of β -mannoside products (13, 16, 21) in synthetic studies of Asn-linked oligosaccharides is obvious. In summary, fine-tuning of p-methoxybenzyl assisted βmannosylation was successfully made by using a 4.6-0cyclohexylidene (5) and -TIPDS (19) carrying mannosyl donor.

Typical β -mannosylation procedure: Preparation of 21: To a stirred mixture of compounds 19 (504 mg, 0.78 mmol) and 11 (580 mg, 0.98 mmol) in CH₂Cl₂ (15 ml) containing molecular sieves 4A was added DDQ (219 mg, 0.96 mmol) under positive flush of argon at 0°C. The mixture was stirred at room temperature for 2 h and quenched with an aqueous solution (10 ml) of ascorbic acid (0.7%)-citric acid (1.3%)-NaOH (0.9%). The resulting lemon-yellow mixture was diluted with ether and filtered through Celite. The filtrate was washed with aq. NaHCO3 and brine, successively, dried over Na2SO4 and evaporated in vacuo. The residue was purified by chromatography on florisil (2-5% EtOAc in toluene) to afford 929 mg (96%) of mixed acetal 20, which was transferred, as a solution in CH₂Cl₂ (90 ml), into the reaction flask containing DBMP (796 mg, 3.88 mmol) and molecular sieves 4A (3.5 g). Under ice-water cooling, MeOTf (1M in 1,2-dichloroethane, 3.0 ml, 3.0 mmol) was added and the whole was stirred at room temperature for

1104 LETTERS

0.5 h and at 60°C for 14 h. The reaction was quenched with Et_3N (3 ml), diluted with ether and filtered through Celite. The filtrate was washed successively with aq. NaHCO₃, water and brine, dried over Na₂SO₄ and evaporated *in vacuo*. The residue was chromatographed over silica gel (5-10% EtOAc in toluene) to afford 659 mg (78%; 75% over 2 steps) of compound **21**.

Acknowledgments: A part of this work was financially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture and also by the Special Coordination Funds of the Science and Technology Agency of the Japanese Government. We thank Ms. A. Takahashi for her technical assistance.

References and Notes

- Y. Ito, T. Ogawa, Angew. Chem. Int. Ed. Engl. 1994, 33, 1765-1767, Angew. Chem. 1994, 106, 1843-1845.
- For recent publications, see; T. Iimori, H. Ohtake, S. Ikegami, *Tetrahedron Lett.* **1997**, *38*, 3415-3418; G. Hodosi, P. Kovác, J. Am. Chem. Soc. **1997**, *119*, 2335-2336; D. Crich, S. Sun, J. Org. Chem. **1997**, *62*, 1198-1199, and references cited therein. For enzymatic approaches, see; G. M. Watt, L. Revers, M. C. Webberley, I. B. H. Willson, S. L. Flitsch, Angew. Chem. Int. Ed. Engl. **1997**, *36*, 2354-2356; N. Taubken, B. Sauerbrei, J. Thiem, J. Carbohydr. Chem.**1993**, *12*, 651-667; S. Singh, M. Scigelova, D. H. G. Crout, Chem. Commun. **1996**, 993-994.
- F. Barresi, O. Hindsgaul, J. Am. Chem. Soc. 1991, 113, 9377-9379; F. Barresi, O. Hindsgaul, Synlett 1992, 759-760; G. Stork, G. Kim, J. Am. Chem. Soc. 1992, 114, 1087-1088; G. Stork, J. J. La Clair, J. Am. Chem. Soc. 1996, 118, 247-248.
- PMB group has been extensively used as a valuable hydroxy protecting group which can be removed by DDQ in water containing media: Y. Oikawa, T. Yoshioka, O. Yonemitsu, *Tetrahedron Lett.* **1982**, *23*, 885-888; T. W. Greene, P. G. Wuts, *Protective Groups in Organic Synthesis*, 2nd ed., John Wiley & Sons, New York, **1991**, p. 53.
- (a) A. Dan, Y. Ito, T. Ogawa, J. Org. Chem. 1995, 60, 4680-4681.
 (b) A. Dan, Y. Ito, T. Ogawa, Tetrahedron Lett. 1995, 36, 7487-7490.
 (c) Y. Ito, T. Ogawa, J. Am. Chem. Soc. 1997, 119, 5562-5566.
- Reaction of 4a and 4c with 11 afforded 60% (ref. 5a) and 29% yield (A. Dan, Y. Ito, T. Ogawa, unpublished) of corresponding β-manno glycoside, respectively.
- T. Ogawa, K. Katano, M. Matsui, *Carbohydr. Res.* 1978, 64, C3-C9; F. Yamazaki, S. Sato, T. Nukada, Y. Ito, T. Ogawa, *Carbohydr. Res.* 1990, 201, 31-50.

- Y. Oikawa, T. Yoshioka, O. Yonemitsu, *Tetrahedron Lett.* 1982, 23, 889-892.
- 9. Preparation of **5** can be conveniently performed in 35 % overall yield from **7**, without isolation of intermediates **8** and **9**.
- Selected NMR data (CDCl₃) are given for key compounds. 5: δ_{H} 10. (270 MHz) 4.81 (1H, d, J = 1.3 Hz, H-1), 3.78 (3H, s, OMe), 3.22 (1H, br.s, H-2). 1.89 (3H, s, SMe), 1.12 (9H, s, *t*-Bu). 12: $\delta_{\rm H}$ (270 MHz) 5.59 (1H, d, *J* < 1 Hz, H-1²), 5.59 (1H, d, *J* = 8.3 Hz, H-1^{*l*}), 5.42 (1H, s, acetal CH), 5.16 and 4.89 (each 1H, d, J = 13.2 Hz, benzylic CH₂), 3.78 (3H, s, OMe), 3.68 (3H, s, OMe), 1.90 (3H, s, SMe). **13**: δ_{H} (400 MHz) 5.55 (1H, d, $J = 8.3 \text{ Hz}, \text{H-1}^{1}$), 4.36 (1H, s, H-1²), 3.68 (3H, s, OMe), 1.11 (9H, s, *t*-Bu); δ_{C} (67.5 MHz) 100.2 (${}^{1}J_{C-H} = 159$ Hz, C-1²), 99.8 (ketal C), 97.7 (${}^{1}J_{C-H} = 165$ Hz, C-1¹). **15**: $\delta_{\rm H}$ (270 MHz) 5.66 (1H, s, H-1³), 5.472 (1H, s, acetal CH), 5. 465 (1H, d, J = 8.2 Hz, H-1¹), 5.28 (1H, d, J = 8 Hz, H-1²), 5.16 (1H, d, J = 13.2 Hz, benzylic CH), 3.72 (3H, s, OMe), 3.64 (3H, s, OMe), 1.69 (3H, s, SMe). 16: $\delta_{\rm H}$ (400 MHz) 5.44 $(1H, d, J = 8.3 \text{ Hz}, \text{H}-1^{1}), 5.23 (1H, d, J = 8.3 \text{ Hz}, \text{H}-1^{2}), 4.43 (1H, d, J = 8.3 \text{ Hz}, \text{H}$ s, H-1³), 3.63 (3H, s, OMe), 1.11 (9H, s, t -Bu); δ_C (67.5 MHz) 100.1 (${}^{1}J_{C-H} = 161 \text{ Hz}, \text{ C-1}^{3}$), 99.8 (cyclohexylidene), 97.5, 96.7 $({}^{1}J_{C-H} = 165, 167 \text{ Hz}, \text{C-1}^{1,2})$. **18**: δ_{H} (270 MHz) 5.56 (1H, d, J =8.2 Hz, H-1¹), 4.42 (1H, s, H-1²), 3.93 (1H, t, J = 9 Hz, H-4²), 3.69 (3H, s, OMe), 2.80 (1H, m, H-5²), 2.72 (1H, br, OH), 1.09 (9H, s, t-Bu); δ_C (67.5 MHz) 100.8 (C-1²), 100.0 (isopropylidene), 98.2 (C-1¹). **19**: $\delta_{\rm H}$ (270 MHz) 5.25 (1H, dd, J =1.1 Hz, H-1), 4.60 (2H, s, CH₂Ar), 4.38 (1H, t, J = 9.2 Hz, H-4), 4.16 (1H, dd, J = 12.5, 1.7 Hz, H-6), 3.82 (1H, m, H-6'), 3.80 (3H, s, OMe), 3.73 (1H, m, H-5), 3.65 (1H, dd, J = 3.3, 1.1 Hz, H-2), 2.10 (3H, s, SMe). **20**: $\delta_{\rm H}$ (270 MHz) 5.94 (1H, s, H-1²), 5.81 (1H, s, acetal CH), 5.55 (1H, d, J = 8.2 Hz, H-1¹), 5.11 (1H, d, J = 12.5Hz, benzylic CH), 3.81 (3H, s, OMe), 3.69 (3H, s, OMe), 2.21 (3H, s, SMe). 21: $\delta_{\rm H}$ (270 MHz) 5.94 (1H, acetal CH), 5.61 (1H, d, J = 8.6 Hz, H-1¹), 5.05 (1H, d, J = 12.9 Hz, benzylic CH), 4.90 $(1H, br.s, H-1^2)$, 4.78 (1H, d, J = 12.0 Hz, benzylic CH), 4.70 (1H, d, J = 12.0 Hz)d, J = 12.9 Hz, benzylic CH), 3.72 (3H, s, OMe), 3.70 (3H, s, OMe), 2.92 (1H, br.d, J = 10 Hz, H-3²); $\delta_{\rm C}$ (67.5 MHz) 104.4 (acetal carbon), 99.2 (${}^{1}J_{C-H} = 158 \text{ Hz}, \text{ C-1}^{2}$), 97.6 (${}^{1}J_{C-H} = 166$ Hz, $C-1^{1}$).
- 11. 11: T. Nakano, Y. Ito, T. Ogawa, *Carbohydr. Res.* 1993, 243, 43-69. 14: H. Kuyama, Y. Nakahara, T. Nukada, Y. Ito, Y. Nakahara, T. Ogawa, *Carbohydr. Res.* 1993, 243, C1-C7.
- 12. H. Lönn, J. Carbohydr. Chem. 1987, 6, 301-306.
- For a discussion on the role of 4,6-cyclic protection in βmannosylation using glycosyl sulfoxide; see D. Crich, S. Sun, J. Am. Chem. Soc. 1997, 119, 11217-11223.