

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 17 (2007) 803-806

Synthesis and DNA-binding ability of *C2R*-fluoro substituted DC-81 and its dimers

Ahmed Kamal,* D. Rajasekhar Reddy and P. S. Murali Mohan Reddy

Biotransformation Laboratory, Division of Organic Chemistry, Indian Institute of Chemical Technology, Hyderabad 500007, India

Received 10 July 2006; revised 5 October 2006; accepted 24 October 2006 Available online 27 October 2006

Abstract—C2R-Fluoro substituted DC-81 and its dimers have been synthesized that exhibit significant DNA-binding ability, particularly the five carbon alkane spacer compound (**6c**) showed the helix melting temperature ($\Delta T_{\rm m}$) of 18.8 °C after incubation of 36 h at 37 °C.

© 2006 Elsevier Ltd. All rights reserved.

There has been growing interest in anticancer agents, such as pyrrolo[2,1-c][1,4]benzodiazepines (PBDs), that can recognize and bond to specific sequence of DNA. They are potential gene regulators with possible therapeutic applications in the treatment of genetic disorders, including some cancers, as selective anti-infective agents, and as probes and tools for use in molecular biology.¹ PBDs are a group of naturally occurring antitumour antibiotics, members of which include anthramycin, tomaymycin, sibiromycin, chicamycin, and DC-81.2 The cytotoxicity and antitumour activity of these agents are attributed to their property of sequence-selective covalent binding to the N2 of guanine in the minor groove of duplex DNA³ via an acid labile aminal bond to the electrophilic imine at the N10-C11 position. The N10-C11 carbinolamine form may exist in the equivalent imine or carbinolamine methyl ether form depending on the precise structure of the compound and the method of isolation.⁴ Thurston and co-workers⁵ have synthesized C8-linked PBD dimers (DSB-120), which form an irreversible interstrand cross-link between two guanine bases within the minor groove via their exocyclic N2 atoms and actively recognizing a central 5'-GATC sequence.⁶ Molecular modeling studies suggested that C8-linked PBD dimers have greater isohelicity with the minor groove of DNA7 compared with the C7linked dimers. Further, C2-methylene DC-81 dimer and imine amide mixed PBD dimers have been synthesized and they exhibited interesting biological profile⁸ (Fig. 1).

The uses of organofluorine compounds have been found rapidly increasing in the areas of agrochemicals, pharmaceuticals, and fluoropolymers. A number of antiviral, antitumour, and antifungal agents have been developed in which fluorine substitution has been a key to their biological activity.^{9,10} Many organofluorine derivatives have been used as probes for studying biochemical process. More importantly, this demonstration of the extraordinary potential of fluorine substitution to alter and enhance the pharmacological properties of organic molecules has become the basis of a powerful strategy for lead development in the pharmaceutical industry. There are also a few recent reports in the literature wherein fluorinated analogues have improved the biological activity profile of some pharmacologically important compounds.^{11–17}

A number of naturally occurring PBDs namely anthramycin, tomaymycin, sibiromycin, and neothramycin have different types of substitution in the C-ring. It is interesting to note that these C-ring modified PBDs appear to provide both greater differential thermal stabilization of DNA duplex and significantly enhance kinetic reactivity during covalent adduct formation. Similarly, the C2-substituted naturally occurring PBDs exhibit more cytotoxicity compared to their unsubstituted PBDs. More recently a series of C2-fluorinated PBDs¹⁸ have been synthesized and screened for in vitro cytotoxicity (IC₅₀) against a number of cancer cell lines. In recent years a large number of hybrid molecules

Keywords: DNA-binding ability; Pyrrolobenzodiazepine; DC-81.

^{*} Corresponding author. Tel.: +91 40 27193157; fax: +91 40 27193189; e-mail addresses: ahmedkamal@iict.res.in; ahmedkamal@iictnet.org

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2006.10.070

Figure 1.

containing the PBD ring system have been synthesized leading to novel sequence selective DNA cleaving and cross-linking agents. Therefore, based on these observations and our own findings in the synthesis and biological evaluation of PBDs with fluorine substitution,¹⁹ it has been considered of interest to design and synthesize C2R-fluoro substituted DC-81 and its dimers to evaluate their DNA-binding potential.

The synthesis of *cis*-4-hydroxyproline methyl ester has been carried out by employing the *trans*-4-hydroxyproline methyl ester by the methods reported in the literature.²⁰ Purification of the crude *N*-trityl-*cis*-4hydroxyproline methyl ester by column chromatography has given low yields of the desired product. Therefore, an alternative strategy has been sought by opting the Boc-protection of *trans*-4-hydroxyproline followed by intramolecular Mitsunobu reaction and ring opening of the resultant lactone with Amberlyst-15[®] in methanol to afford the desired *N*-Boc-*cis*-4-hydroxyproline methyl ester (Schemes 1 and 2).

Synthesis of C2R-fluoro-DC-81 and its dimers is of considerable interest as molecular modeling studies indicated that these PBDs may have a better DNA-binding potential than the C2S-fluoro PBDs. These C2R-fluoro-DC-81 and its dimers have been synthesized by using the literature synthetic approach.^{19a} Methyl-(2S,4R)-N-(4-benzyloxy-5-methoxy-2-nitrobenzoyl)-4-fluoropyrrolidine-2-carboxylate (8) has been synthesized by employing methyl-(2S,4S)-N-(4-benzyloxy-5-methoxy-2nitrobenzoyl)-4-hydroxy pyrrolidine-2-carboxylate (7) and DAST in dichloromethane. (2S,4R)-N-(4-benzyloxy-5-methoxy-2-nitrobenzoyl)-4-fluoropyrrolidine-2carboxaldehyde diethyl thioacetal (10) has been prepared by literature method,²¹ which upon debenzylation with $BF_3 \cdot OEt_2$ affords the compound 11. Further, this upon reduction followed by deprotection of aminothioacetal precursor (12) affords the target C2R-fluoro substituted PBD 3 (Scheme 3).

The synthesis of C2R-fluoro dimers has been carried out by the etherification of (2S,4S)-N-(4-hydroxy-5-meth-

Scheme 1. Reagents and conditions: (i) TrCl, Et₃N, CH₂Cl₂, 0 °C to rt, 2 h; (ii) DEAD, PPh₃, PhCO₂H, toluene rt, 2 h; (iii) 5% KOH/CH₃OH, 2 h.

Scheme 2. Reagents and conditions: (i) Boc₂O, 10% aq NaOH, THF/H₂O (2:1), 0 °C, o/n, 95%; (ii) DEAD, PPh₃, THF, 0 °C to rt, o/n, 65%; (iii) Amberlyst-15[®], CH₃OH, rt, o/n, 80%.

Scheme 3. Reagents and conditions: (i) DAST, CH_2Cl_2 , -78 °C, 12 h, rt, 87%; (ii) DIBAL-H, CH_2Cl_2 , -78 °C, 45 min, 80%; (iii) EtSH-TMSCl, $CHCl_3$, 24 h, rt, 85%; (iv) EtSH-BF₃OEt₂, CH_2Cl_2 , 12 h, rt, 80%; (v) SnCl₂·2 H₂O, CH_3OH , reflux, 2 h, 82%; (vi) HgCl₂–CaCO₃, CH_3CN –H₂O, 12 h, rt, 74%.

oxy-2-nitrobenzoyl)-4-fluoropyrrolidine-2-carboxaldehyde diethyl thioacetal (11) with dibromoalkanes to provide 13a–c. Further, these upon reduction followed by deprotection of aminothioacetal precursors 14a–c afford the desired *C2R*-fluorinated PBD dimers 6a–c in good yields (Scheme 4).²²

The DNA-binding ability of these new C2R-fluorinated DC-81 and its dimers has been investigated by thermal

 Table 1. Thermal denaturation data for C2-fluorinated PBDs with CT-DNA

Compounds	[PBD]:[DNA] molar ratio ^b	$\Delta T_{\rm m}^{\ a}$ (°C) after incubation at 37 °C for		
		0 h	18 h	36 h
2 ^c	1:5	0.3	1.0	2.2
5a [°]	1:5	3.1	4.9	6.2
5b [°]	1:5	4.6	12.3	13.8
5c ^c	1:5	14.2	16.0	17.4
3	1:5	0.7	2.1	2.3
6a	1:5	3.1	5.2	6.2
6b	1:5	4.8	12.4	14.0
6c	1:5	15.6	16.9	18.8
DSB-120 (4)	1:5	10.2	15.1	15.4
DC-81 (1)	1:5	0.3	0.7	0.7

^a For CT-DNA alone at pH 7.00 \pm 0.01, $T_{\rm m} = 69.8 \,^{\circ}{\rm C} \pm 0.01$ (mean value from 10 separate determinations), all $\Delta T_{\rm m}$ values are $\pm 0.1 - 0.2 \,^{\circ}{\rm C}$.

^b For a 1:5 molar ratio of [PBD]:[DNA], where CT-DNA concentration = 100 μ M and PBD concentration = 20 μ M in aqueous sodium phosphate buffer [10 mM sodium phosphate + 1 mM EDTA, pH 7.00 ± 0.01].

^c Literature values.

denaturation studies using calf thymus (CT) DNA.²³ Melting studies show that these compounds stabilize the thermal helix coil or melting stabilization ($\Delta T_{\rm m}$) for the CT-DNA duplex at pH 7.0, incubated at 37 °C, where PBD/DNA molar ratio is 1:5. In case of *C2S*-fluorinated DC-81 (2) the helix melting temperature has marginally increased after 18 h of incubation in comparison to naturally occurring DC-81 (1). Similarly, *C2R*-fluorinated DC-81 (3) has exhibited slightly higher DNA melting temperature compared to the *S*-isomer (2). On the other hand in the case of *C2R*-fluorinated dimers it is interesting to observe that the C2R-fluorinated dimer **6a** shows lower DNA melting temperatures compared to DC-81 dimer (**4**), while as the linker length increases from three to five the helix melting temperature of CT-DNA increases to $16.9 \,^{\circ}$ C after incubation of 18 h for compound **6c** as shown in Table 1. Further, like many other hybrids of PBD the linker length plays an important role in these compounds as well. However, some of these newly synthesized fluorinated PBD helix-melting temperatures are higher than the DC-81 and its dimer (DSB-120).

The newly synthesized C2R-fluorinated DC-81 and its dimers have shown significant DNA-binding ability. Amongst these **6c** showed high helix melting temperature 16.9 °C after 18 h incubation. C2R-fluorinated DC-81 (3) has exhibited slightly higher DNA melting temperatures compared to the C2-S isomer (2). These results suggest that C2R-fluoro isomer offers the better orientation of the fluorine group in the C2-position for an efficient binding of the PBD ring system to the DNA.

Acknowledgments

The authors D.R.S.R. and P.S.M.M.R. are grateful to CSIR, New Delhi, for the award of Research Fellowships.

References and notes

- Dervan, P. B. Science **1986**, 232, 464; Hurley, L. H.; Boyd, F. L. *TIPS* **1988**, 9, 402; Hurley, L. H. J. Med. Chem **1989**, 32, 2027.
- Hurley, L. H.; Thurston, D. E. *Pharm. Res.* **1984**, 52; Hurley, L. H. *J. Antibiot.* **1977**, *30*, 349; Aoki, H.; Miyairi, N.; Ajisaka, M.; Sakai, H. *J. Antibiot.* **1969**, *22*, 201.
- 3. Reddy, B. S. P.; Sondhi, S. M.; Lown, J. W. Pharmacol. Therapeut. 1999, 84, 1.
- Thurston, D. E.; Bose, D. S. Chem. Rev. 1994, 94, 433; Kopka, M. L.; Goodless, D. S.; Baiklov, I.; Grzeskowaik, K.; Cascio, D.; Dickerson, R. E. Biochemistry 1994, 33, 13593.
- Bose, D. S.; Thompson, A. S.; Ching, J.; Hartely, J. A.; Berardini, M. D.; Jenkins, T. C.; Neidle, S.; Hurley, L. H.; Thurston, D. E. J. Am. Chem. Soc. **1992**, 114, 4939.
- Jenkins, T. C.; Hurley, L. H.; Neidle, S.; Thurston, D. E. J. Med. Chem. 1994, 37, 4529.
- Farmer, J. D.; Rudnicki, S. M., Jr.; Suggs, J. W. Tetrahedron Lett. 1988, 29, 5105.
- Gregson, S. J.; Howard, P. W.; Hartley, J. A.; Brooks, N. A.; Adams, L. J.; Jenkins, T. C.; Kelland, L. R.; Thurston, D. E. J. Med. Chem. 2001, 44, 737; Kamal, A.; Ramesh, G.; Laxman, N.; Ramulu, P.; Srinivas, O.; Neelima, K.; Kondapi, A. K.; Sreenu, V. B.; Nagarajaram, H. A. J. Med. Chem. 2002, 45, 4679.
- 9. Marais, J. S. C. Onderstepoort J. Vet. Sci. Anim. Ind. 1943, 18, 203.
- 10. Fried, J.; Sabo, E. F. J. Am. Chem. Soc. 1954, 76, 1455.
- 11. Peters, R. Endeavour 1954, 13, 147.

- 12. Duschinsky, R.; Pleven, E.; Heidelberger, C. J. Am. Chem. Soc. 1957, 79, 4559.
- Lawrence, N. J.; Hepworth, L. A.; Rennison, D.; McGown, A. T.; Hadfield, J. A. J. Fluoro. Chem 2003, 123, 101.
- Ming Pu, Y.; Torok, D. S.; Ziffer, H. J. Med. Chem. 1995, 38, 4120.
- Wu, Y.-J.; Davis, C. D.; Dworetzky, S.; Fitzpatrick, W. C.; Harden, D.; He, H.; Knox, R. J.; Newton, A. E.; Philip, T.; Polson, C.; Sivarao, D. V.; Sun, L.-Q.; Tertyshnikova, S.; Weaver, D.; Yeola, S.; Zoeckler, M.; Sinz, M. W. J. Med. Chem. 2003, 46, 3778.
- Smart, B. E. In Chemistry of Organic Fluorine Compounds II: A Critical Review; Hudlicky, M., Pavlath, A. E., Eds.; ACS Monograph 187; American Chemical Society: Washington, DC, 1995; p 979; Smart, B. E. in: Organofluorine Chemistry: Principles and Commercial Applications; Banks, R. E.; Smart, B. E.; Tatlow, J. C.; Eds.; New York, 1994, 57.
- 17. Edwards, P. N. In Organofluorine Chemistry: Principles and Commercial Applications; Banks, R. E., Smart, B. E., Tatlow, J. C., Eds.; Plenum Publishing Corporation: New York, 1994; p 501; Biomedical Frontiers of Fluorine Chemistry; Ojima, I., McCarthy, J. R., Welch, J. T., Eds.ACS Symposium Series; American Chemical Society: Washington, 1996; Vol. 2, Welch, J. T.; Eswarakrishnan, S. Fluorine in Bioorganic Chemistry; John Wiley: New York, 1991; Filler, R. In Asymmetric Fluoroorganic Chemistry: Synthesis; Ramachandran, P. V., Ed.; Applications and Future Directions. ACS Symposium Series; American Chemical Society: Washington, DC, 2000; Vol. 746, p 1; For a review focusing on marketed pharmaceuticals, see: Elliott, A. J. In Chemistry of Organic Fluorine Compounds II: A Critical Review; Hudlicky, M., Pavlath, A. E., Eds.; ACS Monograph; American Chemical Society: Washington, DC, 1995; 187, p 1119; O'Hagan, D.; Rzepa, H. S. J. Chem. Soc., Chem. Commun. 1997, 645.
- O'Neil, I. A.; Thompson, S.; Kalindjian, S. B.; Jenkins, T. C. *Tetrahedron Lett.* 2003, 44, 7809; Lim, M. H.; Kim, H. O.; Moon, H. R.; Chun, M. H.; Jeong, L. S. Org. Lett. 2002, 4, 529; Ming Pu, Y.; Torok, D. S.; Ziffer, H. J. Med. Chem. 1995, 38, 4120; Mayers, A. G.; Barbay, J. K.; Zhong, B. J. Am. Chem. Soc. 2001, 123, 7207.
- (a) Kamal, A.; Reddy, P. S. M. M.; Reddy, D. R. *Bioorg. Med. Chem. Lett.* **2004**, *14*, 2669; (b) Kamal, A.; Reddy, P. S. M. M.; Reddy, D. R.; Laxman, E.; Murthy, Y. L. N. *Bioorg. Med. Chem. Lett.* **2004**, *14*, 5699.
- 20. Demange, L.; Menez, A.; Dugave, C. *Tetrahedron Lett.* **1998**, *39*, 1169.
- Thurston, D. E.; Murty, V. S.; Langley, D. R.; Jones, G. B. Synthesis 1990, 81.
- 22. Spectral data for compound **6c**: ¹H NMR (CDCl₃, 200 MHz): δ 2.00–2.22 (m, 4H), 2.30–2.80 (m, 6H), 3.58–3.85 (m, 6H), 3.92 (s, 6H), 4.00–4.25 (m, 4H), 5.35 (dt, 2H, J = 53.2, 5.4 Hz), 6.80 (s, 2H), 7.50 (s, 2H), 7.70 (d, 2H, J = 4.3 Hz); FAB MS: 597 (M⁺+1); Anal. Calcd for C₃₁H₃₄F₂N₄O₆: C, 62.57; H, 5.75; N, 9.41; Found: C, 62.49; H, 5.66; N, 9.34.
- (a) Jones, G. B.; Davey, C. L.; Jenkins, T. C.; Kamal, A.; Kneale, G. G.; Neidle, S.; Webster, G. D.; Thurston, D. E. *Anti-Cancer Drug Des.* **1990**, *5*, 249; (b) McConnaughie, A. W.; Jenkins, T. C. J. Med. Chem. **1995**, *38*, 3488.