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Abstract—Chiral heterocyclic �-amino esters can be easily transformed into bicyclic alkaloids after a diastereoselective alkylation
followed by specific chemical transformations. © 2001 Elsevier Science Ltd. All rights reserved.

Pyrrolizidine and quinolizidine alkaloids have a wide
and varied distribution in nature and they display a
broad range of interesting biological activities. Accord-
ingly, novel strategies for the enantioselective synthesis
of these azabicyclic skeletons continue to receive con-
siderable attention.1,2

We recently developed a new general and highly
diastereoselective method for the alkylation of chiral
pyrrolidyl and piperidyl acetates using respectively
LDA3 or LiHMDS4 as bases.

It can be noted that (+) isoretronecanol 2 (n=m=1)
and (−) lupinine 3 (n=m=2) present two asymmetric
centers where the two hydrogens are in a syn position
according to our previous results.3,4

A disconnective analysis of these hydroxymethyl-azabi-
cyclic alkaloids shows that all these compounds can be
obtained after the reduction of an intermediate ester
itself prepared by annelation of an alkylated cyclic
�-amino ester 1.

A propenyl substituent was a very good choice due to
the well-known reactivity of the allyl halides and to the
potential cyclization sites of the two ethylenic carbons.

The formation of the pyrrolizidinic skeleton of the
isoretronecanol from 1 (n=1) needed an oxidative
cleavage of the double bond followed by a reductive
annelation.

This was performed in two steps. Firstly by ozonolysis
in acidic ethanol5 due to the nucleophile of the tertiary
amine. After reduction with DMS then acidic hydroly-
sis, the �-amino aldehyde 4 was obtained in good yield.
Hydrogenolysis of 4 with 10% Pd/C in ethanol leaded
directly to the pyrrolizidinic ester 56 with a very good
chemical yield and only one diastereomer was detected.
It could be noted that 5 is also a natural product named
Chysine B.7 The picrate of 5 was then formed and the
melting point of the salt (110°C) was in agreement with
that of the syn diastereomer described earlier.8

Confirmation of the structure was performed by
epimerizing 5 with sodium ethoxide. After neutraliza-
tion then action of picric acid, the resulting salt pre-
sented a melting point (180°C) in agreement with the
literature.8
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of 7 prepared by direct bromination of natural
lupinine.14

Direct substitution of the bromine by acetate was
described with a very poor yield,15 but recent condi-
tions using aqueous copper sulfate in DMSO16 were
particularly performing with compound 7. In fact,
optically pure lupinine 317 was finally isolated in 80%
yield. Once more, optical purity was in complete
agreement with literature data.18

In conclusion, chiral cyclic �-amino esters are very
versatile synthons for the synthesis of pyrrolizidine
and quinolizidine alkaloids. After diastereoselective
introduction of an allyl substituent, appropriate chem-
ical transformations can easily lead to bicyclic struc-
tures found in many natural products.
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