

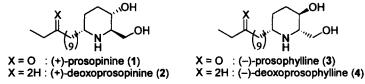
Tetrahedron Letters 40 (1999) 6869-6870

TETRAHEDRON LETTERS

## Asymmetric total synthesis of (–)-prosophylline

Sofia D. Koulocheri and Serkos A. Haroutounian\*

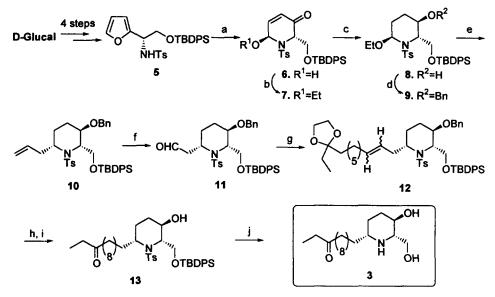
Chemistry Laboratory, Agricultural University of Athens, Iera Odos 75, Athens 118.55, Greece


Received 18 June 1999; accepted 13 July 1999

## Abstract

The asymmetric total synthesis of (-)-prosophylline from D-glucal via (2S)-hydroxymethyl-dihydropyridone **6** by a 17-step synthesis and 12% overall yield is presented. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: asymmetric synthesis; piperidine alkaloids; (-)-prosophylline.


Multifunctionalized piperidine alkaloids are widely found in nature and many of them exhibit significant biological activities of medicinal interest.<sup>1</sup> Prosopis alkaloids constitute a small subgroup of alkaloid lipids, which contain the 2,6-disubstituted-3-piperidinol skeleton. These compounds are isolated from the leaves of *Prosopis africana*<sup>2</sup> and possess noteworthy antibiotic and anesthetic properties.<sup>3</sup> Thus several endeavors directed towards their synthesis have been reported, including the asymmetric total syntheses of (+)-prosopinine 1,<sup>4</sup> (+)-deoxoprosopinine 2<sup>5</sup> and (-)-deoxoprosophylline 4.<sup>5b,6</sup> Surprisingly, the synthesis of (-)-prosophylline 3 is less documented and only one racemic stereoselective synthesis of this molecule has been reported to date.<sup>7</sup> Herein we report an asymmetric total synthesis of 3 from D-glucal, based on our recently reported (five steps, 61% overall yield) enantioselective transformation to (2*S*)-hydroxymethyl-dihydropyridone 6 via  $\alpha$ -furfurylamine 5.<sup>8</sup>



Protected dihydropyridone 7 ( $[\alpha]_D^{22}$ =+100, c=1, MeOH) was hydrogenated over palladium and reduced with sodium cyanoborohydride in acetic acid/methanol to afford, after crystallization, (3*R*)-piperidinol **8** as a single diastereomer (Scheme 1). The configuration of C-3 was revealed by COSY and <sup>1</sup>H NMR analysis of its corresponding benzyl ether 9 ( $[\alpha]_D^{22}$ =+15, c=0.7, MeOH). The desired 2,6-cis stereochemistry was achieved by a variation of Speckamp's protocol<sup>4b</sup> which require a Lewis acid promoted allylsilane addition to an acyliminium ion intermediate, generated in situ from 9. Thus, reaction with allyltrimethylsilane in the presence of 0.7 equivalents of titanium tetrachloride at -78°C

<sup>\*</sup> Corresponding author. Tel: +30 1 5294247; fax: +30 1 5294265; e-mail: sehar@aua.gr

furnished 10 in 87% yield ( $[\alpha]_D^{22} = -2.1$ , c=1, MeOH). Dihydroxylation and subsequent periodate cleavage produced aldehyde 11, while elongation of C-6 chain was carried out through the introduction of the 8-oxo-*n*-decanyl<sup>9</sup> side-chain by Wittig reaction. Finally, deprotection of the carbonyl group, hydrogenation and removal of the protecting groups provided (–)-prosophylline 3 (mp 75–76°C; lit.<sup>7</sup> mp 79°C of racemate,  $[\alpha]_D^{22} = -13.4$ , c=1.5, MeOH). Spectral and physical data are identical with those in the literature.<sup>2,7,10</sup>



Scheme 1. Reagents and conditions: (a) *m*-CPBA,  $CH_2Cl_2$  (91%). (b)  $HC(OEt)_3$ ,  $BF_3 \cdot OEt_2$ , 4 Å mol. sieves, THF, 0°C (95%). (c) i)  $H_2$ , Pd/C, AcOEt (91%); ii) NaBH<sub>3</sub>CN, AcOH, MeOH, 0°C to rt (85%). (d) NaH, BnBr, Bu<sub>4</sub>NI, THF (91%). (e) allyltrimethylsilane, TiCl<sub>4</sub>,  $CH_2Cl_2$ ,  $-78^{\circ}C$  (87%). (f) i)  $K_3Fe(CN)_6$ ,  $K_2CO_3$ ,  $K_2OSO_2(OH)_2$ ,  $Na_2SO_3$ , *t*-BuOH/H<sub>2</sub>O (1:1); ii) NaIO<sub>4</sub>,  $H_2O/EtOH$  (1:1) (96%, two steps). (g) PPh<sub>3</sub>,  $CH_3CH_2C(OCH_2)_2C_7H_{14}Br$ , *n*-BuLi (68%). (h) HCl,  $H_2O$ . i)  $H_2$ , Pd/C, EtOH (88%, two steps). (j) i) TBAF, THF (91%); ii) Na, naphthalene (64%)

## References

- 1. (a) Jones, T. H.; Blum, M. S.; Robertson, H. G. J. Nat. Prod. 1990, 53, 429. (b) Roth, H. J.; Kleeman, A. Pharmaceutical Chemistry; John Wiley & Sons; New York, 1988.
- 2. Khuong-Huu, Q.; Ratle, G.; Monseur, X.; Gouratel, R. Bull. Soc. Chim. Belg. 1972, 81, 443.
- 3. (a) Bourinet, P.; Quevauviller, A. Compt. Rend. Soc. Biol. 1968, 162, 1138 [CA 70: 95233k]. (b) Bourinet, P.; Quevauviller, A. Ann. Phar. Fr. 1968, 26, 787 [CA 71: 29012g].
- 4. Recent chiral syntheses of 1: (a) Hirai, Y.; Watanabe, J.; Nosaki, T.; Yokoyama, H.; Yamaguchi, S. J. Org. Chem. 1997, 62, 776. (b) Ojima, I.; Vidal, E. S. J. Org. Chem. 1998, 63, 7999.
- 5. Compound 2: (a) Agami, C.; County, F.; Mathieu, H. Tetrahedron Lett. 1998, 39, 3505. (b) Kadota, I.; Kawada, M.; Muramatsu, Y.; Yamamoto, Y. Tetrahedron 1997, 8, 3887.
- 6. Compound 4: Yang, C.-F.; Xu, Y.-M.; Liao, L.-X.; Zhou, W. S. Tetrahedron Lett. 1998, 39, 9227.
- 7. Natsume, M.; Ogawa, M. Heterocycles 1981, 16, 973.
- 8. Koulocheri, S. D.; Haroutounian, S. A. Synthesis, in press.
- 9. CH<sub>3</sub>CH<sub>2</sub>C(OCH<sub>2</sub>)<sub>2</sub>C<sub>7</sub>H<sub>14</sub>Br was prepared from 1,8-octanediol by the following sequence: (i) HBr, benzene, reflux (59%); (ii) PCC, CH<sub>2</sub>Cl<sub>2</sub> (75%); (iii) CH<sub>3</sub>CH<sub>2</sub>MgBr, Et<sub>2</sub>O (95%); (iv) PCC, CH<sub>2</sub>Cl<sub>2</sub> (80%); and (v) HOCH<sub>2</sub>CH<sub>2</sub>OH, H<sub>2</sub>SO<sub>4</sub>, toluene (75%).
- 10. IR (neat):  $v_{max}$ =3381, 3255, 1710 cm<sup>-1</sup>; NMR (CDCl<sub>3</sub>, 300 MHz):  $\delta$ =1.05 (t, 3H, J=7.1 Hz), 1.28 (br s, 13H), 1.30–1.58 (m, 5H), 1.68–1.72 (m, 1H), 2.01–2.05 (m, 1H), 2.40 (t, 2H, J=7.2 Hz), 2.42 (t, 2H, J=7.2 Hz), 2.50 (m, 1H), 2.55 (dt, 1H, J=9.1, 4.7 Hz), 3.42 (td, 1H, J=10.5, 4.7 Hz), 3.63 (d, 1H, J=5.2 Hz), 3.63 (d, 1H, J=5.2 Hz); Anal. calcd for C<sub>18</sub>H<sub>35</sub>NO<sub>3</sub>: C, 68.97; H, 11.25; N, 4.47. Found: C, 69.09; H, 11.18; N, 4.45.