nones to β -diketones is utilized^{5,6}. The high temperatures used in the Allan-Robinson synthesis bring about acylation, rearrangement, and cyclisation consecutively in a single experimental step^{3,4}.

In the present communication, a method for the direct aroylation of o-hydroxyacetophenones to β -diketones and the subsequent cyclization to the corresponding flavones is reported. The key step in this synthesis involves the reaction of the dianion of an o-hydroxyacetophenone (1) with an aroyl chloride (2) to give the diketone 3. The reaction conditions are very mild and the β -diketones are obtained in high purity and good yield. The enolates of 1 are generated by treatment of 1 with lithium diisopropylamide in tetrahydrofuran at $-25\,^{\circ}$ C and the smooth reaction of the enolates with the aroyl chlorides 2 is performed at $-78\,^{\circ}$ C. The diketones 3 are readily cyclized to the flavones 4 by heating (100 $^{\circ}$ C) with acetic acid containing 1% sulfuric acid.

1. 2 LiN(C₅H₇-i)₂, -25 °C

2. Cl-CO
$$X^4$$

2. Cl-CO X^5

3. HCl

1

 X^1
 X^1
 X^2
 X^3
 X^4
 X^5
 X^5

The method is of general applicability and may be used for the synthesis of flavones (4) having a variety of substituents

A New Synthesis of Flavones

Asoke Banerji*, Naresh C. Goomer

Bio-Organic Division, Bhabha Atomic Research Centre, Bombay 400085, India

The cyclodehydration of 1-(o-hydroxyphenyl)-1,3-diketones is one of the most commonly used methods for the synthesis of substituted chromones and flavones¹. The basic approach to the synthesis of the diketones consists of the acylation of o-hydroxyacetophenones using different acylating agents and experimental conditions^{2,3,4}. In the Baker-Venkataraman synthesis, rearrangement (internal Claisen condensation) of o-acyloxy- or o-aroyloxyacetophe-

Table 1. 1,3-Dioxo-1,3-diphenylpropanes (3, $X^2 = H$) prepared

3	X¹	X ³	X ⁴	X ⁵	X ⁶	Yield [%]	m.p. [°C]	Molecular formula ^a or m.p. reported	M.S. M ⁺ (m/e)	U.V. (CH ₃ OH) λ_{max} [nm] (log ϵ)
a	Н	Н	Н	Н	Н	76	117–118°	117120° 11	240	360 (4.16); 250 (3.59); 210 (3.96); 205 (4.01)
b	OCH ₃	OCH ₃	Н	Н	Н	73	124125°	$C_{17}H_{16}O_5$ (300.3)	300	365 (3.7); 287 (3.85); 238 (3.68); 220 (3.85); 205 (4.25)
c	OCH ₃	Н	H	OCH ₃	Н	94	108109°	C ₁₇ H ₁₆ O ₅ (300.3)	300	375 (4.32); 385 (4.27); 280 (3.76); 205 (4.15)
d	OCH ₃	OCH_3	Н	OCH ₃	Н	73	142°	$C_{18}H_{18}O_6$ (330.3)	330	375 (3.61); 285 (4.09); 210 (4.10); 205 (4.04)
e	OCH ₃	Н	OCH ₃	OCH ₃	OCH_3	82	119°	C ₁₉ H ₂₀ O ₇ (360.4)	360	385 (4.18); 270 (3.60); 205 (4.33)
f	OCH ₃	OCH ₃	OCH ₃	OCH ₃	Н	90	175°	C ₁₉ H ₂₀ O ₇ (360.4)	360	380 (3.6); 290 (4.04); 225 (4.13); 205 (4.21)
g	OCH ₃	Н	OCI	H ₂ O	Н	89	155°	C ₁₇ H ₁₄ O ₆ (314.3)	314	378 (4.29); 275 (3.66); 225 (3.92); 205 (4.26)

^a The microanalyses were in good agreement with the calculated values: C, ± 0.30 ; H, ± 0.21 .

Table 2. Flavones (4, $X^2 = H$) prepared

4	Yield [%]	m.p. [°C]	m.p. [°C] reported or Molecular formula	M.S. M + (<i>m/e</i>)	$U.V. (CH_3OH)$ $\lambda_{max}[nm](\log \varepsilon)$
a	84	95°	97°11	222	295 (4.58); 250 (4.24)
b	85	147°	143°13	282	302 (3.91); 262 (4.32)
c	90	145°	144° 12	282	320 (4.35); 255 (3.86); 230 (4.15)
d	91	156°	156° 14	312	320 (4.29); 262 (4.25)
e	88	190-191°	191° 10	342	310 (4.18); 230 (4.16)
f	87	190191°	192°14	342	330 (4.07); 265 (3.86); 240 (4.01)
g	91	202°	$C_{17}H_{12}O_5^a$ (296.3)	296	335 (4.26); 235 (4.37)
calc.		C 68.92	H 4.08		
found		68.90	4.10		

on rings A and B. The reaction is clean, easy to perform, the starting materials are readily accessible, and the products are of high purity.

The diketones 3 prepared were purified by column chromatography or recrystallization and were characterized by comparison of their physical and spectral⁸ properties with literature data.

1,3-Dioxo-1-(2-hydroxy-4-methoxyphenyl)-3-(3,4,5-trimethoxyphenyl)-propane (3e); Typical Procedure:

A solution of 2-hydroxy-4-methoxyacetophenone (1, $X^1 = OCH_3$, $X^2 = X^3 = H$; 790 mg, 4.75 mmol) in tetrahydrofuran (10 ml) is added to a stirred solution of lithium diisopropylamide (10 mmol; from diisopropylamine and butyllithium) in tetrahydrofuran at -25 °C. The mixture is stirred (1h) at -25 °C, then cooled to -78 °C, and a solution of freshly distilled 3,4,5-trimethoxybenzoyl chloride (2, $X^4 = X^5 = X^6 = OCH_3$; 1.15 g, 5 mmol) in tetrahydrofuran (10 ml) is added. The mixture turns yellow soon after the addition of the acyl chloride. Stirring is continued at -78°C for 3 h. the mixture allowed to warm to room temperature (20 °C), and set aside overnight. It is then diluted with ethyl acetate (50 ml) and acidified to pH 3 with dilute hydrochloric acid. The organic layer is dried with sodium sulfate and the solvents are removed to give 3e as a crystalline solid. The product is recrystallized from ethyl acetate/pentane; yield: 1.4 g (82%); m.p. 119 °C. Compound 3e gives a positive reaction with iron(III) chloride; it dissolves in 1 normal aqueous sodium hydroxide with a yellow color.

 $C_{19}H_{20}O_7$ calc. C 63.33 H 5.59 (360.4) found 63.61 5.62

U.V. (CH₃OH): $\lambda_{\text{max}} = 385$ (log $\epsilon = 4.18$); 270 (3.60); 205 nm (4.33).

7,3',4',5'-Tetramethoxyflavone (4e); Typical Procedure:

Compound 3e (100 mg) is dissolved in glacial acetic acid (10 ml), conc. sulfuric acid (0.1 ml) is added, and the mixture is heated at 100 °C for 3.5 h [completion of the cyclodehydration is checked by T.L.C. analysis and by the iron(III) chloride test]. The mixture is poured onto ice (50 g), the resultant precipitate isolated by suction, dried in vacuum and recrystallized from acetone; yield: 85 mg (88%); m.p. 190-191 °C (Ref. 10, m.p. 191 °C).

U.V. (CH₃OH): $\lambda_{\text{max}} = 310 (\log \varepsilon = 4.18)$; 230 nm (4.16).

Received: March 5, 1980

- ⁴ H. Wagner, L. Farkas, in: J. B. Harborne, T. J. Mabry, H. Mabry, *The Flavonoids*, Chapman and Hall, London, 1975, p. 127.
- H. S. Mahal, K. Venkataraman, J. Chem. Soc. 1934, 1767.
- W. Baker, J. Chem. Soc. 1933, 1381.
- A. Banerji, N. C. Goomer, Tetrahedron Lett. 1979, 3685.
- ⁸ H. Wagner, O. Seligmann, et al., Acta Chim. Acad. Sci. Hung. 57, 169 (1968).
- ⁹ H. O. House, L. J. Czuba, M. Gall, H. D. Olmstead, J. Org. Chem. 34, 2324 (1969).
- ¹⁰ S. Kostanecki, G. Plattner, Ber. Dtsch. Chem. Ges. 35, 2546 (1902).
- ¹ T. S. Wheeler, Org. Synth., Coll. Vol. IV, 478 (1963).
- ¹² J. Tamber, Ber. Disch. Chem. Ges. 49, 1704 (1916).
- ¹³ K. C. Gulati, K. Venkataraman, J. Chem. Soc. 1936, 267.
- J. Gripenberg, in: T. A. Geismann, The Chemistry of Flavonoid Compounds, Pergamon Press, London, 1962, p. 406.

^{*} Address for correspondence.

J. Staunton, in: D. H. R. Barton, W. D. Ollis, Comprehensive Organic Chemistry, Vol. 4, Pergamon Press, London, 1979, p. 659.

² R. Livingstone, in: Rodd's Chemistry of Carbon Compounds, S. Coffey, Ed., Vol. IVE, Elsevier Publishing Co., Amsterdam, 1977, p. 139.

³ F. M. Dean, *Naturally Occurring Oxygen Ring Compounds*, Butterworths, London, 1963, p. 251, 280.