- (22) S. Winstein, et al., J. Amer. Chem. Soc., 76, 2597 (1954).
- (23) (a) Carbon tetrachloride solution; (b) deuteriochloroform for pmr, chloroform for ir.
- (24) D. H. Barton, R. E. O'Brien, and S. Sternhell, J. Chem. Soc., 470 (1962).
- (25) These two absorptions actually constitute a AB pattern. (26) Analysis believed to be low due to presence of ${\sim}4\%$ 5.
- (27) The vinyl tosylate was found to decompose and rearrange whenever eluted through a silica gel column, the extent of which depended on the eluent and time spent on the column. The rearrangement yielded varying amounts of 1 and 5.
- (28) Pentane alone had been used previously.³ Since there was some indication¹¹ that cyclopropyl ketones were not effectively measured under the

previous conditions, it was hoped that the ether would be more effective. Since the present results agree quite well with the previous ones, we conclude indeed that our percentages of ketones are accurate as well as precise.

- (29) The identification of the first component as cis-acetylene and the second component as trans-acetylene as reported in ref 3 is now believed to have been in error. We have found that treatment of 90% trans-1-(2-methylcyclopropyl)-1-iodoethylene yields 90% of this first compo-nent acetylene. This would indicate that the first component acetylene should be trans and not cis, as reported previously.
- (30) A listing of this program, which will be supplied on request, appears in the Ph.D. thesis of T.V.L., University of Cincinnati, 1974.

Stable Carbocations. CLXXX.¹¹³C and ¹H Nuclear Magnetic Resonance Spectroscopic Study of Phenyl-, Methyl-, and Cyclopropyl-Substituted Alkenyl (Allyl) Cations. Further Studies of the Trend of Charge Distribution and the Relative Delocalization Afforded by Phenyl, Methyl, and Cyclopropyl Groups

George A. Olah* and Robert J. Spear²

Contribution from the Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106. Received August 30, 1974

Abstract: Two series of methyl-, cyclopropyl-, and phenyl-substituted alkenyl (allyl) cations have been studied by ¹³C NMR and ¹H NMR spectroscopy under stable-ion conditions. The 1,3-substituted alkenyl cations (3a-f) exclusively adopt the trans, trans conformation and exhibit strong charge delocalization between C_1 and C_3 , whereas the charge in the 1,1-substituted alkenyl cations (4a, 4b, and 4d-f) is substantially higher at C1, the tertiary carbon. 1,3 overlap does not appear to contribute significantly to the total ion structure. In **3a-f**, the relative charge delocalization afforded by the substituents is $cPr \gtrsim Ph \gg CH_3$. It is suggested that the steric crowding inherent in tertiary carbenium ions and the subsequent disruption of resonance stabilization may lead to a different relative order for change delocalization in tertiary carbenium ions. A neighboring-group deshielding of carbenium ion centers by cyclopropyl groups was detected in addition to the normal α -substituent effect and opposing the shielding from charge delocalization, and this must be taken into consideration when comparing charge delocalization trends in carbocations.

Alkenyl cations (often called allyl cations) are the simplest conjugatively stabilized carbocations and have been the subject of many theoretical and experimental studies. The generation of alkenyl cations under stable-ion conditions can be achieved by a wide range of experimental procedures, including ionization of allylic alcohols and halides, ionization of cyclopropyl halides and alcohols, and hydride abstraction from alkenes. The earlier literature (to late 1965) on alkenyl cations generated under stable-ion conditions has been reviewed by Deno.³

The distribution of charge in alkenyl cations has been a subject of some controversy, particularly regarding the importance of 1,3 overlap (1c) relative to the two classical resonance structures 1a and 1b.4,5 Recent molecular-orbital calculations have suggested that 1,3 overlap is not significant for acyclic alkenyl cations.⁶ There is convincing experimental evidence that cyclobutenyl cations (2), where the

proximity of C_1 and C_3 permits greater overlap between the π orbitals on these carbon atoms, have strong 1,3 overlap.⁴ Our recent observation of the parent cyclobutenyl cation (2, R = H) indicates very strong 1,3 overlap in this species resulting in comparable charge density at C_1 , C_2 , and C_3 and thus the truly "homocyclopropenyl cation" nature of this ion.⁷ The charge distribution will clearly be dependent upon the substituents at C_1 , C_2 , and C_3 , and the relative delocalization afforded by the substituents should give additional insight into charge distributions in these systems.

The factors which affect carbon-13 chemical shifts are currently being critically examined in many laboratories, including ours, and at the present time, it appears that although carbon-13 chemical shifts cannot be directly equated with charge densities, they do reflect the trend of charge densities at carbon atoms of similar hybridization and substitution.^{1,8} Proton chemical shifts, which indirectly reflect the charge density at the carbon to which the proton is attached, are useful indications of charge distribution in carbocations, but the dependence of ¹H NMR shifts on a number of additional factors which are of comparable magnitude to the charge dependence can lead only to qualitative results. Although these same additional factors affect ¹³C NMR shifts, they are of small magnitude relative to the total chemical shifts involved. Carbon chemical shifts therefore appear to be the most reliable tool for studies of charge distribution in carbocations.

Although the ¹H NMR spectra of a large number of alk-enyl^{3,9,10} and cycloalkenyl^{3,4a,5,10} cations have been re-

ported, the ¹³C NMR shifts of only a few alkenyl^{4b} and cycloalkenyl^{5,11} cations have been published. In addition, the vast majority of carbocations of these types which have been studied by ¹H NMR or ¹³C NMR spectroscopy have exclusive alkyl substitution. The 3-phenyl-2-pentenyl cation^{4b} is the sole exception for alkenyl cations, while the ¹H NMR^{5,11,12} and ¹³C NMR^{5,11} spectra of several cycloalkenvl cations which have phenyl substitution on the carbocationic fragment have been reported. In earlier work, Deno and coworkers had reported equilibrium and uv spectral data for some cycloalkenyl cations with either phenyl or cyclopropyl substitution.^{3,12} It was concluded from this data that cyclopropyl groups gave considerable stability, while phenyl groups destabilized the cations relative to alkyl substituents.^{3,12} At the same time, it must be recognized that these measurements always concern only energy differences between covalent precursors and their related ions. If there is, for example, release of strain going from the covalent precursor to the less strained ion, ion stabilities could be overestimated; this applies equally to solvolytic rate enhancements.

We have recently reported¹³ the ¹³C NMR spectra of a series of carbenium ions $R_1R_2R_3C^+$, where R_1 , R_2 , and R_3 were hydrogen, methyl, cyclopropyl, phenyl, and hydroxyl groups. It was concluded, largely from the ¹³C NMR data for these ions, that the degree of charge delocalization afforded by the substituents was Ph > cPr \gg CH₃, in contrast with Deno's results.^{3,12} We have pointed out, however, that this sequence may differ in other systems.¹³ We report now, as part of our continuing work, a study using ¹H NMR and ¹³C NMR spectroscopy of a number of alkenyl cations with methyl, phenyl, and cyclopropyl substituents on the carbocationic fragment. The results are discussed in relation to charge distribution in these ions and the relative charge delocalization afforded by the substituents.

Results

We have prepared the alkenyl cations 3a-f, 4a, 4b, and 4d-f under stable-ion conditions. 3a-f, 4b, and 4d-f were prepared by ionization of the allylic alcohols 5a-f, 6b, and 6d-f, respectively, using FSO₃H-SO₂ at -78° (5e, 5f, and 6a-f) or FSO₃H-SO₂ClF at -120° (5a-d, 6b). Under

these conditions, polymer formation was negligible in all cases. 3d-f, 2d, and 2f were stable to -15° , while 3b, 3c, 4b,

Journal of the American Chemical Society / 97:6 / March 19, 1975

and 4e decomposed at temperatures above -40° , and 3a was not stable above -60° . The preparation of 3a has been reported previously from 2,4-pentanediol in FSO₃H-SbF₅-SO₂,^{14a} penta-2,3-diene in FSO₃H-SbF₅-SO₂^{14b} and 1-chloro-2,3-dimethylcyclopropane in SbF₅-SO₂ClF.^{14c}

Attempted ionization of **6a** and **6c** under a variety of conditions yielded only polymeric materials. The preparation of **4a** has been reported previously from 3-methyl-2-butanone (**7a**) and HF-SbF₅¹⁰ and from 3-chloro-2-methylbut-1-ene and SbF₅ using the "molecular beam" technique.¹⁵ In ourhands, heating **7a** in HF-SbF₅ at 82° as described¹⁰ proceeded extremely slowly to about 50% conversion to **4a**, but

any attempt to increase this significantly resulted in complete polymerization.

The preparation of **4a** and **4c** from 1-bromo-2,2-dimethylcyclopropane (**8a**) and 1-bromo-2-methyl-2-phenylcyclopropane (**8b**), respectively, was attempted, using the procedure described for other cyclopropyl halides.⁹ Under these conditions, **8a** and **8b** initially yielded the bromonium ions **9a** [¹H NMR δ 2.45 (3 H, d, J = 6.5 Hz, C₂CH₃), 2.92 (6 H, s, 2 × C₁CH₃), 6.41 (1 H, q, H-2)] and **9b** [¹H NMR δ

2.70 (3 H, d, J = 6.5 Hz, C₂CH₃), 3.46 (3 H, s, C₁CH₃), 7.11 (1 H, q, H-2), 8.0-8.5 (5 H, m, Ph)]. When the temperature was raised, **9b** yielded only polymeric products, whereas **9a** could be heated at -10° for 10 min without decomposition.

Ionization of 3-chloro-3-phenyl-1-butene under a variety of conditions also yielded only polymeric materials, and thus all attempts to prepare 4c were unsuccessful. This most probably is due to the ion, when formed, reacting with unionized precursor and not to any instability of the ion.¹⁶ 4a was prepared from 7a as described;¹⁰ the absorptions (¹³C NMR and ¹H NMR) due to 7b were readily differentiated from those due to 4a.

The preparation of **5b**, **5d**, **5e**, and **6d** had not previously been described. **5b**, **5d**, and **5e** were readily prepared by the reaction of cyclopropylmagnesium bromide on 2-butenal, 3-cyclopropylpropenal (**10**, from formylmethylenetriphen-

$$Ph_{J}PCHCHO + cPrCHO \xrightarrow{\text{benzene}} cPrCH=CHCHO$$

reflux, 24 hr 10

ylphosphorane and cyclopropylcarboxaldehyde, shown below) and 3-phenylpropenal, respectively, and all were isolated in high yield. **6d** was prepared by the reaction of vinylmagnesium chloride with dicyclopropyl ketone. The full details are given in the Experimental Section.

The ¹³C NMR and ¹H NMR parameters for **3a-f**, **4a**, **4b**, and **4d-f** are given in Tables I and II, respectively; the parameters for **6a-f** are also included for comparison. The assignment of the proton resonances in **3a-f**, **4a**, **4b**, and **4d-f** is straightforward. The majority of the carbon-13 resonances are also readily assigned by consideration of the offresonance and proton-coupled spectra. The assignment of C_1 and C_3 in **3b**, **3c**, and **3e** is not obvious, and it was initially anticipated that the determination of specific long-range

Table I. 13 C NMR Data^{*a*} for the 1,3-Substituted Alkenyl Carbenium Ions (3a-f), the 1,1-Substituted Alkenyl Carbenium Ions (4a, 4b, 4d-f), and Precursor Alcohols.6a-f

	Alkenyl —			Cy clopropyl		Aromatic —				Methyl
Compd	C ₁	C ₂	C ₃	Cα	Cβ	Cipso	Cortho	C _{meta}	C _{para}	CH3
3a ^b	231.3	147.0	231.3							29.8
36°	194.7	139.4	227.0	45.8	42.2					24.0
	$^{1}J = 164.4$	${}^{1}J = 167.5$	${}^{1}J = 159.1$	${}^{1}J = 180.5$	$^{1}J = 174.3$					
3c ^c	205.1	136.5	196.9			135.1	148.0,	132.2,	149.9	26.7
	${}^{1}J = 160.5$	1	${}^{1}J = 160.6$				137.0	132.0		
3d <i>c</i>	211.3	135.6	211.3	32.9	23,4					
	${}^{1}J = 160.7$	${}^{1}J = 167.7$	J = 160.7	$^{1}J = 177.3$	$^{1}J = 171.6$					
3e ^e	218.1	132.0	181.2	40.4	35.1	132.6	137.2,	131.0,	141.8	
	${}^{1}J = 162.1$	1	${}^{1}J = 166.8$	${}^{1}J = 179.2$	${}^{1}J = 173.0$		132.6	130.4		
3f ^e	186.8	129.3	186.8			135.3	143.3,	131.6,	144.7	
	${}^{1}J = 162.7$	${}^{1}J = 166.3$	$^{1}J = 162.7$				133.5	131.3		
4af	268.2	146.7	174.0							19.3
6ag,j	73.6	147.0	112.5							29.4
	(194.6)	(-0.3)	(61.5)							(-10.1)
$4b^d$	249.6	141.8	150.3	54.0	49.9					19.6
		${}^{1}J = 166.6$	${}^{1}J = 168.2$	${}^{1}J = 176.3$	$^{1}J = 175.6$					
6b <i>h,j</i>	74.3	143.8	113.7	21.9	1.8.1.6					26.9
	(175.3)	(-2.0)	(36.6)	(32.1)	(48, 1, 48, 3)					(-7.3)
6c ^{i, k}	75.4	144.1	112.5			146.6	128.6	125.5	127.2	28.2
4de	276.4	132.7	148.5	34.2	34.2					
		$^{3}J = 158.8$	${}^{1}J = 167.2$	$^{1}J = 178.5$	$^{1}J = 172.2$					
6d <i>8,i</i>	76.1	140.0	115.2	19.6	0.9, 1.3					
	(200.3)	(~7.3)	(33.3)	(14.6)	(32.9, 33.3)					
$4e^e$	234.6	133.8	157.7	42.0	43.9	140.2	135.8	130.4	142.5	
6e ^{i,j}	77.9	142.2	115.2	22.0	3.2, 1.6	146.7	129.4	127.3	128.5	
	(156.7)	(-8.4)	(42.5)	(20.0)	(40.8, 42.2)	(-6.5)	(6.4)	(3.1)	(14.0)	
4f ^e	227.0	136.2	149.5			142.2	141.3	132.0	147.8	
6f ^{h,j}	79.9	143.2	114.4			146.3	127.4	128.8	127.9	
	(147.3)	(-7.0)	(35.1)			(-4.1)	(13.9)	(3.2)	(19.9)	

^aChemical shifts are in parts per million external (capillary) TMS, coupling constants are in hertz. b^{-d} In FSO₃H-SO₂ClF solution at -70, -80, and -60°, respectively. ^eIn FSO₃H-SO₂ solution at -60°. ^fIn HF-SbF₅ (1 : 1) solution at 37°. ^{g-i}In SO₂ solution at -60, -30, and -40°, respectively. ^jNumbers in brackets refer to $\delta_{ion} - \delta_{alcohol}$. ^k4c could not be observed under stable ion conditions. ^lJ could not be determined due to overlap with neighboring signals.

 $(^{2}J_{CH} \text{ or } ^{3}J_{CH})$ couplings might differentiate these carbons. However, the proton-coupled C_1 , C_3 , and C_2 resonances show only the large ${}^{1}J_{CH}$ couplings with no clearly resolved fine structure but it was noticed that the proton-coupled C_1 = C_3 resonance in **3a**, the δ 194.7 resonance in **3b**, and the δ 205.1 resonance in 3c were much broader (width at halfheight $(W_{1/2}) \simeq 25$ Hz for each doublet peak) than the other C₁, C₃, and C₂ resonances in **3b-f**, where $W_{1/2}$ was $\simeq 15$ Hz. This is consistent with all the long-range couplings being small (<4 Hz), and the methyl-substituted carbons, having more geminal protons, are broader because of the larger number of couplings; these broader resonances are assigned to C_1 in **3b** and **3c**. The proton-coupled resonances assigned to C_1 , C_2 , and C_3 in **3b** and C_1 and C_3 in **3c** $(C_2$ is obscured by the aromatic carbon resonances) are shown in Figures 1a and 1b, respectively.

Discussion

The ¹H NMR and ¹³C NMR spectra of the 1,3-substituted carbenium ions **3a-f** provide new and interesting information. It was previously concluded^{14a,c} that since the ¹H NMR spectrum was temperature independent and indicated a symmetrical ion, **3a** exclusively adopted the trans, trans conformation (with respect to H₁, H₂ and H₂, H₃, Table II). The ¹H NMR spectra for **3a-f** are consistent with this conclusion since, with the exception of **3f**, all have very large $J_{1,2}$ and $J_{2,3}$ values, consistent with transoid vicinal protons. The negligible $J_{1,3}$ values in **3b**, **3c**, and **3e** also support this conclusion since $J_{1,3}$ would be predicted to be negligible in the trans, trans conformation but substantial (2-3 Hz) in **11c**.¹⁷ The symmetry of the ¹H NMR spectra of **3d** and **3f** rules out **11a** and **11b**, and the temperature independence of the H₁, H₂, and H₃ reso-

nances in 3a-f defines the conformation of these ions as trans, trans.

The barrier to rotation about the C_1-C_2 and C_2-C_3 bonds has previously been shown to be substantial in a number of alkylated alkenyl cations.^{14a,c,18} The ¹H NMR spectra of **3f** and **3g** are characterized by two ortho proton resonances (Table II), and the ¹³C NMR spectra show both nonequivalent ortho and meta carbons (Table I), indicating hindered rotation about the C₁-Ph and C₃-Ph bonds. When the temperature is slowly raised, the ortho proton resonances in **3f** and **3g** slowly coalesce, and at -20° only one resonance is observed. The H₁, H₂, and H₃ resonances are, however, temperature independent, indicative of the high C_1-C_2 and C_2-C_3 rotational barriers. We have not, as yet, determined the temperature dependence of the carbon-13 spectra.

As discussed in the introductory section, alkenyl cations can be considered as resonance hybrids of **1a-c**. The nature of the substituents at C_1 and C_3 will clearly influence the relative contributions from **1a** and **1b**, and this can be seen in the C_1 and C_3 shifts (Table I) of **3a-f** and **4a**, **4b**, and **4d-f**. In the 1,3-substituted ions, the downfield shifts indicate that there is extensive charge delocalization between C_1 and C_3 , with the differences in these two chemical shifts reflecting differences in charge delocalizing capabilities and other substituent influences of the phenyl, methyl, and cyclopropyl groups. In contrast, the charge in the 1,1-substi-

	Alkenyl protons				propyle		
Compd	<u>(</u> Н,	H ₂	H ₃	Hα	Η _β	Aromatic	Methyl
$3a^d$	9.83 m	8.05 t $J_{1,2} = J_{2,3} = 14.0$	9.83 m				3.12 d $J_{1,CH_3} = 5.5$
3b ^e	8.65 dq $J_{1,2} = 14.5$ $J_{1,CH_3} = 7.0$	7.29 dd $J_{1,2} = 14.5$ $J_{2,3} = 11.5$	8.96 t $J_{2,3} = J_{\alpha,3} = 11.5$	3.60	3.20, 3.46		2.78 d $J_{1,CH_{3}} = 7.0$
3c ^e	8.89 dq $J_{1,2} = 14.0$ $J_{1,CH_3} = 7.5$	8.39 t (broadened)	9.14 d $J_{2,3} = 13.8$			H _{ortho} 8.10 H _{meta} 7.68 H _{para} 7.83	2.59 d $J_{1,CH_{3}} = 7.5$
3d <i>e</i>	7.92 ⁱ	7.92 ⁱ	7.92 ⁱ	2.70	2.14, 2.43		
3e ^f	8.60 dd $J_{1,\alpha} = 3.3$ $J_{1,2} = 15.5$	7.23 t $J_{1,2} = J_{2,3} = 15.5$	8.66 d $J_{2,3} = 15.5$	2.55	2.05	H _{ortho} 8.09, 8.39 H _{meta} 7.62	
3ff	8.76 d $J_{1,2} = 9.5$	8.52 t $J_{1,2} = J_{2,3} = 9.5$	8.76 d $J_{1,2} = 9.5$			$\begin{array}{c} \text{H}_{\text{para}} & 7.76\\ \text{H}_{\text{ortho}} & 7.95,\\ & 8.26\\ \text{H}_{\text{meta}} & 7.50\\ \text{H}_{\text{para}} & 7.70 \end{array}$	
4 ag	8.40	8.05 <i>i</i>	8.05 <i>i</i>			· · · · · ·	3.55
$4b^d$	5.98 7.99 dd $J_{1,2} = 10.5$	4.95 7.20 d $J_{2,3} < 1$	5.18 7.42 d $J_{1,3} = 15.5$	3.7	3.6		2.74
6b ^h 6c ^h	5.98 5.96	5.20 4.98	,5,36 5,08	1.20	0.55	7.2 m	1.40 1.36
4d/	7.20 dd $J_{1,2} = 4.0$	6.65 d $J_{2,3} < 1$	6.58 d $J_{1,3} = 14.0$	2.70	2.4		100
6d <i>h</i>	5.85 dd	5.14 dd	5.33 dd	1.00	0.35		
4e ^j	6.42 dd $J_{1,2} = 6.0$	7.01 d $J_{2,3} < 1$	$J_{1,3} = 12.5$	3.16	3.00	7 . 6–8 . 1, m	
6e ^h	5.66	4.96	5.15	1.05	0.25	7.2 m	
41) 6f ^h	6.23	, 5.00	, 5.05			7.10 7.10	

Table II. ¹H NMR Data^{*a*, *b*} for the 1,3-Substituted Alkenyl Carbenium Ions (3a-f), the 1,1-Substituted Alkenyl Carbenium Ions 4*a*, 4*b*, and 4*d*-*f*, and Precursor Alcohols 6a-f

^aChemical shifts are in parts per million external (capillary) TMS, coupling constants are in hertz. ^bMultiplicities are given as d = doublet, t = triplet, q = quartet, m = multiplet, etc. ^cThe cyclopropyl chemical shifts represent the center of the multiplets. ^d.^eIn FSO₃H-SO₂ClF solution at -80 and -60°, respectively. ^fIn FSO₃H-SO₂ solution at -60°. ^gIn HF-SbF₅ solution at 37°. ^hIn SO₂ solution at -40°. ⁱApproxmate chemical shifts, tightly coupled system. ^jObscured by the aromatic absorptions.

tuted cations resides substantially at the tertiary C_1 carbon relative to the primary C_3 carbon; $\Delta\delta C_1, C_3 = 76.9$ (4e) to 127.9 (4d). Variations in the C_1 and C_3 shifts again largely reflect additional substituent influences.

It would be expected that the absence of substituents at C_1 and C_3 which can conjugatively delocalize positive charge (or their presence at C_2) should enhance the contribution of 1c. In 3a-f, the successive replacement, at C_1 and C₃, of cyclopropyl and phenyl groups by methyl groups should therefore place more charge at C_2 (i.e., increase 1c) and thereby deshield C2. Comparison of the ¹³C NMR data for 3a-f indicates that relative deshielding does occur. However, an additional factor must be considered since the ortho carbons in the phenyl groups and the β carbons in the cyclopropyl groups, attached to C_1 and C_3 , are γ substituents with respect to C_2 (CH₃ is only a β substituent), and the presence of a γ substituent is well known to produce shielding of carbon resonances, most probably by a through-space mechanism.¹⁹ Ion 12, shown above, is clearly analogous, in this regard, to phenanthrene (13) where C_4 and C5 are mutually shielding. This strong mutual shielding can be seen in the Cortho shifts for 3c, 3e, and 3f (Table I) where one carbon resonates at normal field, i.e., slightly more shielded than C_{para}; while the other ortho carbon is only slightly less shielded than the meta carbons; $\Delta \delta_{\text{ortho}} =$ 11.0 (3c), 4.6 (3e), and 9.8 (3f). The shielded ortho carbon is therefore assigned as $C_{ortho,syn}$ (cf. 12). The cyclopropyl group could adopt either the syn (14a) or anti (14b) conformation, but it is not possible to decide, either from the ¹³C NMR or ¹H NMR (e.g., $J_{H_1,H_{\alpha}}$) data, the relative propor-

tions of the conformers. Since C_2 is shielded in **3b**, **3d**, and **3e** relative to **3a**, it can be concluded that the proportion of the syn conformer, where the β carbons of the cyclopropyl group are γ substituents to C_2 , is significant.

It can reasonably be assumed that the α - and β -substituent effects (and any other longer range effects) should be approximately equal for C_{ortho,anti} and C_{ortho,syn}, hence the difference $\Delta \delta_{ortho}$ in **3c**, **3e**, and **3f** should closely approximate the shielding of C₂ by C_{ortho,syn}, i.e., the γ -substituent effect. Although the analogous shielding of C₂ by C_{β} of the cyclopropyl group is not known, it would be expected to be comparable to that due to the phenyl group. The C₂ shifts in **3b-f** can thus be corrected for the γ -substituent effect, yielding a value of 145-150 ppm which is comparable to the 147.0 ppm shift observed for C₂ in **3a**.

In the 1,1-substituted alkenyl cations, the same trend in

Figure 1. (a) A portion of the proton-coupled ${}^{13}C$ NMR spectrum of the 3-cyclopropyl-2-butenyl cation (3b). The portions shown are those assigned to C₁, C₂, and C₃. (b) A portion of the proton-coupled ${}^{13}C$ NMR spectrum of the 3-phenyl-2-butenyl cation (3c). The portions shown are those assigned to C₁ and C₃; C₂ is obscured by overlapping aromatic carbon resonances.

the C_2 shift can be seen (cf. **3a-f**). However, it was concluded that the change is largely localized at C_1 , i.e., **1b** predominates over **1a**, and thus **1c** should not be expected to contribute significantly either. The shielding of C_2 in **4b** and **4d-f** relative to **4a** is again most probably attributable to γ -substituent effects.

The ${}^{13}C$ NMR shifts in the alkenyl cations can thus be explained without invoking significant 1,3-orbital overlap. It would appear that 1,3 overlap does not contribute significantly to the total ion structure of alkenyl cations unless the cationic fragment is contained in a cyclobutane ring.^{4,7}

The presence of methyl, phenyl, and cyclopropyl groups in 3a-f gives rise to distinct chemical shift changes, particularly at C_1 and C_3 . The $C_1 = C_3$ resonances in the symmetrical ions **3a** (δ 231.3), **3d** (δ 211.3), and **3f** (δ 186.8) are clearly analogous to the results seen previously in the carbenium ions¹³ where the substitution of CH₃ by cPr, and cPr by Ph, results in shielding of the carbenium center. In contrast, comparison of the C1 and C3 resonances in the unsymmetrical ions 3b, 3c, and 3e (Table I) gives a different picture; C_1 in **3b** (δ 194.7) and **3c** (δ 205.1) can be compared with that in **3a** (δ 231.3), and this suggests that the cyclopropyl group at C₃ delocalizes more charge away from C_1 than does a phenyl group. In addition, the problem of neighboring-group effects is minimized since a change in the chemical shift of C_1 is observed, while the substituent changes are occurring at C_3 which is effectively screened from C₁. Comparison of the cyclopropyl-substituted carbons (C_3 in 3b and C_1 in 3d and 3e, Table I), the phenylsubstituted carbons (C_3 in 3c, 3e, and 3f, Table I), or the methyl resonances in 3a-c shows the same trends.²⁰ The para carbon resonances in 3c (δ 149.9), 3e (δ 141.8), and 3f (δ 144.7) also demonstrate that the relative order of charge delocalization in the system is $cPr \gtrsim Ph \gg CH_3$, as do the ortho carbon resonances.

A rationalization of the results for **3a**, **3d**, and **3f** and the trend of deshielding of the carbenium carbon when cPr replaces Ph, with the conclusions reached concerning the relative order of charge delocalization, requires that a phenyl group gives rise to a smaller substituent deshielding, i.e., α -substituent effect, than cyclopropyl or methyl groups, in addition to the charge factor. Evidence for this conclusion can

be found in the results for the dibenzocycloheptadienyl cations $15a-d^{21}$ where it was shown that the α effect (i.e., sub-

stituent effect) of a methyl or cyclopropyl group at a carbenium ion center is deshielding by about 22 ppm relative to hydrogen, while a phenyl group deshields by about 10 ppm.

Although the differences in the carbenium ion shifts for the phenyl and cyclopropyl substituted carbenium ion centers can, in part, be explained by differing neighboring α substituent effects, it must be recognized that in 3a-f, the phenyl and cyclopropyl groups most probably adopt the conformation giving optimum orbital overlap with the carbenium carbon p orbital, as opposed to 15a-d, and the α effect of these groups may, in addition, be dependent upon the conformation of the substituent. By comparison of the carbon resonances in 3a-f with some secondary carbenium ions (16a-c),¹ the same trends are observed; the C_{para} shifts reflect the same order of charge delocalization observed in 3a-f with the difference between cPr and Ph being very much smaller than CH₃, and the relative carbenium carbon shifts are analogous. The large differences in the C_{para} shifts in 16a and 16b, and C⁺ shifts in 16b and 16c, coupled with the small differences in the C⁺ shifts for 16a and 16b, and the C_{para} shifts for 16b and 16c, strongly indicate that

Olah, Spear / Phenyl-, Methyl-, and Cyclopropylalkenyl Cations

The 1,1-substituted alkenyl cations 4a, 4b, and 4d-f follow comparable trends to 3a-f. The C₁ resonances for 4b (δ 249.6) and 4d (δ 276.4) are unexpected, because replacement of a CH₃ by a cPr produces a *deshielding* of 27.2 ppm. Two similar but smaller effects were noted in the previous carbenium ion studies (17a, 17b and 18a, 18b).¹³ The

understanding of tertiary carbenium ions can be more complicated than that of secondary ions, because steric constraints permit only two of the three groups at C_1 to simultaneously delocalize the charge, and this gives rise to situations such as **18a** and **4f** (Table I) where the two phenyl groups are magnetically equivalent, **18b** which has nonequivalent phenyl groups, while the three phenyl groups in the triphenyl carbenium ion are magnetically equivalent. We recognize that the explanation suggested previously ¹³ for the nonequivalence of the two phenyl groups in **18b**, i.e., that the cyclopropyl group causes a significant shielding of the phenyl group lying in its face in the bisected conformation cannot explain these effects, and a more probable rationale is that the two phenyl groups in **18b** have a different degree of planarity.

The tertiary carbenium ions thus may be characterized by the substituents adopting a conformation which is a balance between the optimum geometry for conjugative delocalization and steric interactions. Steric crowding may therefore become a significant factor with respect to competitive charge delocalization in tertiary carbenium ions, and any comparison with secondary systems (i.e., 3a-f, 16a-c) must be made with extreme caution.

Indeed, steric factors are probably of major importance in competitive charge delocalization in carbenium ions. Delocalization of charge into a phenyl ring will be favored, because a large conjugated system is formed, although the aromatic resonance energy must, in part, be overcome, while conjugation employing the bent σ bonds of the cyclopropyl group will produce a smaller conjugated system but will probably release some strain in the small ring. However, comparing 12 with 14a and 14b, there will be greater steric interaction in 12, and this may be the factor which favors delocalization by the bent σ bonds of the cyclopropyl group. A similar argument can be made for delocalization by a vinyl group, and the relative order of Ph, cPr, and -CH=CH₂ delocalization could presumably change within systems of different steric crowding.

We therefore conclude that the relative order of charge delocalization in substituted secondary carbenium ions is $cPr \gtrsim Ph \gg CH_3$, and that the cyclopropyl group induces a significant neighboring-group deshielding of the carbenium ion center. In order that the delocalization trends can be rationalized with the C₁ and C₃ shifts in **3a-f** and the results for **16a-c**, a neighboring-group deshielding, opposing the shielding from conjugative delocalization, of up to 30 ppm must be induced by the cyclopropyl group.

The magnitude of this effect in ionic species is unexpected since there is no unusual effect upon saturated carbons (e.g., compare C_1 in **6a-f**, Table I) or aromatic hydrocarbons,¹³ but the effect is possibly operative in the ¹³C NMR shifts for the carbonyl carbon atoms in 2-propanone (**19a**),

cyclopropylmethyl ketone (19b), and acetophenone (19c) since it would be expected that 19b and 19c would both be

more shielded than 19a because of charge delocalization.

It would seem that this neighboring-group effect must be strongly dependent upon the orientation of the cyclopropyl group since it is apparently only observed concurrent with conjugative electron donation and on the total charge at the carbenium center which is being stabilized. The shielding constant for an atom is generally assumed²² to be composed of a paramagnetic term (σ_p) which is dominated by charge polarization with lesser contributions from bond order and average excitation energy, a diamagnetic term (σ_d), and a term reflecting neighboring-group effects (σ^1) .²³ For carbon atoms, the paramagnetic term is usually considered to be much more significant than the ΔE and σ_d factors, but recent work suggests that variations in these latter two parameters may be important for some types of carbon atoms,²⁴⁻²⁶ and this possibility certainly cannot be excluded. We are continuing experimental and theoretical studies of other model systems to further deduce the nature of neighboring-group effects, i.e., α -substituent effects and additional factors in carbocations.

Conclusion

The ¹³C NMR spectra of a series of 1,3-substituted alkenyl cations (**3a-f**) and 1,1-substituted alkenyl cations (**4a**, **4b**, and **4d-f**) have demonstrated extensive charge delocalization between C_1 and C_3 in **3a-f** but substantial localization of charge at C_1 , the tertiary carbon, in **4a**, **4b**, and **4df**. 1,3-Orbital overlap does not appear to contribute significantly to the total resonance structure of these ions. The ¹H NMR spectra indicate that **3a-f** exclusively adopt the trans,trans conformation.

The additional charge delocalization afforded by the substituents at C_1 and C_3 in 3a-f is in the relative order $CH_3 \ll Ph \lesssim cPr$. The relative order of charge delocalization deduced from preceding carbenium ion studies,¹³ i.e., phenyl delocalizes charge better than cyclopropyl by a significant factor, should therefore be reconsidered since the large neighboring-group deshielding by the cyclopropyl group was not fully realized. However, the carbenium ions which were studied were mainly tertiary, and comparison of results from secondary systems (e.g., 3a-f) with tertiary systems (e.g., 4a, 4b, and 4d-f), where steric crowding will be significantly greater, should be made with caution. Further, the additivity of these neighboring-group effects cannot be assessed.

Phenyl, vinyl, and cyclopropyl groups in all probability can show comparable ability to conjugatively delocalize positive charge, and steric interactions within a particular system may determine the relative order. Cyclopropyl-substituted carbenium ions are comparable to phenyl-substituted carbenium ions in their stability, and the large rate enhancements observed in some solvolytic reactions proceeding through the former ions are probably caused by release of strain in reaching the carbocationic transition state and not by large energy differences between the former and latter ions.

The significant neighboring-group effect of a cyclopropyl group on a carbenium ion center appears to be dependent upon both the orientation of the cyclopropyl group and the charge being stabilized. As emphasized before, the chemical shifts of carbenium ion centers cannot be directly related with charge differences, while relative comparisons can only be made with certainty if no substituents are changed at the center. The change of CH₃ by cPr by Ph will introduce significant neighboring-group differences as will other groups with differing size and bonding nature. However ¹³C NMR studies, even with these restrictions, remain the optimum tool for studying not only the structure but the charge distribution in carbocations. We are continuing our studies on neighboring-group effects in carbocations to increase our knowledge and understanding of the factors which affect these systems.

Experimental Section

Pent-3-en-2-ol (5a), 2-methylbut-3-en-2-ol (6a), 1-cyclopropyl-1-phenylprop-2-en-1-ol (6e), and 3-methyl-2-butanone (7a) were commercial samples. Vinylmagnesium chloride was commercially obtained as an approximately 2 M solution in THF. 1-Phenylbut-2-en-1-ol (5c),²⁷ 1,3-diphenylprop-2-en-1-ol (5f),²⁸ 1,1-dibromo-2,2-dimethylcyclopropane,29 and 1-bromo-2,2-dimethylcyclopropane $(8a)^{30}$ were prepared as described in the literature.

1-Cyclopropylbut-2-en-1-ol (5b). A solution of 2-butenal (12.2 g) in THF (50 ml) was added dropwise, with stirring, to an icecooled solution of cyclopropylmagnesium bromide [from magnesium (6 g) and cyclopropyl bromide (36 g) in THF (150 ml)]. After complete addition, the reaction was stirred overnight and worked up by the addition of water. The mixture was filtered, and the combined organic layers after ether extraction were washed with water, 10% sodium bisulfite solution, saturated aqueous bicarbonate, and brine. Removal of solvent yielded a yellow oil which upon distillation gave 5b as a colorless liquid (10.2 g): bp 60-61° (5 mm); v_{max} (liquid film) 3420 (broad), 3090, 1660, 1445, 1375, 825 cm⁻¹; ¹H NMR (CDCl₃) δ 0.5-0.8 (4 H, m, H_β-cyclopropyl), 1.58 (1 H, dd, J = 4.0, 6.5 Hz, H_{α}-cyclopropyl), 2.00 (3 H, d, J = 4.0 Hz, CH₃), 2.96 (1 H, broad s, OH), 3.76 (1 H, dd, J = 4.0, 7.5 Hz, H_1), 5.77 (1 H, dd, J = 17.0, 7.5 Hz, H_2), and 6.15 $(1 \text{ H}, \text{dq}, J = 17.0, 4.0 \text{ Hz}, \text{H}_3).$

Anal. Calcd for C7H12O: C, 75.0; H, 10.8. Found: C, 75.0; H, 10.7

1,3-Dicyclopropylprop-2-en-1-ol (5d). A solution of cyclopropylcarboxaldehyde (6.0 g, prepared from cyclopropylcarbinol as described by Trahanovsky)³¹ and formylmethylenetriphenylphosphorane (9.8 g, prepared as described by Trippett and Walker)³² in benzene (80 ml) was refluxed for 24 hr. The benzene was removed by distillation and the residue was diluted with pentane, filtered, and distilled to give 3-cyclopropylpropenal (10) as a slightly yellow oil (2.6 g): bp 70-71° (20 mm); v_{max} (liquid film) 1679, 1632, 1180, 1120, 958 cm⁻¹; ¹H NMR (CDCl₃) δ 0.71, 1.05 (2 × 2 H, m, H_{β}-cyclopropyl), 1.66 (1 H, m, H_{α}-cyclopropyl), 6.20 (2 H, m, H₂, H₃), 9.38 (1 H, m, CHO).

A solution of 10 (2.1 g) in THF (20 ml) was added dropwise, with stirring, to an ice-cooled solution of cyclopropylmagnesium bromide [from magnesium (1 g) and cyclopropyl bromide (6 g)] in THF (25 ml). After stirring overnight, work-up as described for 5b followed by distillation gave 5d as a colorless oil (1.8 g): bp 92-94° (5 mm); v_{max} (liquid film) 3360 (broad), 3093, 1664, 875, 828 cm⁻¹; ¹H NMR (CDCl₃) δ 0.2-1.6 (10 H, m, H-cyclopropyl), 2.65 (1 H, broad s, OH), 3.42 (1 H, t, J = 6.0 Hz, H_1), 5.18 (1 H, dd, J = 17.5, 7.0 Hz, H₃) and 5.64 (1 H, dd, J = 17.5, 6.0 Hz, H₂).

Anal. Calcd for C₉H₁₄O: C, 78.2; H, 10.2. Found: C, 78.1; H, 10.3

1-Cyclopropyl-3-phenylprop-2-en-1-ol (5e). A solution of 3-phenylpropenal (12.5 g) in THF (50 ml) was added dropwise, with stirring, to an ice-cooled solution of cyclopropylmagnesium bromide [from magnesium (3 g) and cyclopropyl bromide (18 g)] in THF (75 ml). The reaction was stirred overnight and worked up as described for 5b to give 5e as a colorless oil (8.2 g): bp 140-141° (2 mm); v_{max} (liquid film) 3420 (broad), 3080, 1670, 1642, 1607, 1578, 1499, 1452, 1390 cm⁻¹; ¹H NMR (CDCl₃) δ 0.43, 1.03 (2 H and 3 H, respectively, m, H-cyclopropyl), 2.72 (1 H, broad s, OH), $3.62 (1 \text{ H}, \text{dd}, J = 5.3, 7.5 \text{ Hz}, \text{H}_1)$, 6.20 (1 H, dd, J = 17.5, Hz)5.3 Hz, H₂), 6.55 (1 H, d, J = 17.5 Hz, H₃), and 7.3 (5 H, m, phenyl).

1.1-Dicyclopropylprop-2-en-1-ol (6d). Dicyclopropyl ketone (17.7 g, 0.16 mol) in THF (50 ml) was added to a solution of vinylmagnesium chloride (0.25 mol) in THF under nitrogen. After stirring overnight, the reaction was worked up by the addition of water, and the organic phase was separated and dried. Removal of solvent gave a yellow oil which upon distillation yielded 6d as a colorless liquid (18.2 g): bp 123-125° (20 mm); v_{max} (liquid film) 3460 (broad), 3098, 3012, 1635, 1410, 923 cm⁻¹; ¹H NMR spectrum is given in Table II.

Anal. Calcd for C₉H₁₄O: C, 78.2; H, 10.2. Found: C, 78.4; H, 10.4.

2-Cyclopropylbut-3-en-2-ol (6b). Cyclopropyl methyl ketone (8.4 g, 0.1 mol) was reacted with vinylmagnesium chloride (0.15 mol) as described for 6d. Work-up gave 6b as a colorless liquid (7.7 g), bp 40-41° (15 mm) (lit.³³ bp 137-138°).

2-Phenylbut-3-en-2-ol (6c). Acetophenone (12.0 g, 0.1 mol) was reacted with vinylmagnesium chloride (0.15 mol) as described for 6d. Work-up gave 6c as a colorless liquid (10.8 g), bp 76-78° (1.5 mm) [lit.³⁴ bp 73-74° (1 mm)].

1,1-Diphenylprop-2-en-1-ol (6f). Benzophenone (18.2 g, 0.1 mol) was reacted with vinylmagnesium chloride (0.15 mol) as described for 6d. Work-up gave 6f as a colorless liquid (14.8 g), bp 143-145° (1.8 mm) [lit.³⁵ bp 133.5–135° (1 mm)].

1,1-Dibromo-2-methyl-2-phenylcyclopropane (19). Potassium tert-butoxide (30 g) was added in small portions to a stirred solution of bromoform (50.5 g) and 2-phenylpropene (23.6 g) in tertbutanol (200 ml) over 6 hr. After stirring for an additional 2 hr, pentane and water were added, and the organic layer was separated when all the solid had dissolved. Removal of solvent and distillation gave **19** as a colorless oil (18.3 g), bp 106–110° (1.5 mm) [lit.³⁶ bp 94-100° (2 mm)].

1-Bromo-2-methyl-2-phenylcyclopropane (8b). 19 (17.0 g) was added dropwise, with stirring, to tri-n-butyltin hydride³⁷ (11.2 g), while the temperature was maintained below 30°. The solution was stirred for an additional 4 hr and then distilled to give 8b as an approximately 2:1 mixture of isomers (10.2 g), bp 80-90° (1.5 mm): ¹H NMR (CDCl₃) δ 1.08, 1.26 (total 3 H, s, ratio 1:2, CH₃ in two isomers), 0.5-1.5 (total 2 H, m, $H_{3\alpha}$ and $H_{3\beta}$), 2.95 (total 1 H, two overlapping dd, H₂), and 7.05-7.15 (total 5 H, narrow m, phenyl).

Preparation of Ions (3a-f, 4b, and 4d-f). A dilute solution of the alcohol in SO₂ at -78° or SO₂ClF at -120° was added dropwise, with shaking, to an approximately 1:1 (by volume) solution of FSO_3H in SO_2 at -78° or FSO_3H in SO_2ClF at -120° . The generation of 3a, 3b, 3d, and 4b required extremely slow addition to avoid polymer formation. 4a was prepared as described previous $ly.^{10}$

Proton Magnetic Resonance Spectra. ¹H NMR spectra were obtained on a Varian Associates Model A56/60A spectrometer equipped with a variable-temperature probe. External TMS (capillary) was used as a reference for the carbenium ions and internal TMS for the alcohols 5a-f and 6a-f.

Carbon-13 Magnetic Resonance Spectra. The spectrometer used was a Varian Associates Model XL-100 equipped with a broadband decoupler and variable-temperature probe. The instrument and techniques used are described in more detail in ref 15. Chemical shifts were measured from external (capillary) TMS.

Acknowledgment. Support of this work by the National Science Foundation is gratefully acknowledged.

References and Notes

- Part CLXXIX: G. A. Olah, P. W. Westerman, and D. A. Forsyth, J. Am. (1)Chem. Soc., in press.
- Postdoctoral research associate. N. C. Deno in "Carbonium lons," Vol. 2, G. A. Olah and P. v. R. (3) (a) T. J. Katz and E. H. Gold, *J. Am. Chem. Soc.*, **86**, 1600 (1964); (b) G.
- Olah, P. R. Clifford, Y. Halpern, and R. G. Johanson, ibid., 93, 4219 (1971), and references therein.
- (a) G. A. Olah and G. Liang, *J. Am. Chem. Soc.*, **94**, 6434 (1972), and references therein; (b) G. A. Olah, G. Liang, and Y. K. Mo, *ibid.*, **94**, (5) 3544 (1972).
- (6) B. K. Carpenter, J. Chem. Soc., Perkin Trans. 2, 1 (1974).
 (7) G. A. Olah, J. S. Staral, and G. Liang, J. Am. Chem. Soc., 96, 6233 (1974).
- (a) H. Spiesecke and W. G. Schneider, Tetrahedron Lett., 468 (1961); (b) G. L. Nelson, G. C. Levy, and J. D. Cargioli, J. Am. Chem. Soc., 94,

3089 (1972)

- (9) G. A. Olah and J. M. Bollinger, J. Am. Chem. Soc., 90, 6082 (1968).
- (10) D. M. Brouwer and J. A. van Doorn, Recl. Trav. Chim. Pays-Bas, 91, 261 (1972).
- (11) A. E. van der Hout-Lodder, J. W. de Haan, L. J. M. van de Ven, and H.
- (11) A. E. Vali der Hole Coder, *Pays-Bas*, **92**, 1040 (1973).
 (12) N. Deno, H. G. Richey, Jr., N. Friedman, J. D. Hodge, J. J. Houser, and C. U. Pittman, Jr., *J. Am. Chem. Soc.*, **85**, 2991 (1963).
 (13) (a) G. A. Olah and P. W. Westerman, *J. Am. Chem. Soc.*, **95**, 7530.
- (1973); (b) G. A. Olah, P. W. Westerman, and J. Nishimura, ibid., 96, 3548 (1974).
- (14) (a) G. A. Olah and J. Sommer, J. Am. Chem. Soc., 90, 927 (1968); (b) C. U. Pittman, Jr., Chem. Commun., 122 (1969); (c) P. v. R. Schleyer, T. M. Su, M. Saunders, and J. C. Rosenfeld, J. Am. Chem. Soc., 91, 5174 (1969).
- (15) M. Saunders, D. Cox, and W. Ohlmstead, J. Am. Chem. Soc., 95, 3018 (1973).
- (16) A referee has suggested that 4c would not be expected to be stable, because similar ions have been observed to cyclize to indanyl cations: N. C. Deno, C. U. Pittman, Jr., and J. O. Turner, J. Am. Chem. Soc., 87, 2153 (1965); W. G. Miller and C. U. Pittman, Jr., J. Org. Chem., 39, 1955 (1974)
- (17) (a) M. Barfield, J. Am. Chem. Soc., 93, 1066 (1971); (b) G. P. Newsoroff and S. Sternhell, Aust. J. Chem., 25, 1669 (1972).
- (18) N. C. Deno, R. C. Haddon, and E. N. Nowak, J. Am. Chem. Soc., 92, 6691 (1970).
- (19) J. B. Stothers, "Carbon-13 NMR Spectroscopy," Academic Press, New York, N.Y., 1972, Chapters 3-5.

- (20) These results also justify the assignment of C_1 and C_3 from the protoncoupled spectra (see Results section); replacement of cPr at C1 in 3d by CH₃ giving 3b will place more positive charge at C_3 which will consequently become deshielded (Table 1), completely ruling out the reverse assignment. The assignments of C1 and C3 in 3c and 3e also follow by a similar rationalization.
- G. A. Olah and G. Liang, J. Am. Chem. Soc., in press.
- (22) M. Karplus and J. A. Pople, J. Chem. Phys., 38, 2803 (1963). (23) For theoretical treatment of carbon-13 chemical shifts, see G. E. Ma-
- ciel, J. L. Dallas, R. L. Elliot, and H. C. Dorn, J. Am. Chem. Soc., 95, 5857 (1973), and references 1-19 therein.
- (24) A. J. Jones, D. M. Grant, J. G. Russell, and G. Fraenkel, J. Phys. Chem., 73, 1624 (1969).
- (25) T. Tokuhiro and G. Fraenkel, J. Am. Chem. Soc., 91, 5005 (1969).
- (26) J. Mason, J. Chem. Soc. A, 1038 (1971).
 (27) R. Burton, J. Chem. Soc., 455 (1929).
- (28) H. Nomura, Bull. Soc. Chim. Fr., 37, 1245 (1925).
- (29) P. S. Skell and A. Y. Garner, J. Am. Chem. Soc., 78, 3409 (1956). (30) D. Seyferth, H. Yamazaki, and D. L. Alleston, J. Org. Chem., 28, 703 (1963).
- (31) L. B. Young and W. S. Trahanovsky, J. Org. Chem., 32, 2349 (1967).
 (32) S. Trippett and D. M. Walker, J. Chem. Soc., 1266 (1961).

- (33) M. Julia, S. Julia, and C. Descoins, Bull. Soc., 1260 (1961).
 (34) C. S. Marvel and R. G. Wooford, J. Org. Chem., 23, 1658 (1958).
 (35) P. Martinet and H. Doupeux, C. R. Acad. Sci., 259, 2241 (1964).
 (36) W. J. Dale and P. E. Swartzentruber, J. Org. Chem., 24, 955 (1959).
 (37) G. J. M. van der Kerk, J. G. Noltes, and J. G. A. Luitjten, J. Appl. Chem., 7, 366 (1957).

Onium Ions. XIII.¹ Carbon-13 Nuclear Magnetic Resonance Spectroscopic Study of Benzenediazonium Ions Indicating Ambident Character

George A. Olah* and James L. Grant

Contribution from the Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106. Received November 6, 1974

Abstract: Carbon-13 nuclear magnetic resonance spectroscopic study of a series of benzenediazonium fluoroborate or hexafluorophosphate salts in sulfur dioxide solution at -30° was carried out. Data reflecting charge delocalization show the ambident nature of benzenediazonium ions. The Spiesecke-Schneider relationship is maintained when considering σ_p for $-N_2^+$ and the para cmr shift of the benzenediazonium ion.

One aspect of benzenediazonium ions which has received relatively little attention in the literature is nucleophilic aromatic substitution of the aromatic ring at ring positions other than that originally containing the $-N_2^+$ substituent. Several review articles² on diazonium ion chemistry have provided examples of substitution (1 and 2) of nucleofugal leaving groups (Y) such as nitro, hydroxide, or halides in the ortho or para positions to the diazonium group. We have recently reported¹ nucleophilic dediazoniation reactions of arenediazonium ions where substitution took place at positions other than the ipso position originally carrying the $-N_2^+$ group. These reactions indicate the ambident nature of benzenediazonium ions.

It was considered of interest to study directly the ambident nature of benzenediazonium ions by cmr spectroscopy, a method well suited for such structural studies. In addition, a near-linear relationship between carbon-13 chemical shifts and Hammett σ_p parameters for a series of substituted benzenes has been reported.³ We have, therefore, considered it of interest to extend this relationship to include $-N_2^+$, a substituent representing an outer limit of electronwithdrawing power, in the series of monosubstituted benzenes.

Results and Discussion

Previous experimental studies indicate that the diazonium group, as an aromatic ring substituent, is approximately twice as electronegative as the nitro group.⁴ This behavior is in accordance with proton nmr studies.⁵ A more sensitive method to study the structure and charge distribution of benzenediazonium ions is carbon-13 nmr since carbon-13 chemical shifts of phenyl ring carbons in substituted benzenes can be used to monitor changes in charge distribution at those carbons. The assignment of resonances was made by the now familiar procedures of Grant and coworkers.^{6,7} In addition to showing the trend of charge delocalization, aryl carbon shieldings of substituted benzenediazonium ions show approximate additivity.8 To assure correct assignments, "off-resonance" proton-decoupling experiments were also carried out. Table I summarizes carbon-13 chemical-shift parameters of substituted benzenediazonium salts studied as the stable tetrafluoroborate or hexafluorophosphate salts in SO₂ solution, generally at -30° .

As can be seen from Table I, there is a marked upfield shift of the C-1 (ipso) carbons bearing the $-N_2^+$ substituent