Downloaded by: Rutgers University. Copyrighted material.

Novel Chiral Glycerol Analogues Building Blocks. Application to the Synthesis of Bioactive Glycoglycerolipid Analogues

Patrizia Ferraboschi,* Diego Colombo, Federica Compostella, Shahrzad Reza-Elahi

Dipartimento di Chimica e Biochimica Medica-Via Saldini,50-20133-Milan, Italy Fax +39-2-58356040; E-mail: Patrizia.Ferraboschi@unimi.it *Received 28 May 2001*

Abstract: Monoacylglycosylglycerols show anti-tumor promoting effects: in order to study the role of the ester function we have prepared by simple methods (R)-1-O-benzyl-1,2-decandiol, (R)-3-O-benzyl-1-O-hexyl-sn-glycerol, and (R)-1-O-benzyl-5-oxo-1,2-decandiol; these optically active compounds are building blocks for the synthesis of monohexanoylglycosylglycerol isosters.

Key words: glycolipids, antitumor agents, isosters, building blocks, synthons

Monoacylglycosylglycerols have been reported to have significant anti-tumor promoting effects;¹ in particular, among the different derivatives, compounds **1b** and **1c**, both bearing a hexanoyl chain on the glycerol C-1, are the most active.^{2,3}

In the course of a project aimed at ascertaining the structural features responsible for the cancer chemopreventing activity, in order to study the role of the ester function in modulating this activity, we have planned to prepare the acylglucosyl- and galactosylglycerol analogues **2b-c**, **3bc** and **4b-c** in which the chain is linked to the glycosylglycerol skeleton through bonds metabolically more stable than the ester linkage.

In this paper, the preparation of compounds **7**, **8** and **9**, suitably protected at the primary hydroxy group, i.e. the proper isosters of 1-*O*-hexanoyl-*sn*-glycerol **1a**, which are required for the synthesis of the target compounds by glycosidation at the secondary hydroxyl, is described.

To obtain the compounds with the desired C-2 configuration, the commercially available (*R*)-benzylglycydol **5** and (*R*)- γ -hydroxymethyl- γ -butyrolactone **6** were chosen as starting material for the synthesis of alkyl and ether isosters **2a** and **3a** or of the carbonylic isoster **4a**, respectively. (*R*)-1-*O*-Benzyldecan-1,2-diol⁴ **7** was obtained in 80% yield from **5** by reaction with 1-heptylmagnesiumbromide and copper (I) bromide-dimethyl sulfide complex; the same protected epoxyalcohol **5** afforded the desired (*R*)-hexylether⁵ **8** (70% yield) by reaction with sodium in hexanol (Scheme 1).⁶

In turn, for the synthesis of isoster **9**, (*R*)-lactone **6**, after reaction with benzyl trichloroacetimidate to the corresponding benzylether⁷ **10**, was converted into its methyl ester and protected as silylether giving compound **11**.⁸ LiAlH₄ reduction of the ester function, followed by pyridium chlorochromate (PCC) oxidation afforded (*R*)-aldehyde **12**,⁹ which was transformed in secondary alcohol **13**,¹⁰ by treatment with 1-bromopentyl magnesium. Then, oxidation of **13** with PCC afforded 5-ketone **14**, and deprotection of the silylether with tetrabutylammonium fluoride (TBAF) in tetrahydrofuran gave compound **9**¹¹ in 26% overall yield from lactone **6** (Scheme 2).

Since compound **9** is a synthon for the above mentioned glycosylation reactions, and it is prone to an intramolecular cyclization reaction to give a six-membered cyclic

Synlett 2001, No. 9, 1379-1382 ISSN 0936-5214 © Thieme Stuttgart · New York

Scheme 2 Reagents: i. $Cl_3CC(=NH)OCH_2Ph$, CF_3SO_2OH , $CH_2Cl_2/$ hexane, 0 °C, 0.5h; ii. N NaOH, rt, 1h; iii. CH_3I , TBABr, CH_3COCH_3 , rt, 8h; iv. TBDMSCl, imidazole, THF, rt, 15h; v. LiAlH₄, THF, rt, 4h; vi. PCC, AcONa, CH_2Cl_2 , rt, 1h; vii. $C_5H_{11}MgBr$, Et_2O , rt, 4h; viii. PCC, AcONa, CH_2Cl_2 , rt, 1h; ix. TBAF, THF, rt, 8h; x. ethylene glycol, $(EtO)_3CH$, BF_3/Et_2O , C_6H_6 , reflux, 4h; xi. TBAF, THF, rt, 8h; xii. HSCH₂CH₂SH, BF_3/Et_2O , CH_2Cl_2 , rt, 0.5h.

hemiacetal, we protected the carbonyl function by synthesizing both (*R*)-ketal $15^{12,13}$ and (*R*)-thioketal 16^{14} (Scheme 2).

As an illustration of the applicability of these novel glycerol analogues building blocks, we report the synthesis of compounds **4b** and **4c**. Several attempts of glycosylation between ketal **15** and β -D-galactose pentaacetate, or the corresponding α -trichloroacetimidate, in the presence of BF₃-ethyl etherate, or between **15** and peracetylated methyl β -D-thiogalactopyranoside under dimethyl(methylth-io)sulfonium tetrafluoroborate promotion, resulted in very low yields of glycosylation product and decomposition of acceptor **15**.

To circumvent the problem, we successfully turned our attention to thioketal **16**; the glycosylation product **19**¹⁵ was obtained in 70% yield from **16** and β -D-galactose pentaacetate **17** in dichloromethane (0 °C to r.t.) in the presence of BF₃-ethyl etherate (1 equiv). Using the same procedure, starting from β -D-glucose pentaacetate **18**, the corresponding glucoconjugate **20**¹⁶ was obtained in 65% yield. After conventional deprotection methods the glycoglycerolipid analogues **4b** and **4c** were recovered¹⁷ (Scheme 3).

In conclusion, we have reported an approach, which provides a general access to glycerol analogues building blocks; the described simple synthetic routes for compounds **7-9** are, in fact, generalizable to whatever chain lengths and, besides the described synthesis of glycoconjugates, also appropriate for the obtention of other glycerol containing compounds, as for example, the PAF (platelet antiaggregating factor)¹⁸ and the ALP (alkyllysophospholipid)¹⁹ and their isosters²⁰ in which the 1-position of the glycerol should be selectively modified.

Acknowledgement

This work was supported by the Ministero dell' Università e della Ricerca Scientifica e Tecnologica (MURST, ex-60%).

References and Notes

- Colombo, D.; Compostella, F.; Ronchetti, F.; Scala, A; Toma, L.; Kuchide, M.; Tokuda, H.; Nishino, H. *Cancer Lett.* 2000, *161*, 201.
- (2) Colombo, D.; Scala, A.; Taino, I.M.; Toma, L.; Ronchetti, F.; Tokuda, H.; Nishino, H.; Nagatsu, A.; Sakakibara, J. *Cancer Lett.* **1998**, *123*, 83.
- (3) Colombo, D.; Compostella, F.; Ronchetti, F.; Scala, A.; Toma, L.; Mukainaca, T.; Nagatsu, A.; Konoshima, T.; Tokuda, H.; Nishino, H. *Cancer Lett.* **1999**, *143*, 1.
- (4) (*R*)-1-O-Benzyl-1,2-decandiol **7** was prepared as reported for a similar compound differing in the chain length (Iguchi, K.; Kitade, M.; Kashiwagi, T.; Yamada, Y. J. Org. Chem. **1993**, 58, 5690) in 80% yield from (*R*)-benzylglycidol **5** (1g, FLUKA), oil; $[\alpha]_D - 4.0 (c \ 1 \ in CHCl_3)$. ¹H NMR (CDCl₃, 500 MHz): $\delta_H 0.84 (t, 3H, CH_3)$, 1.20-1.36 (m, 12H, CH₂), 1.36-1.50 (m, 2H, CH₂-3), 2.50-2.58 (m, 1H, exchang.), 3.27 (m, 1H, CH-OBn), 3.45 (m, 1H, CH-OBn), 3.74-3.82 (m, 1H, CH-O), 4.50 (s, 2H, CH₂Ph), 7.20-7.38 (m, 5H, Ar). m/z (EI) 264 (M⁺), 246, 217, 181, 173, 143, 122, 91.
- (5) (*R*)-3-O-Benzyl-1-O-hexyl-sn-glycerol 8 was prepared as described for the analogue 1-methylether (Waagen, V.; Hollingsaeter, I.; Partali, V.; Thorstad, O.; Anthonsen, T. *Tetrahedron: Asym.* 1993, 4, 2265) in 70% yield from 5 (1g), oil; [a]_D+3.9 (c 1 in CHCl₃). ¹H NMR (CDCl₃, 500MHz): δ_H 0.90 (t, 3H, CH₃), 1.22-1.38 (m, 6H, CH₂), 1.52-1.60 (m, 2H, CH₂-CH₂-O), 2.76-2.80 (m, 1H, exchang.), 3.38-3.58 (m, 6H, CH₂-O), 3.96-4.00 (m, 1H, CH-O), 4.54 (s, 2H, CH₂Ph), 7.22-7.36 (m, 5H, Ar). m/z (EI) 267 (MH⁺), 233, 217, 187, 181, 163, 142, 113, 107.
- (6) To ascertain whether the high optical purity of the starting material **5** remained unchanged in the products **7** and **8**, ¹H NMR analysis of the MTPA-esters of the corresponding optically active and racemic compounds was performed (Dale, J.A.; Mosher, H.S. *J. Am. Chem. Soc.* **1973**, *95*, 512). Racemic **7** and **8** were prepared starting from (*R*,*S*)-benzylglycidol (FLUKA). The MTPA-derivative of racemic **7** showed as significant signals two multiplets centered at 4.40 and 4.48 ppm due to the OCH₂Ph protons. In the spectrum of the MTPA derivative of (*R*)-**7** the signal at 4.40 ppm was not detectable. In the case of the MTPA derivative of (*R*,*S*)-**8**, the ¹H NMR spectrum showed two multiplets centered at 4.42 and 4.52 ppm due to the OCH₂Ph protons. The same signals for the (*R*)-**8** derivative were present in a 2/98 ratio indicating a 96% ee.
- (7) 5-Benzyloxymethyl-dihydrofuran-2-one **10**. The benzylation was carried out with benzyl trichloroacetimidate in presence of trifluoromethanesulphonic acid (Nicolaou, K.C.; Raja Reddy, K.; Skokotas, G.; Sato, F.; Xiao, X.-Y.; Hwang, C.-K. J. Am. Chem. Soc. **1993**, 115, 3558) in 70% yield from (*R*)-**6** (5g, FLUKA). [α]_D -17.5 (*c* 1.6 CHCl₃) (lit.+18 for (*S*)-isomer, Hirama, M.; Uei, M. J. Am. Chem. Soc. **1982**, 104, 4251). ¹H NMR (CDCl₃, 500MHz): $\delta_{\rm H}$ 2.06-2.14 (m, 1H, CH-3), 2.22-2.30 (m, 1H, CH-3), 2.40-2.50 (m, 1H, CH-2), 2.56-2.66 (m, 1H, CH-2), 3.56 (m, 1H, CH-OBn), 3.66 (m, 1H, CH-OBn), 4.55 (s, 2H, CH₂Ph), 4.62-4.67 (m, 1H, CH-O), 7.22-7.40 (m, 5H, Ar).
- (8) Methyl (R)-5-O-benzyl-4-O-tert-butyldimethylsilyl-4,5dihydroxypentanoate 11. Lactone 10 was transformed into the crude methylester (Takeda, K.; Nakajima, A.; Yoshi, E. Synlett 1997, 255) which was immediately treated with *t*butyldimethylsilyl chloride and imidazole in THF (r.t., 15 h) to afford the silylether 11 (85% from 10). ¹H NMR (CDCl₃, 500MHz): δ_H 0.0 (s, 6H, CH₃Si), 0.88 (s, 9H, (CH₃)₃C), 1.74-1.82 (m, 1H, CH-3), 1.90-1.98 (m, 1H, CH-3), 2.34-2.46 (m, 2H, CH₂), 3.34 (m, 1H, CH-OBn), 3.40 (m, 1H, CH-OBn),

3.66 (s, 3H, CH_3 -O), 3.86-3.92 (m, 1H, CH-O), 4.50-4.52 (m, 2H, CH_2 Ph), 7.32-7.34 (m, 5H, Ar).

- (9) (*R*)-5-O-Benzyl-4-O-tert-butyldimethylsilyl-4,5dihydroxypentanal 12. Methylester 11 was reduced with LiAlH₄ (r.t., 4 h) in THF to afford the corresponding alcohol that was oxidized (r.t., 1 h) with pyridinium chlorochromate (PCC) in presence of sodium acetate in dichloromethane. Filtration through a Florisil pad and evaporation of the solvents afforded the aldehyde 12 (70% from 11), oil. [α]_D+15.8 (*c* 2 CHCl₃). ¹H NMR (CDCl₃, 500MHz):δ_H 0.0 (s, 6H, CH₃Si), 0.90 (s, 9H, (CH₃)₃C), 1.76-1.84 (m, 1H, CH-3), 1.88-1.98 (m, 1H, CH-3), 2.48 (t, 2H, CH-2), 3.32 (m, 1H, CH-OBn), 3.40 (m, 1H, CH-OBn), 3.86-3.92 (m, 1H, CH-O), 4.46-4.50 (m, 2H, CH₂Ph), 7.22-7.36 (m, 5H, Ar), 9.74 (s, 1H, CHO). IR (CHCl₃) v_{max} 1730 cm⁻¹.
- (10) (2*R*),(5*R*,S)-1-O-Benzyl-2-O-tert-butyldimethylsilyl-1,2,5decantriol **13**. Aldehyde **12** was treated with pentyl magnesium bromide in diethyl ether (r.t., 4 h) to afford the secondary alcohol **13** in 90% yield. ¹H NMR (CDCl₃, 500MHz): $\delta_{\rm H}$ 0.0 (s, 6H, (CH₃)₂Si), 0.90-0.98 (m, 12H, (CH₃)₃C and CH₃), 1.20-1.80 (m, 12H, CH₂), 3.32-3.44 (m, 2H, CH₂-OBn), 3.52-3.62 (m, 1H, CH-OH), 3.84-3.92 (m, 1H, CH-O), 4.50 (s, 2H, CH₂Ph), 7.20-7.36 (m, 5H, Ar).
- (11) (*R*)-1-O-Benzyl-5-oxo-1,2-decandiol **9**. Title compound was obtained by oxidation of **13** with PCC to ketone **14** and deprotection of silyl ether with TBAF (Corey, E.J.; Venkateswarlu, A. J. Am. Chem. Soc. **1972**, 94, 6190) (70% from **13**, oil). $[\alpha]_D$ +3.3 (*c* 1 in CHCl₃). ¹H NMR (CDCl₃, 500MHz): δ_H 0.92 (t, 3H, CH₃), 1.20-1.36 (m, 4H, CH₂), 1.50-1.60 (m, 2H, CH₂), 1.60-1.70 (m, 1H, CH-3), 1.70-1.80 (m, 1H, CH-3), 2.36 (t, 2H, CH₂CO), 2.48-2.62 (m, 2H, CH₂CO), 3.32 (m, 1H, CH-OBn), 3.46 (m, 1H, CH-OBn), 3.74-3.80 (m, 1H, CH-O), 4.50 (s, 2H, CH₂Ph), 7.22-7.40 (m, 5H, Ar). m/z (APCI) 279 (MH⁺), 261.
- (12) (*R*)-*1-O-Benzyl-5-ethylendioxy-1,2-decandiol* **15.** The ketal was prepared from ketone **14** with diethylene glycol under boron trifluoride-ethyl etherate catalysis (Derguini, F.; Linstrumelle, G. *Tetrahedron Lett.* **1984**, *25*, 5763 and Hase, T.A.; Ourika, A.; Holmberg, C. *J. Org. Chem.* **1981**, *46*, 3137). The silylether was removed by reaction with TBAF (ref 11) affording **15** in 65% yield from **14**. $[\alpha]_D$ +0.6 (*c* 2 in CHCl₃). ¹H NMR (CDCl₃, 500MHz): δ_H 0.84 (t, 3H, CH₃), 1.18-1.36 (m, 6H, CH₂), 1.44-1.58 (m, 4H, CH₂), 1.60-1.70 (m, 1H, CH), 1.74-1.84 (m, 1H, CH), 2.70 (br s, 1H, exchang.), 3.33 (dd, 1H, J_{H1a,1b} 9 Hz, J_{H1a,2} 7.5 Hz, H-1a), 3.47 (dd, 1H, J_{H1b,2} 3 Hz, H-1b), 3.78 (m, 1H, H-2), 3.86 (br s, 4H, CH₂-O), 4.54 (s, 2H, CH₂Ph), 7.20-7.40 (m, 5H, Ar).
- (13) The optical purity of (*R*)-9 was determined by ¹H NMR analysis of the MTPA-ester⁶ of (*R*)-15. (*R*,*S*)-15 was prepared by PCC oxidation of (*R*)-15, followed by NaBH₄ reduction in methanol. In the spectrum of the racemic derivative two signals centered at 4.42 and 4.52 ppm, due to the OCH₂Ph protons, were present, whereas in the spectrum of the (*R*)-15derivative the signal at 4.42 ppm was not detectable.
- (14) (*R*)-1-O-Benzyl-5-ethylenedithio-1,2-decandiol **16**. The thioketal was prepared in one step procedure from ketone **14** by reaction in dichloromethane with 1,2-ethandithiol in the presence of 0.2 equiv of boron trifluoride-diethyl ether (73%, oil). $[\alpha]_D$ -1.4 (*c* 1 in CHCl₃). ¹H NMR (CDCl₃, 500 MHz): δ_H 0.87 (t, 3H, CH₃), 1.27 (m, 4H, CH₂), 1.45 (m, 2H, CH₂), 1.64 (m, 2H, CH₂), 1.88 (m, 3H, CH₂ and CH), 2.12 (m, 1H, CH), 2.32 (br s, 1H, exchang.), 3.24 (s, 4H, CH₂-S), 3.33 (dd, 1H, J_{H1a,1b} 9.5 Hz, J_{H1a,2} 9.5 Hz, H-1a), 3.51 (dd, 1H, J_{H1b,2} 2.5 Hz, H-1b), 3.80 (m, 1H, H-2), 4.54 (s, 2H, CH₂Ph), 7.22-7.40 (m, 5H, Ar).
- (15) (R)-1-O-Benzyl-2-O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-5-ethylenedithio-1,2-decandiol 19. [α]_D-3 (c 1 in

 $\begin{array}{l} {\rm CHCl_3).} \ ^1{\rm H} \ {\rm NMR} \ ({\rm CDCl_3}, \ 500 \ {\rm MHz}): \ \delta_{\rm H} \ 0.85 \ (t, \ 3{\rm H}, \ {\rm CH}_3), \\ {\rm 1.22-1.32} \ (m, \ 4{\rm H}, \ {\rm CH}_2), \ 1.40 \ (m, \ 2{\rm H}, \ {\rm CH}_2), \ 1.65-1.88 \ (m, \ 6{\rm H}, \\ {\rm CH}_2), \ 1.94, \ 1.97, \ 2.05, \ 2.10 \ (4 \ s, \ 12{\rm H}, \ 4 \ {\rm CH}_3{\rm CO}), \ 3.22 \ (br \ s, \\ {\rm 4{\rm H}, \ CH}_2{\rm -S}), \ 3.44 \ (dd, \ 1{\rm H}, \ J_{{\rm H1a,1b}} \ 10.0 \ {\rm Hz}, \ J_{{\rm H1a,2}} \ 6.0 \ {\rm Hz}, \ {\rm H-1a}), \\ {\rm 3.62} \ (dd, \ 1{\rm H}, \ J_{{\rm H1b,2}} \ 4.5{\rm Hz}, \ {\rm H-1b}), \ 3.72 \ (m, \ 1{\rm H}, \ {\rm H-2}), \ 3.82 \ (dd, \\ {\rm 1{\rm H}, \ J_{{\rm H^{+}5,6a}}} = \ J_{{\rm H^{+}5,6b}} \ 6.5 \ {\rm Hz}, \ {\rm H^{+}5}), \ 4.02-4.10 \ (m, \ 2{\rm H}, \ {\rm H^{-}6a,6b}), \\ {\rm 4.49} \ (s, \ 2{\rm H}, \ {\rm CH}_2{\rm Ph}), \ 4.55 \ (d, \ 1{\rm H}, \ J_{{\rm H^{+}1,2}} \ 8{\rm Hz}, \ {\rm H^{-}1}), \ 4.96 \ (dd, \\ {\rm 1{\rm H}, \ J_{{\rm H^{+}2,3}}} \ 10 \ {\rm Hz}, \ J_{{\rm H^{+}3,4}} \ 3 \ {\rm Hz}, \ {\rm H^{-}3}), \ 5.17 \ (dd, \ 1{\rm H}, \ {\rm H^{-}2}), \ 5.33 \ (br \ d, \ 1{\rm H}, \ {\rm H^{-}4}), \ 7.18-7.36 \ (m, \ 5{\rm H}, \ {\rm Ar}). \ m/z \ ({\rm CI/NH}_3) \ 702 \ [{\rm M+NH}_4]^+. \end{array}$

- (16) (*R*)-1-O-Benzyl-2-O-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-5-ethylenedithio-1,2-decandiol **20**. [α]_D -6 (c 1 in CHCl₃). ¹H NMR (CDCl₃, 500 MHz): $\delta_{\rm H}$ 0.85 (t, 3H, CH₃), 1.20-1.32 (m, 4H, CH₂), 1.40 (m, 2H, CH₂), 1.68-1.90 (m, 6H, CH₂), 1.96, 1.98, 2.02, 2.04 (4 s, 12H, 4 CH₃CO), 3.18-3.26 (m, 4H, CH₂-S), 3.44 (dd, 1H, J_{H1a,1b} 10.0 Hz, J_{H1a,2} 5.5 Hz, H-1a), 3.57-3.64 (m, 2H, H-1b and H'-5), 3.72 (m, 1H, H-2), 4.03 (dd, 1H, J_{H'6a,6b} 12.5 Hz, J_{H'5,6a} 2.5 Hz, H'-6a), 4.16 (dd, 1H, J_{H'5,6b} 4.5 Hz, H'-6b), 4.51 (s, 2H, CH₂Ph), 4.59 (d, 1H, J_{H'1,2} 8Hz, H'-1), 4.96 (dd, 1H, J_{H'2,3} 9.5 Hz, H'-2), 5.04 (dd, 1H, J_{H'3,4} = J_{H'4,5} = 10Hz, H'-4), 5.15 (dd, 1H, H'-3), 7.20-7.36 (m, 5H, Ar). m/z (CI/NH₃) 702 [M+NH₄]+.
- (17) Compounds **19** and **20** were deprotected as follows. The thioketal group was removed by adding dropwise at 0 °C a solution of NBS in acetone to a solution of the substrate (0.25 g) in acetone (97% acetone+3% H_2O) until disappareance of the starting compound. After removal of the acetates with the Zemplen reaction (MeONa/MeOH), the benzyl ether was quantitatively hydrogenolyzed in MeOH with Pd/C as catalyst. The mixture was filtered over Celite, evaporated to dryness, and diluted with water. This solution was treated with

```
Dowex 50 \times 8 (H<sup>+</sup> form) under reduced pressure (12 mm Hg)
at 50 °C for 10 min; after filtration, the solution was
lyophilized affording the desired 4b and 4c. (R)-2-O-(\beta-D-
glucopyranosyl)-5-oxo-1,2-decandiol 4b. [\alpha]_{\rm D} -20 (c 0.5 in
H<sub>2</sub>O). <sup>1</sup>H NMR (D<sub>2</sub>O, 500 MHz): δ<sub>H</sub> 0.70 (t, 3H, CH<sub>3</sub>), 1.02-
1.18 (m, 4H, CH<sub>2</sub>), 1.36 (m, 2H, CH<sub>2</sub>), 1.63 (m, 2H, CH<sub>2</sub>),
2.37 (m, 2H, CH<sub>2</sub>-6), 2.53 (m, 2H, CH<sub>2</sub>-4), 3.10 (dd, 1H, J<sub>H'1.2</sub>
8Hz, J<sub>H'2.3</sub> 9 Hz, H'-2), 3.16-3.34 (m, 3H, H'-3,4,5), 3.43 (dd,
1H, J<sub>H1a,1b</sub> 12.0 Hz, J<sub>H1a,2</sub> 6.0 Hz, H-1a), 3.56-3.46 (m, 2H, H-
1b and H'-6a), 3.63 (m, 1H, H-2), 3.72 (dd, 1H, J<sub>H'6a,6b</sub> 12 Hz,
J<sub>H'6b,5</sub> 1,5 Hz, H'-6b), 4.31 (d, 1H, H'-1). m/z (CI/NH<sub>3</sub>) 368
[M+NH_4]^+. (R)-2-O-(\beta-D-galactopyranosyl)-5-oxo-1,2-
decandiol 4c. [\alpha]_{\rm D} -5 (c 0.5 in H<sub>2</sub>O). <sup>1</sup>H NMR (D<sub>2</sub>O, 500
MHz): \delta_{\rm H} 0. 70 (t, 3H, CH<sub>3</sub>), 1.02-1.18 (m, 4H, CH<sub>2</sub>), 1.38 (m,
2H, CH<sub>2</sub>), 1.63 (m, 2H, CH<sub>2</sub>), 2.37 (m, 2H, CH<sub>2</sub>-6), 2.53 (m,
2H, CH<sub>2</sub>-4), 3.30-3.61 (m, 7H, H-1a,1b and H'-2,3,5,6a,6b);
3.64 (m, 1H, H-2), 3.74 (br s, 1H, J_{H'3,4} 3 Hz, H'-4), 4.25 (d,
1H, J<sub>H'1.2</sub> 8.0 Hz, H'-1). m/z (CI/NH<sub>3</sub>) 368 [M+NH<sub>4</sub>]<sup>+</sup>.
```

- (18) Demopoulos, C.A.; Pinckard, R.N.; Hanahan, D.J. J. Biol. Chem. **1979**, 254, 9355.
- (19) Andreesen, R.; Modolell, M.; Munder, P.G. *Blood* 1979, 54, 519.
- (20) (a). Nakamura, N.; Miyazaki, H.; Ohkawa, N.; Koike, H.; Sada, T.; Asai, F.; Kobayashi, S. *Chem. Pharm. Bull.* **1984**, *32*, 2452. (b). Bonjouklian, R.; Phillips, M.L.; Kuhler, K.M.; Grindey, G.B.; Poore, G.A.; Schultz, R.M.; Altom, M.G. *J. Med. Chem.* **1986**, *29*, 2472.

Article Identifier:

1437-2096,E;2001,0,09,1379,1382,ftx,en;G10101ST.pdf