# Kinetic Mechanism of Reaction between TT-Phase Niobium Oxide and Carbon Tetrachloride (CCI<sub>4</sub>)

Kohki Ebitani, Yoshiaki Hirano, and Akira Morikawa<sup>1</sup>

Department of Chemical Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152, Japan

Received August 11, 1994; in revised form December 10, 1994; accepted December 11, 1994

The kinetic mechanism of reaction between TT-phase niobium oxide and carbon tetrachloride (CCl<sub>4</sub>) at low (453 K) and high (above 573 K) temperatures was investigated. The reaction of the TT-phase niobium oxide with CCl<sub>4</sub> at 453 K was controlled by the diffusion of CCl<sub>4</sub> through the outer layer of the reaction product, NbOCl<sub>3</sub>, formed around the surface. For the reaction at temperatures above 573 K, the chemical reaction on the surface of the niobium oxide controls the total reaction rate due to the disappearance of the layer of NbOCl<sub>3</sub>. © 1995 Academic Press, Inc.

## INTRODUCTION

The increasing importance of the decomposition of halogen-containing carbon compounds is due to their uses in the decomposition of chlorofluorocarbons (CFCs) into harmless compounds and in the halogenation of metal oxides, which is a valuable step in the metallurgy of refractory metals. The authors have investigated the decomposition of carbon tetrachloride (CCl<sub>4</sub>) by the use of a metal oxide, as a model reaction of C-Cl bond cleavage, which has been proposed as an important step in the whole CFC decomposition (1, 2). In our previous work (3), niobium oxide in TT-phase was found to oxidize CCl<sub>4</sub> into CO<sub>2</sub> very selectively (without formation of COCl<sub>2</sub>) at 453 K in the various metal oxides tested: amorphous  $Nb_2O_5$ ,  $SiO_2$ - $Al_2O_3$ ,  $Al_2O_3$ ,  $V_2O_5$ ,  $TiO_2$ , and  $ZrO_2$  in the absence of water and O<sub>2</sub>. Since O<sub>2</sub> was not supplied as a reactant, the CCl<sub>4</sub> was oxidized into CO<sub>2</sub> by lattice oxygen atoms of the TT-phase niobium oxide. This reaction occurs at the gas-solid interface.

In this paper, the kinetic mechanism of the reaction between TT-phase niobium oxide and CCl<sub>4</sub>, from the point of view of the oxidation of CCl<sub>4</sub> by the lattice oxygen of the TT-phase niobium oxide or the reduction of TT-phase niobium oxide by CCl<sub>4</sub>, was determined from the dependence of the reaction rate on (a) the reaction time, reaction temperature, and pressure of CCl<sub>4</sub>, and (b)

the geometry of the solid of the metal oxides and an analysis of the solid products. The experimental results led to the proposal that the diffusion-controlled mechanism and the chemical-reaction-controlled mechanism are dominant at reaction temperatures below 473 K and above 573 K, respectively.

## **EXPERIMENTAL**

The TT-phase niobium oxide was prepared by calcination of niobic acid ( $Nb_2O_5 \cdot nH_2O$ , No. AD-350 of Companhia Brasileira de Metalurgia e Mineracão (CBMM)) at 1023 K. The TT-phase of the niobium oxide was evidence by its X-ray diffraction pattern. The phase transformation from the amorphous phase to the TT phase of the niobium oxide at 1023 K was verified by observing the exothermic peak at around 840 K during the differential thermal analysis (DTA). The Nb content in the niobic acid was 55.7 wt%. The BET surface area of the metal oxide was determined by  $N_2$  adsorption at 77 K.

The reaction of metal oxide (0.2 g) with CCl<sub>4</sub> was carried out under atmospheric pressure in a tubular flow reactor made of quartz with an inner diameter of 12.5 mm. A typical condition was CCl<sub>4</sub> 4.5 kPa, He 96.8 kPa, total flow rate 2.4 liter/hr,  $W/F = 0.083 \text{ g} \cdot \text{hr} \cdot \text{liter}^{-1}$ . Unless otherwise stated, the metal oxide powder of 10-20 mesh was used after crushing the powder disk, which was formed under 200 kg/cm<sup>2</sup> pressure. The reaction temperature was monitored by a Chromel-Alumel thermocouple. The CCl<sub>4</sub> was supplied to the reaction passing a helium carrier through CCl4 saturators and a column of MgSO<sub>4</sub> powder to dry the gas mixture. The partial pressure at CCl<sub>4</sub> was varied by changing the temperature of the CCl<sub>4</sub> saturators. Products (CO<sub>2</sub> and COCl<sub>2</sub>) and the residual CCl4 were analyzed by on-line gas-chromatography in a Gaskuropack-54 column. The outlet gas was passed through a K<sub>2</sub>CO<sub>3</sub> aqueous solution (0.5 M), and trapped chlorides were quantified by AgNO3 and Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> titration. In the absence of metal oxide in the quartz reactor, CCl<sub>4</sub> decomposition did not occur under the present experimental conditions.

<sup>&</sup>lt;sup>1</sup> To whom correspondence should be addressed.

The degree of reduction of the niobium oxide,  $\alpha$ , CO<sub>2</sub> selectivity, Sel, and CCl<sub>4</sub> conversion were calculated by the following equations:

Number of oxygen atoms in the products (CO<sub>2</sub>,  $\alpha = \frac{\text{COCl}_2\text{) integrated over a certain process time}}{\text{Number of oxygen atoms in niobium oxide (Nb}_2\text{O}_5)}$ packed into the reactor

$$Sel = \frac{amount \ of \ CO_2 \ formed}{amount \ of \ CO_2 \ formed + amount} \times 100 \ (\%), \ and \\ of \ COCl_2 \ formed$$

$$CCl_{4} conversion = \frac{[CCl_{4}]in - [CCl_{4}]_{out}}{[CCl_{4}]_{in}} \times 100 (\%).$$

In order to evaluate the distribution of the chlorine along the depth from the surface in the niobium oxide after the reaction with CCl<sub>4</sub>, the energy dispersed X-ray spectroscopic (EDS) measurements were conducted on an EDAX PV9900I (Phillips Co., Ltd.).

## RESULTS AND DISCUSSION

As reported previously (3), Nb<sub>2</sub>O<sub>5</sub> exhibited a higher activity at 453 K than any other metal oxide. In addition, Nb<sub>2</sub>O<sub>5</sub> treated at 1023 K (TT-phase niobium oxide) shows much higher selectivity for CO<sub>2</sub> (100%) at 453 K than that treated at 573 K (amorphous niobium oxide). The BET surface area of the Nb<sub>2</sub>O<sub>5</sub> degassed at 573 K was 120 m<sup>2</sup>/g, which decreased to 50 m<sup>2</sup>/g for Nb<sub>2</sub>O<sub>5</sub> degassed at 873 K. Thus, the specific activity (per surface area) for CO<sub>2</sub> formation of the Nb<sub>2</sub>O<sub>5</sub> treated at 1023 K (TT-phase niobium oxide) is four times greater than that of the Nb<sub>2</sub>O<sub>5</sub> treated at 573 K (amorphous niobium oxide). The carbon balance on the TT-phase niobium oxide at the process time of 3 hr at 453 K was ca. 95%, indicating that carbon compounds did not remain on the surface during the reaction.

Figure 1 shows the change with increasing process time in the CCl<sub>4</sub> conversion (left axis) and CO<sub>2</sub> selectivity (right axis) of the TT-phase niobium oxide at various reaction temperatures (453–723 K). At any reaction temperature, the CCl<sub>4</sub> conversion gradually decreased as the process time increased. At reaction temperatures higher than 673 K, the CCl<sub>4</sub> conversion decreased to almost zero and the reactant Nb<sub>2</sub>O<sub>5</sub> disappeared after several hours, indicating a complete reaction of TT-phase niobium oxide with CCl<sub>4</sub>. The products were CO<sub>2</sub> and COCl<sub>2</sub> (phosgene). No carbon monoxide (CO) was detected at any reaction temperature or at any process time. The CO<sub>2</sub> selectivity for the reaction at 453 K was extremely high compared to that at other reaction temperatures. Since O<sub>2</sub> was not supplied as a reactant, the CCl<sub>4</sub> was oxidized

into CO<sub>2</sub> or COCl<sub>2</sub> only by lattice oxygen atoms of the TT-phase niobium oxide.

The change in  $\alpha$  (degree of reduction of TT-phase niobium oxide) as a function of the process time at various reaction temperatures (573–773 K) is shown in Fig. 2. At higher reaction temperatures (723 and 773 K), the value of  $\alpha$  becomes a constant value of 0.6 for longer process times. The value of 0.6 means that 60% of the oxygen of the TT-phase niobium oxide was removed by the reaction with CCl<sub>4</sub>. After the reaction at 723 and 773 K, the solid did not remain on the reactor bed; a white powder with a yellowish cast was deposited at the outlet of the reactor. The powder was dissolved in deionized water without exposure to air and the amount of Cl<sup>-</sup> ion in the solution (pH < 7) was determined by titration using Mohr's method. The ratios of the amount of Cl<sup>-</sup> in the solution to the amount of niobium in the powders obtained from the reaction at 623 and 723 K were 3.03 and 2.98, respectively. This ratio of Cl/Nb = 3.0 corresponds to NbOCl<sub>3</sub>, which is white. The yellowish cast in the powder may be due to a small amount of NbCl<sub>5</sub>, which is yellow.

The following two reactions are used to explain the experimental results:

$$Nb_2O_5 + 2CCl_4 \rightarrow 2NbOCl_3 + CO_2 + COCl_2$$
 [1]

$$2Nb_2O_5 + 3CCl_4 \rightarrow 4NbOCl_3 + 3CO_2$$
. [2]

Equation [2] is obtained by taking into account the further reaction of COCl<sub>2</sub> with Nb<sub>2</sub>O<sub>5</sub>. Both of these reactions occur in the present reaction system; the value of  $\alpha$  at the completion of the reaction is 0.6, which corresponds well to the experimental results (Fig. 2).

When the overall reaction in the present system is mainly controlled by Eq. [1], the selectivity of CO<sub>2</sub> is 50%. While the system is adequate to achieve the full oxidation of CCl<sub>4</sub> to give CO<sub>2</sub>, as indicated by Eq. [2], in such a case, as the system retains a sufficient amount of oxidant, Nb<sub>2</sub>O<sub>5</sub>, and because of the low temperature of the reaction, the selectivity must be close to 100%. The latter case corresponds to the result shown in Fig. 1a, and the results of Figs. 1b–1e are mainly explained by Eq. [1].

In order to estimate a precise reaction rate, the  $CCl_4$  conversion and  $CO_2$  selectivity were compared at the same  $\alpha$  value (the degree of reduction of the niobium oxide). The changes in the reaction rate and  $CO_2$  selectivity as a function of the reaction temperature at constant  $\alpha$  of 0.2 are shown in Fig. 3. The total reaction rate, or the sum of the formation rates of  $CO_2$  and  $COCl_2$ , increased as the reaction temperature increased. The increase in the rate of  $COCl_2$  formation is not remarkable, while that of  $CO_2$  is dramatic. This was demonstrated well by the change in  $CO_2$  selectivity with reaction temperature.

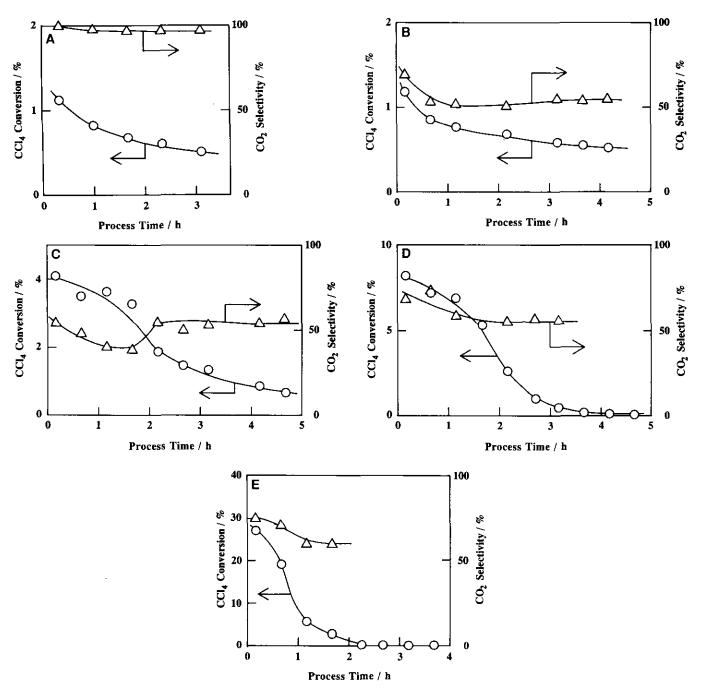



FIG. 1. The time course of CCl<sub>4</sub> conversion (left axis) and CO<sub>2</sub> selectivity (right axis) on TT-phase niobium oxide at (A) 453, (B) 573, (C) 623, (D) 673, and (E) 723 K.

Figure 4 shows a plot of the logarithm of the (total) reaction rate to a reciprocal of the reaction temperature at a constant  $\alpha$  of 0.2. The apparent activation energies for CO<sub>2</sub> and COCl<sub>2</sub> formations were 96.6 kJ mole<sup>-1</sup> (23.8 kcal mole<sup>-1</sup>) and 54.2 kJ mole<sup>-1</sup> (13.0 kcal mole<sup>-1</sup>), respectively. These values were almost unchanged at various values of  $\alpha$ : 0.1 or 0.3. This apparent activation energy was smaller that that obtained by Mehra *et al.* for

the chlorination of  $Nb_2O_5$  by chlorine in the presence of excess graphite (4). A very low activation energy for the rate of  $COCl_2$  formation may be observed due to the fact that  $COCl_2$  is an intermediate in the reaction to give a complete oxidation product,  $CO_2(3)$ .

Figure 5 shows a plot of the logarithm of the formation rate of  $CO_2$  to the logarithm of  $CCl_4$  pressure at a constant  $\alpha$  of 0.05 at 453 K. The rate of  $CO_2$  formation de-

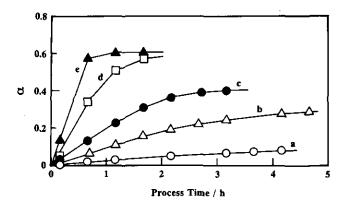



FIG. 2. The changes in  $\alpha$  (degree of reduction of TT-phase niobium oxide) as a function of time at (a) 573, (b) 623, (c) 673, (d) 723, and (e) 773 K.

creased as the CCl<sub>4</sub> pressure increased. Apparently, the reaction order is negative with respect to the CCl<sub>4</sub> pressure at 453 K.

A plot of the logarithm of the formation rates of  $CO_2$  (a) and of  $COCl_2$  (b) to the logarithm of  $CCl_4$  pressure at a constant  $\alpha$  of 0.20 at 623 K is shown in Fig. 6. The rates of  $CO_2$  and  $COCl_2$  formation increased as the  $CCl_4$  pres-

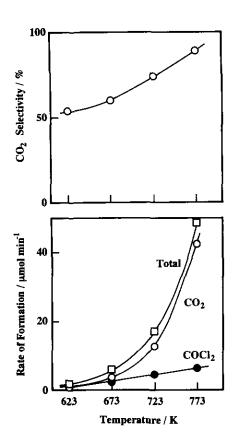



FIG. 3. The changes in the reaction rate and  $CO_2$  selectivity for the reaction of  $CCl_4$  and TT-phase niobium oxide as a function of the reaction temperature at a constant  $\alpha$  ( $\alpha = 0.2$ ).

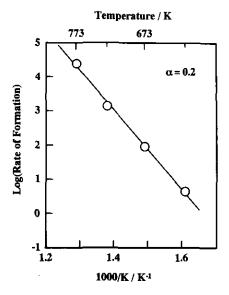



FIG. 4. Plot of the logarithm of the reaction rate and a reciprocal of the reaction temperature for the reaction of CCl<sub>4</sub> and the TT-phase niobium oxide at  $\alpha$  of 0.2.

sure increased. The difference in the dependence of the reaction rate on the CCl<sub>4</sub> pressure between the reaction at 453 and at 623 K may be related to the different reaction features.

Generally, the reduction of the metal oxide, assuming a contracting sphere model, is expressed as

$$\frac{k_{\rm p}}{r_0 d_0} (C_0 - C_{\rm eq})t = [1 - (1 - \alpha)^{1/3}] 
+ \frac{r_0 k_{\rm p}}{k_{\rm d}} [1/2 - \alpha/3 - (1 - \alpha)^{2/3}],$$
[3]

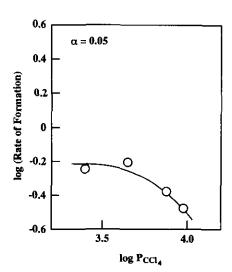



FIG. 5. Plot of the logarithm of the reaction rate and logarithm of CCl<sub>4</sub> pressure for the reaction of CCl<sub>4</sub> and the TT-phase niobium oxide at a constant  $\alpha$  ( $\alpha = 0.05$ ) at 453 K.

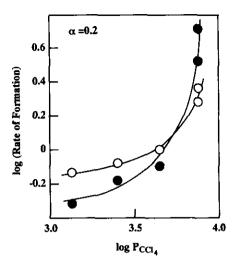



FIG. 6. Plot of the Logarithm of the reaction rates for (a) CO<sub>2</sub> and (b) COCl<sub>2</sub> and logarithm of CCl<sub>4</sub> pressure for the reaction of CCl<sub>4</sub> and the TT-phase niobium oxide at a constant  $\alpha$  ( $\alpha$  = 0.20) at 623 K.

where  $\alpha$  is the degree of reduction,  $r_0$  is the radius of metal oxide at initiation,  $C_0$  is the concentration of CCl<sub>4</sub> at  $r_0$ ,  $C_{eq}$  is the equilibrium concentration of CCl<sub>4</sub>,  $d_0$  is the density at  $r_0$ ,  $k_p$  is the rate constant of the CCl<sub>4</sub> reaction, and  $k_d$  is the diffusion coefficient of CCl<sub>4</sub> (5). This is the integrated rate equation giving the degree of reduction,  $\alpha$ , as a function of time t.

If  $k_p \ll k_d$  or  $k_p/k_d = 0$ , then

$$\frac{k_{\rm p}}{r_0 d_0} (C_0 - C_{\rm eq})t = [1 - (1 - \alpha)^{1/3}].$$
 [4]

If  $k_p \gg k_d$  or  $k_d/k_p = 0$ , then

$$\frac{k_{\rm p}}{r_0 d_0} (C_0 - C_{\rm eq}) t = \frac{r_0 k_{\rm p}}{k_{\rm d}} [1/2 - \alpha/e - (1 - \alpha)^{2/3}/2].$$
 [5]

A linear correlation between  $[1 - (1 - \alpha)^{1/3}]$  and t indicates chemical reaction control at the metal oxide/reduced phase interface. If the overall reaction rate is limited by the diffusion of reductant (CCl<sub>4</sub>, in this case) through the reaction product layer, a plot of  $[1/2 - \alpha/3 - (1 - \alpha)^{2/3}/2]$  against t may be a straight line.

Figure 7 shows a plot of  $[1/2 - \alpha/3 - (1 - \alpha)^{2/3}/2]$  against the process time, t, for the reaction at 453 K. A plot of  $[1 - (1 - \alpha)^{1/3}]$  against t for the same reaction is shown in Fig. 8. As seen from these figures, the plot in Fig. 7, rather than that in Fig. 8, fits a straight line, suggesting that the diffusion control mechanism is dominant for the reaction at 453 K. It is plausible that the CCl<sub>4</sub> diffuses slowly through the product layer formed on the surface of the niobium oxide and reacts rapidly with niobium oxide at the interface between the niobium oxide

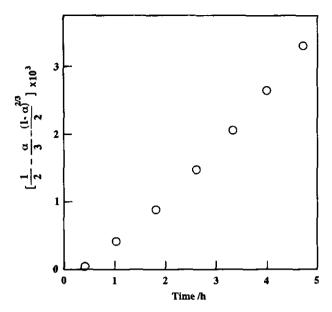



FIG. 7. Plot of  $[1/2 - \alpha/3 - (1 - \alpha)^{2/3}/2]$  versus time for the reaction of TT-phase niobium oxide with CCl<sub>4</sub> at 453 K.

and the product layer. The temperature of 453 K is rather low for the product, NbOCl<sub>3</sub>, to be subsumed, and the reacting surface of the niobium oxide must be covered by a layer of the product, NbOCl<sub>3</sub>. The vapor pressure of NbOCl<sub>3</sub> at 600 K is about 1 atm (6).

Figure 9 shows the relationship between the rate of CO<sub>2</sub> formation per gram or per apparent outer area of the pellet after the process time of 1 hr and the amount of TT-phase niobium oxide at 453 K. As clearly shown, the rate per apparent surface area of the pellet was constant for different sizes of niobium oxide pellets, whereas the rate per gram of the pellet was not. This strongly indicates that the reaction of the TT-phase niobium oxide with CCl<sub>4</sub> at 453 K was controlled by the diffusion of the CCl<sub>4</sub>

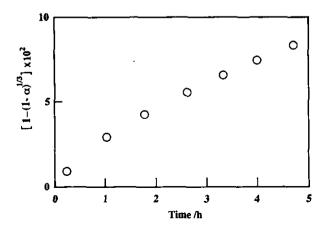



FIG. 8. Plot of  $[1 - (1 - \alpha)^{1/3}]$  versus time for the reaction of TT-phase niobium oxide with CCl<sub>4</sub> at 453 K.

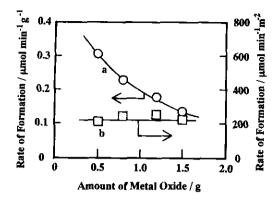



FIG. 9. Relationship between the rate of formation (per gram and per apparent area) and the amount of TT-phase niobium oxide at 453 K.

through the outer layer of the oxide pellet, and that the inner niobium oxide did not encounter the reactant CCl<sub>4</sub>. The EDS profile of the pellet after the reaction of CCl<sub>4</sub> ( $\alpha = 0.012$  for 5 hr for the TT-phase niobium oxide) revealed that the Cl element was detected only near the outer surface of the oxide pellet.

The reaction mechanism of the TT-phase niobium oxide with CCl<sub>4</sub> at reaction temperatures higher than 573 K seems to be different from that operating in the reaction at 453 K. Figure 10 shows the plots of  $[1/2 - \alpha/3 - (1 - \alpha)^{2/3}/2]$  versus time for the reaction of TT-phase niobium oxide with CCl<sub>4</sub> at 573 K (a), 623 (K (b), and 673 K (c). The plots of  $[1 - (1 - \alpha)^{1/3}]$  versus time for the reaction of TT-phase niobium oxide with CCl<sub>4</sub> at 573 K (a), 623 K

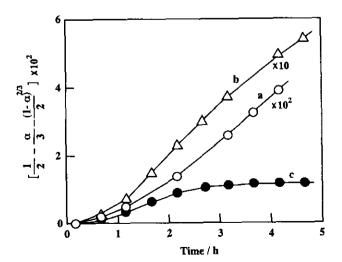



FIG. 10. Plot of  $[1/2 - \alpha/3 - (1 - \alpha)^{2/3}/2]$  versus time for the reaction of TT-phase niobium oxide with CCl<sub>4</sub> at 573 (a), 623 (b) and 673 K (c).

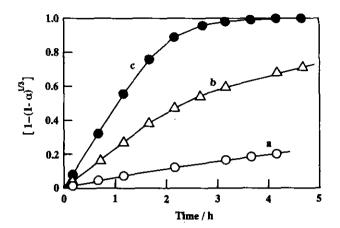



FIG. 11. Plot of  $[1 - (1 - \alpha)^{1/3}]$  versus time for the reaction of TT-phase niobium oxide with CCl<sub>4</sub> at 573 (a), 623 (b), and 673 K (c).

(b), and 673 K (c) are shown in Fig. 11. It seems that the plots of  $[1 - (1 - \alpha)^{1/3}]$  versus time within 2 or 3 hr were straight; the plots of  $[1/2 - \alpha/3 - (1 - \alpha)^{2/3}/2]$  versus time were not. This suggests that a chemical reaction control mechanism was dominant at reaction temperatures above 573 K. In this situation, the outer layer around the unreacted niobium oxide was removed to the vapor phase: the diffusion of CCl<sub>4</sub> through the outer layer could not be considered.

The extremely high CO<sub>2</sub> selectivity (deep oxidation of CCl<sub>4</sub>) observed at the reaction temperature of 453 K might be caused by a long contact time at the unreacted niobium oxide/NbOCl<sub>3</sub> interface, since the CCl<sub>4</sub> concentration at the interface is apparently very small. Even though COCl<sub>2</sub> is formed on the reacting surface, it must be oxidized by oxygenates released from the bulk of the oxide. The strong positive dependence of the reaction rate on the CCl<sub>4</sub> pressure observed for the reaction at 623 K might be caused by an increase in adsorbed CCl<sub>4</sub> on the TT-phase niobium oxide surface through chemical interaction increasing the CCl<sub>4</sub> pressure.

The reaction control mechanism was different for the reactions at temperatures lower than 500 K and those at temperatures higher than 550 K. The vapor pressure of the NbOCl<sub>3</sub>, which is considered to form the outer layer on the unreacted niobium oxide surface, exceeds 760 mmHg at around 600 K. Thus, at the lower temperature, the reaction is controlled by the diffusion of the reacting gas through the product layer formed around the niobium oxide surface.

In conclusion, the reaction of the TT-phase niobium oxide with CCl<sub>4</sub> at 453 K was controlled by the diffusion of CCl<sub>4</sub> through the outer layer of reaction product, NbOCl<sub>3</sub>, formed around the outer layer of reaction product, NbOCl<sub>3</sub>, formed around the niobium oxide surface.

For the reaction at temperatures above 573 K, the chemical reaction occurring on the surface of the niobium oxide controls the total reaction rate, due to the disappearance of the layer of NbOCl<sub>3</sub> by its sublimation.

#### ACKNOWLEDGMENTS

The authors thank Dr. Rokuro Ohki, Research Cooperation Division, Tokyo Institute of Technology, for his technical advice regarding the EDS measurement.

#### REFERENCES

- 1. S. Okazaki and A. Kurosaki, Chem. Lett., 1901 (1989).
- 2. K. Mizuno, Meeting abstracts of "International Forum on Environmental Catalysis—1993," p. 29. Tokyo, Japan, 1993.
- K. Ebitani, Y. Hirano, J.-H. Kim, and A. Morikawa, React. Kinet. Catal. Lett. 51, 351 (1993).
- 4. O. K. Mehra, S. Zahed Hussain, and P. K. Jena, Trans. Indian Inst. Met. 19, 53 (1966).
- N. W. Hurst, S. J. Gentry, A. Jones, and B. D. McNicol, Catal. Rev.-Sci. Eng. 24, 233 (1982).
- F. Fairbrother, "The Chemistry of Niobium and Tantalum," Chap.
   Elsevier, Amsterdam, 1967.