

Tetrahedron Letters 39 (1998) 8853-8856

TETRAHEDRON LETTERS

Tetrakis(dimethylamino)ethylene (TDAE) as a Useful Reductant of Some Chlorodifluoromethylated Ketones. A New Approach for the Synthesis of α,α-Difluoroketone Derivatives.

Conrad Burkholder and William R. Dolbier, Jr

University of Florida, Department of Chemistry, P. O. Box 117200, Gainesville, FL 32611-7200, USA.

Maurice Médebielle*^{\$} and Alexandre Ndedi

Université Denis Diderot, Laboratoire d'Electrochimie Moléculaire associée au CNRS, 2 Place Jussieu, 75251 Paris Cedex 05, France.

Received 23 July 1998; accepted 25 September 1998

Abstract: Tetrakis(dimethylamino)ethylene (TDAE) was found to be an effective reductant of chlorodifluoromethylated ketones 1-3. The generated α, α -difluoroacetyl anion was trapped with several aldehydes 4-7, under mild conditions, to give the corresponding 2.2-difluoro-3-hydroxy ketone derivatives 8-13, in moderate yields. © 1998 Published by Elsevier Science Ltd. All rights reserved.

There continues to be an interest in the synthesis of new gem-difluorinated compounds because of the

potential biological properties of such molecules¹. Many selectively fluorinated analogues of biologically important compounds have experienced dramatic enhancement in their biological activity². Electrophilic carbonyl derivatives, such as α, α -difluoroketones, are compounds of great interest because they have the capability to form hydrates and hemiketals^{3a}. It is believed that this property allows some fluorinated ketones to mimic the transition states involved in the hydrolytic action of proteases and esterases as well as many other enzymes^{3b,e}. Recently a series of α, α -difluoroketones have also shown interesting activities as HIV-1 proteases inhibitors^{3b,4}. The Reformatsky reaction of halodifluoroacetates and halodifluoroketones is by far the most common method of making such bioactive compounds⁵. However, success of such reactions usually requires the use of catalysts such as zinc and catalytic titanium chloride⁶, copper chloride for the reaction with aldehydes and silver acetate for ketones^{5b}, a catalytic amount of CeCl₃,⁷ or Et₂AlCl with a catalytic amount of AgOAc⁸. Ultrasonic activation of a preformed organozinc reagent⁹ and an electrochemical nickel catalyzed reaction with methyl chlorodifluoroacetate and a sacrificial zinc anode, ^{10a} and electrochemical reductive coupling reactions of methyl chlorodifluoroacetate with aldehydes using a lead cathode have also been reported^{10b}. An alternative and milder methodology for generating a difluoroacetyl anion, is a goal worth pursuing.

As part of our ongoing effort in the synthesis of new fluorinated compounds with potential biological and synthetic applications¹¹, we wish to report the novel use of tetrakis(dimethylamino)ethylene (TDAE), as an electron donor, to generate stable α, α -difluoroacetyl anions from chlorodifluoromethylated ketones 1-3. These

^{\$} FAX: +33 (0) 1. 44. 27. 76. 25. E-mail: mauricem@paris7.jussieu.fr

^{0040-4039/98/\$ -} see front matter © 1998 Published by Elsevier Science Ltd. All rights reserved. PII: S0040-4039(98)02028-0

carbanions undergo in situ nucleophilic addition to aromatic aldehydes 4-7 to prepare 2,2-difluoro-3-hydroxy ketone derivatives 8-13.

Cvclic voltammetry of 1^{12a} (in anhydrous DMF + 0.1M Et₄NBF₄) shows that the first bielectronic wave (as compared with the one-electron oxidation wave of the ferrocene) located at -1.25V vs SCE (Encl at 0.2V/s on a glassy carbon electrode) is irreversible (up to 100V/s) and corresponds to the cleavage of the -CF₂-Cl bond and to the formation of the corresponding difluoroacetyl derivative (the N,N-dimethyl-1naphthylamine-4-difluoroacetyl, RCOCF₂H 14^{12b}) as the reduction product as was shown by comparison with an authentic sample^{12b}. The cleavage of the radical anion is very fast and therefore the major pathway of the α, α -difluoroacetyl radical is a further reduction to the hydrogenolysis product, probably at a close potential to 1. Our studies on the cyclic voltammetry of TDAE^{11a} as well as on the chlorodifluoromethylated ketones (E_{pc1} = -1.31V vs SCE for 2 and E_{nc1} =-1.15V vs SCE for 3 at 0.2V/s) at this point prompted us to try TDAE as a mild and conceptually-different synthetic electron transfer reagent, for the generation of difluoroacetyl anions, and subsequent reactions with aromatic aldehydes as trapping agents. As we have reported for the reactions involving bromodifluoromethylated heterocycles^{11a, 13}, an equimolar amount of TDAE was necessary for complete reduction of the starting ketones, with the reactions being almost complete after two hours. The best yields of alcohols 8-13 were obtained using a 5 molar excess of the respective aldehyde. Formation of the products was monitored by TLC and the yields were moderate. The only side-products which represent the remaining balance material were the hydrogenolysis compounds RCOCF₂H resulting from protonation of the α, α -difluoroacetyl anion.

The imidazo[1,2-a]pyridine skeleton (2) is an important heterocycle often found in many bioactive compounds¹⁴; the reaction of the ketone 2^{15} with benzaldehyde (1 molar equivalent), gave after column chromatography, a mixture of the alcohol adduct 12 along the reduction product. Attempts to separate these two

products were unsuccessful. The alcohol 13 is a known compound⁵. The structures of compounds 8-13 obtained after column chromatography, were confirmed by their spectral and analytical data¹⁶.

All of the reactions seem to involve the formation of a charge transfer complex between the starting ketones and the TDAE. Upon raising the temperature, this complex gradually decomposed to generate an α, α -difluoroacetyl anion which is apparently stable enough to react with aromatic aldehydes. In all the experiments, $[TDAE]^{2+}2Cl^{-}$ was recovered by simple filtration at the end of the reaction (in 60-65% yield based on the starting material) demonstrating that the TDAE has been clearly oxidized. A stepwise single electron transfer mechanism between the TDAE and the starting chlorides 1-3 should occur in all the reactions.

In conclusion, TDAE has been found to have a remarkable ability to generate stable difluoroacetyl anions from chlorodifluoromethylketones. Such a methodology should be able to be extended to other chlorodifluoromethylated ketones of biological interest. The alcohol derivatives synthesised in this work should be good candidates for further chemical elaboration,^{11e} and work along this line is in progress.

Acknowledgments. We thank Marie-Noelle Rager (ENSCP, Paris) for the ¹⁹F NMR spectra and David Clainquart (Université Denis Diderot) for the mass spectra. M. M would like to thank the CNRS for of leave of absence at the University of Florida where part of this work was done.

References

1. Tozer, M. J.; Herpin, T. Tetrahedron 1996, 52, 8619-8683.

2. Welch, J. T.; Eswarakrishnan, S. 'Fluorine in Bioorganic Chemistry', John Wiley & Sons, Inc., New York, 1991.

3. (a) Bégué, J. P.; Bonnet-Delpon, D. Tetrahedron 1991, 47, 3207-3258. (b) Schirlin, D.; Baltzer, S.; Altenburger, J. M.; Rémy, J. M.; Tarnus, C. Tetrahedron 1996, 52, 305-318. (c) Bernstein, P. R.; Kosmider, B. J.; Vacek, E. P.; Veale, C. A.; Gomes, B. C. Bioorganic & Medicinal Chemistry Letters 1994, 4, 2175-2178. (d) Schirlin, D.; Baltzer, S.; Van Dorsselaer, V.; Weber, F.; Weill, C.; Altenburger, J. M.; Neises, B.; Flynn, G.; Rémy, J. M.; Tarnus, C. Bioorganic & Medicinal Chemistry Letters 1993, 3, 253-258.

4. Sham, H. L.; Betebenner, D. A.; Wideburg, N. E.; Kempf, D. J.; Plattner, J. J.; Norbeck, D. W. J. Fluorine. Chem 1995, 73, 221-224.

5. (a) Fried, J.; Hallinan, E. A. Tetrahedron. Lett 1984, 25, 2301. (b) Kuroboshi, M.; Ishihara, T. Bull. Chem. Soc. Jpn 1990, 63, 428-437. (c). Lang, R. W.; Schaub, B. Tetrahedron. Lett 1988, 29, 2943. (d) Tsukamato, T; Kitazume, T. J. Chem. Soc. ; Perkin Trans 1 1993, 1177.

6. Ishihara, T.; Yamanaka, T.; Ando, T. Chem. Lett 1984, 1165.

7. Shen, Y.; Qi, M. J. Fluorine. Chem 1994, 67, 229-232.

8. Curran, T. T. J. Org. Chem 1993, 58, 6360-6363.

9. Altenburger, J. M.. Schirlin, D. Tetrahedron. Lett 1991, 32, 7255.

10. (a) Mcharek, S.; Sibille, S.; Nédélec, J-Y.; Périchon, J. J. Organomet. Chem 1991, 401, 211-215. (b) Shono, T.; Kise, N.; Oka, H. Tetrahedron. Lett 1991, 21, 6567-6570.

11. (a) Burkholder, C.; Dolbier, W. R.; Jr.; Médebielle, M. Tetrahedron. Lett 1997, 38, 821-824. (b). Médebielle, M.; Pinson, J.; Savéant, J-M. Electrochimica Acta 1997, 42, 2049. (c). Xu, Y.; Dolbier, W. R.; Jr. J. Org. Chem 1997, 62, 6503. (d). Médebielle,

M.; Oturan, M. A.; Pinson, J.; Savéant, J-M. J. Org. Chem. 1996, 61, 1331-1340. (e). Médebielle, M. Tetrahedron. Lett 1996, 37, 5119-5122. (f). Dolbier, W. R.; Jr.; Burkholder, C. R.; Abboud, K. A.; Loehle, D. J. Org. Chem 1994, 59, 7688-7694.

12. (a) Prepared in 75% isolated yield, by chlorodifluoroacetylation (1 molar equivalent) of the *N*,*N*-dimethyl-1-naphthylamine in anhydrous CHCl₃ in the presence of pyridine (1 molar equivalent): m.p=74°C. ¹H NMR (CDCl₃): δ_{H} = 3.11 (6H, s, NMe₂), 6.91 (1H, H_a, d, J=8.5Hz), 7.49-7.69 (2H, m, H_d and H_e), 8.16-8.31 (2H, m, H_c and H_f), 9.02 (1H, H_b, d, J=8.94Hz). ¹⁹F NMR (CDCl₃/ CFCl₃): δ_{F} = -58.09 (2F, s). Anal. Calcd for C₁₄H₁₂ClF₂NO: C 59.36, H 4.24, N 4.94. Found C 59.10, H 4.43, N 4.76. (b) Prepared in 69% isolated yield, using sodium formaldehyde sulphoxylate (Rongalite) as the reductant, 1 as the starting ketone, in refluxing absolute ethanol for two hours: m.p= 70-72°C (yellow powder). ¹H NMR (CDCl₃): δ_{H} 3.07 (s, 6H, -NMe₂), 6.44 (t, 1H, -CF₂H, 2J_{H-F}= 57Hz), 6.92 (d, 1H, H_a, J=8.36Hz), 7.50-7.68 (m, 2H, H_d and H_e), 8.13-8.20 (m, 2H, H_c and H_f), 9.2 (d, 1H, H_b, J=8.38Hz). ¹⁹F NMR (CDCl₃/CFCl₃): δ_{F} -119.01 (d, 2F, 2J_{F-H}=54Hz).). Anal. Calcd for C₁₄H₁₃F₂NO : C 67.46, H 5.22, N 5.62. Found C 67.68, H 5.43, N 5.87.

13. Burkholder, C.; Dolbier, W. R.; Jr.; Médebielle, M. J. Org. Chem 1998, 63, 5385-5394.

14. (a) Gudmundsson, K. S.; Drach, J. C.; Townsend, L. B. J. Org. Chem 1997, 62, 3453-3459. (b) Gueiffier, A.; Lhassani, M.; Elhakmoui, A.; Snoeck, R.; Andrei, G.; Chavignon, O.; Teulade, J-C.; Kerbal, A.; Essassi, E. M.; Debouzy, J-C.; Witvrouw, M.; Blache, Y.; Balzarini, J.; De Cle q, E.; Chapat, J-P. J. Med. Chem 1996, 39, 2856-2859.

15. Prepared in 81% isolated yield by chlorodifluoroacetylation of the imidazo[1,2-a]pyridine, in anhydrous 1,2-dichloroethane, under reflux for 2 hours: m.p= 145°C (yellow needles). ¹H NMR (CDCl₃): δ_{H} = 7.24-7.32 (1H, m), 7.65-7.73 (1H, m), 7.87-7.93 (1H, m), 8.61-8.63 (1H, m), 9.61-9.65 (1H, dd, J=4.6, 1.14Hz). ¹⁹F NMR (CDCl₃/ CFCl₃): δ_{F} = -65.5 (2F, d, J=2.17Hz). Anal. Calcd for C9H₅ClF₂N₂O: C 46.95, H 2.17, N 12.17. Found C 47.06, H 2.33, N 12.43.

16. A typical procedure for the reaction between 1, TDAE and the 3-pyridine carboxaldehyde 4 is as follows: Into a two-necked flask equipped with a silica gel drying tube and a nitrogen inlet were added, under nitrogen at -20°C, a 5 ml anhydrous DMF solution of 1 (0.50g, 1.77 mmol) and 3-pyridine carboxaldehyde 4 (0.95g, 8.85 mmol; 0.83 ml). The solution was stirred and maintained at this temperature for 30 min and then was added dropwise (via a syringe) the TDAE (0.35g, 1.77 mmol, 0.41 ml). A red color immediately developed with the formation of a white fine precipitate. The solution was vigorously stirred at -20°C for 1 hour and then warmed up to room temperature for two hours. After this time TLC analysis (EtOAc-hexane, 90-10) clearly showed that the ketone 1 was totally consumed. The orange-red turbid solution was filtered (to remove the octamethyloxamidinium dichloride) and hydrolyzed with 30 ml of H₂O. The aqueous solution was extracted with CHCl₃ (3x30 mL), the combined organic solutions washed with brine (3x30 ml), H2O (3x30 ml) and dried over MgSO4. Evaporation of the solvent left an orange-red viscous liquid which was triturated with hot hexane (3x10 ml, to remove unreacted aldehyde) to leave an insoluble viscous orange oil. Column chromatography (EtOAc-hexane, 90-10 as eluent) and recrystallization from CHCl3/hexane (1/2, v/v) gave 0.36g (1.01 mmol, 57%) of the alcohol 8: 1-(4dimethylamino-napthalen-2-yl)-2,2-difluoro-3-hydroxy-3-pyridin-3-yl-propan-1-one. M.p=75-80°C. ¹H NMR (CDCl₃): δ_μ= 3.04 (6H, s, -NMe.), 5.46-5.58 (1H, dd, J=19.2, 4.80Hz, -CHOH), 6.90 (1H, H., d, J=8.39Hz), 7.28-7.35 (2H, m, H_d and H_e), 7.46-7.60 (2H, m, H_c and H_t), 7.90-7.94 (1H, d, J=7.86Hz), 8.14-8.8.25 (2H, m), 8.51-8.53 (1H, d, J=4.48Hz), 8.80-8.84 (1H, H_b, d, J=8.36Hz). ¹⁹ F NMR (CDCl₃/ CFCl₃): δ_{r} = -105.68 (1F, dd, J=285, 4.70Hz), -118.95 (1F, dd, J=285, 19.53Hz). Anal. Calcd for C₂₀H₁₈F₂N₂O₂: C 67.41, H 5.05, N 7.86. Found C 67.68, H 5.03, N 7.83.