Preparation of N, N'-Disubstituted Piperazines from Bis(2-anilinoethyl) Phenylphosphonites

Оуо Мітsunobu,^{*, *1} Takashi Онаsнi,^{**} Motokazu Кікисні^{**} and Teruaki MUKAIYAMA*

* Laboratory of Organic Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo ** Technical Research Department, Bridgestone Tire Co., Ltd., Kodairashi, Tokyo

(Received October 12, 1966)

Preceding paper¹⁾ describes that bis(2-anilinoethyl) phenylphosphonite (I) is prepared by the reaction of 2, 3-diphenyl-1, 3, 2-oxazaphospholidine (II, $R = C_6 H_5$) with an equimolar amount of 2-

anilinoethanol. A small amount of N, N'-diphenylpiperazine was always formed by the above reaction. The formation of the piperazine suggests that the phosphonite decomposes thermally into the piperazine. In this paper, the formation of N, N'-disubstituted piperazines by the thermal decomposition of various bis(2-aminoethyl) phenylphosphonites were investigated.

When bis(2-anilinoethyl) phenylphosphonite was

^{*1} Present address: College of Science and Engigineering, Aoyama Gakuin University, Megurisawa-cho, Setagaya-ku, Tokyo. 1) O. Mitsunobu, T. Ohashi, M. Kikuchi and T.

Mukaiyama, This Bulletin, 39, 214 (1966).

C.H.P/0-	$HO-CH_2$							r rouuct				
R	$_{\rm R'}^{\rm HN-CH_2}$	Temp.	Time		RN	NR	Yield	Mp °C or Bp °C/mmHg			Anal, %	
R	R'	°C	hr	Ŧ	R	R'	%			C	Н	Z
C_6H_5	C ₆ H ₅	210	3	C ₆ H ₅		C ₆ H ₅	80*	163—165 (THF)	E D	$ \begin{array}{c} 80.23 \\ 80.67 \end{array} $	7.82 7.57	11.96
p-CH ₃ C ₆ H ₄	p-CH ₃ C ₆ H ₄	180	2	p-CH ₃ C ₆ H ₄	C_6H_4	p-CH ₃ C ₆ H ₄	73	186—188 (toluene)	C F	81.33 81.16	$8.30\\8.29$	10.52 10.51
<i>p</i> -CH₃OC ₆ H₄	p-CH ₃ OC ₆ H ₄	180	I	p -CH $_3$	p -CH $_3$ OC $_6$ H $_4$	<i>p</i> -CH ₃ OC ₆ H ₄	82	242—244 (anisole)	C L	72.72 72.45	7.66 7.43	$9.65 \\ 9.39$
<i>p</i> -ClC ₆ H₄	p-ClC ₆ H ₄	180 - 200	1	p-ClC ₆ H ₄	H_4	p-ClC ₆ H ₄	57	238-240 (toluene)	ĒF	62.69 62.55	5.32 5.25	$9.06 \\ 9.12$
$\mathrm{C_6H_5}$	CH_3	180 - 190	3	$\mathrm{C}_{6}\mathrm{H}_{5}$		CH_3	25**	105107/5	C L	74.23 74.95	$9.08 \\ 9.15$	15.41 15.90
C_2H_5	C_2H_5	200	1	C_2H_5		${ m C}_2{ m H}_5$	43	80 - 83/35 - 40	C L	$67.71 \\ 67.55$	$13.00 \\ 12.76$	19.75 19.70
	H							Product				
$\mathrm{RP}(\mathrm{NEt}_2)_2$	HOCH ₂ CH ₂ ^N R'	Temp.	I	Time	R	$RP < O \ R'$ R'	Yie	q	Bp °C/mmHg (Mp °C)	50	Anal, N%	%
R	R'	°C	Ŀ	hr	R	R'	~	%		U	Calcd	Found
C_6H_5	Н	150-155		1	C_6H_5	Η	9	61 115-	115-118/4-	5	8.38	8.62
C_6H_5	CH_3	127		2.5	C_6H_5	CH_3	2	25 88-	88- 91/0.02		7.74	7.83
C_6H_5	C_2H_5	150-170		3	C_6H_5	C_2H_5	80	-62 98	81/1-2		7.18	7.29
C_6H_5	C_6H_5	*		2.5	C_6H_5	C_6H_5	œ	85 130- (7	-132/0.03 (75 -76)		5.76	5.88
C_6H_5	p-CH ₃ C ₆ H ₄	150170	7	4	C_6H_5	p-CH ₃ C ₆ H ₄	4	48 163-	-165/0.1 (62-64)		5.46	5.69
${ m C_6H_5}$	p-CH ₃ OC ₆ H ₄	150170	7	4	C_6H_5	<i>p</i> -CH ₃ OC ₆ H ₄		91 158	-162/0.05 (5658)	5	5.13	5.15
C_6H_5	p-ClC ₆ H ₄	150170		ŝ	C_6H_5	p-ClC ₆ H ₄	7	74 154	-162/0.08 (53-55)	8	5.04	5.03
C_2H_5O	C_6H_5	120		3	$\rm C_2H_5O$	C_6H_5	ω	88	- 91/0.02		6.64	6.79
***	C_6H_5	**	-,	5	C_2H_5O	C_6H_5	5	55 91-	92/0.02		6.64	6.70

December, 1967]

2965

heated at 200°C for 1 hr, N, N'-diphenylpiperazine was obtained in a 78% yield.

$$C_{6}H_{5}P(OCH_{2}CH_{2}NHC_{6}H_{5})_{2} \xrightarrow{200^{\circ}C} I$$

$$C_{6}H_{5}N \xrightarrow{N}C_{6}H_{5} + \left[C_{6}H_{5}P \xrightarrow{H} OH\right] \qquad (1)$$

As shown in the previous paper, 12 bis(2-anilinoethyl) phenylphosphonite is formed by the reaction of 2, 3-diphenyl-1, 3, 2-oxazaphospholidine with 2-anilinoethanol. Thus the direct method for the preparation of piperazines from 1, 3, 2oxazaphospholidines and 2-aminoethanols were attempted.

The reaction of equimolar amounts of 2, 3diphenyl-1, 3, 2-oxazaphospholidine and 2-anilinoethanol at 210°C for 3 hr resulted in the formation of N, N'-diphenylpiperazine and phenyl phosphinic acid in 80% and 36% yields respectively (Eq. (2), $R = C_6 H_5$).

$$C_{6}H_{5}P \left\langle \begin{array}{c} O-CH \\ | \\ N-CH_{2} \\ R \\ H \\ H \\ II \\ [C_{6}H_{5}P(OCH_{2}CH_{2}NHR)_{2}] \rightarrow \\ RN \\ N-R + C_{6}H_{5}P \left\langle \begin{array}{c} O \\ H \\ OH \end{array} \right\rangle \right\rangle$$
(2)

Similarly, various N, N'-disubstituted piperazines were prepared and the results are summarized in Table 1.

It must be noted that when 2, 3-diphenyl-1, 3, 2oxazaphospholidine and 2-methylaminoethanol were heated at 190°C for 3 hr, an unsymmetrical piperazine, N-phenyl-N'-methylpiperazine was obtained in 25% yield along with N, N'-diphenylpiperazine.

The starting materials, 3-substituted 2-phenyl-1, 3, 2-oxazaphospholidines were synthesized by the reaction of bis(diethylamino) phenylphosphine (III) with the corresponding N-substituted 2aminoethanol as shown in the following equation (Eq. (3)). The results are summarized in Table 2.

$$C_{6}H_{5}P(NEt_{2})_{2} + HOCH_{2}CH_{2}NHR \rightarrow III$$

$$C_{6}H_{5}P \swarrow O + 2 Et_{2}NH \qquad (3)$$

$$\downarrow R$$

Experimental

Preparation of 2-Phenyl-3-*p***-methoxyphenyl-1,3,2-oxazaphospholidine.** A mixture of bis(diethylamino) phenylphosphine (III, 5.04 g, 0.02 mol) and 2-*p*-anisidinoethanol (3.34 g, 0.02 mol) was heated at 150—170°C for 4 hr. The mixture was distilled to give 2-phenyl-3-*p*-methoxyphenyl-1, 3, 2 - oxazaphospholidine (5.00 g, 91.3%, bp 174—178°C/0.1—0.15 mmHg) which was solidified on standing. Recrystallization from ether gave mp 41—44°C.

Found: N, 5.15%. Calcd for C₁₅H₁₆NO₂P: N, 5.13%.

Similarly, several 1, 3, 2-oxazaphospholidines were prepared. The results are summarized in Table 2.

Preparation of N, N'-Diphenylpiperazine. A mixture of 2, 3 - diphenyl - 1, 3, 2 - oxazaphospholidine (2.43 g, 0.01 mol) and 2-anilinoethanol (1.37 g, 0.01 mol) was heated at 180°C for 3 hr. Benzene (10 ml) was added to the mixture and N, N'-diphenylpiperazine (1.5 g) was removed by filtration. Aqueous sodium hydroxide (5%) was added to the filtrate and the solution was concentrated to give N, N'-diphenylpiperazine (0.41 g). Total yield of N, N'-diphenylpiperazine was 80% (1.91 g), mp 160—163°C. To the aqueous layer, concentrated to give phenylphosphinic acid (36%). Recrystallization from water gave mp 71—72°C.

Similarly, some N, N'-diarylpiperazine were obtained as shown in Table 1.

Preparation of N**,** N'**-Diethylpiperazine.** A mixture of 2-phenyl-3-ethyl-1, 3, 2-oxazaphospholidine (2.48 g, 0.0127 mol) and 2-ethylaminoethanol (1.14 g, 0.0127 mol) was heated at 200°C for 1 hr. Ether and aqueous sodium hydroxide were added to the mixture. The ether layer was dried and distilled to give N, N'-diethylpiperadine (0.78 g, 43%, bp 80–83°C/35–40 mmHg, n_{55}^{25} 1.4541. Found: C, 67.71; H, 13.00; N, 19.75%).

Preparation of N-Phenyl-N'-methylpiperazine. A mixture of 2, 3-diphenyl-1, 3, 2-oxazaphospholidine (4.6 g, 0.03 mol) and 2-methylaminoethanol (2.25 g, 0.03 mol) was heated at 180—190°C for 3 hr. Benzene (10 ml) was added to the mixture and N, N'-diphenylpiperazine (0.07 g, mp 160—163°C) was removed by filtration. Aqueous sodium hydroxide (1.2 g. NaOH in 10 ml of H₂O) was added to the filtrate. Benzene layer was dried and distilled to give N-phenyl-N'methylpiperazine (1.31 g, 25%, bp 100—110°C/4—6 mmHg. Redistillation gave an analytical sample, bp 105—107°C/5 mmHg. Found: C, 74.23; H, 9.08; N, 15.41%). From the residue of the distillation, N, N'diphenylpiperazine was obtained (0.16 g, mp 160— 163°C).

The authres wish to thank the Bridgestone Tire Co., Ltd, for permission to publish this work; they wish also to acknowledge the helpful advice given by Mr. Yoshitake Kubota and late Mr. Koshiro Fujiwara.