
Gold-Catalyzed Oxidative Hydrative Alkenylations of Propargyl Aryl
Thioethers with Quinoline N‑Oxides Involving a 1,3-Sulfur Migration
Sachin Bhausaheb Wagh, Rahulkumar Rajmani Singh, Rajkumar Lalji Sahani, and Rai-Shung Liu*

Department of Chemistry, National Tsing-Hua University, Hsinchu 30013, Taiwan, ROC

*S Supporting Information

ABSTRACT: This work reports gold-catalyzed oxidative alkenylations of
quinoline N-oxides with propargyl aryl thioethers to afford 3-hydroxy-1-
alkylidenephenylthiopropan-2-one via a 1,3-sulfur group migration. The
mechanism of this reaction is postulated to involve an α-oxo gold carbene
intermediate followed by formation of a four-membered sulfonium ring that is
ring-opened by one H2O to form a gold enolate. A final condensation of this enolate with a second quinoline N-oxide delivers
an alkenylation product accompanied by a 1,3-sulfur shift.

One noteworthy development in gold catalysis is to
generate α-oxo gold carbenes (I) from alkynes and

pyridine-based oxides.1 These α-oxo metal carbenes (I) are
versatile in reactions with small molecules to enable dipolar
cycloaddition reactions,2 skeletal rearrangements,3 X−H
insertions (X = C, N, O),4 and cyclopropanations,5 where
most of these carbene functionalizations were intramolecular. In
the presence of nucleophiles (Nu-H), the resulting α-oxo gold
carbenes are terminated with traditional 1,1-addition reactions
(eq 1).4 Oxidations of alkynes with nitrones generated similar

carbenes to afford 1,2-oxoamination products.6 To design a new
application of these α-oxo carbenes, we reported gold-catalyzed
oxidative cycloalkenylations of phenoxyethynes with nitrones to
afford 3-alkylidenebenzofuran-2-ones; herein, gold enolate
intermediates (II) undergo hydrogen bonding with a second

nitrone to induce a cycloalkenylation reaction (eq 2).7 These
gold-catalyzed oxidative cycloalkenylations were amenable to
quinoline N-oxides to afford 3-alkylidenebenzofuran-2-ones
efficiently (eq 3).8 To seek new utility beyond our current work,
herein we report the development of a new oxidative hydrative
alkenylation of aryl propargylic thioethers with quinoline N-
oxides and water to deliver 3-hydroxy-1-alkylidene phenyl-
thiopropan-2-ones efficiently (eq 4). In this system, the Ph-S
group does not attack the α-oxo gold carbene via an arylation
reaction, but reactive gold enolates (III) can be generated by a
cooperative action of sulfide and H2O, and a final alkenylation
results from the attack of gold enolates (III) on quinoline N-
oxides. This work manifests a new system to generate gold
enolates via a 1,3-sulfur migration, thus enabling a novel
oxidative hydrative alkenylation of alkynes.
Table 1 shows the results of optimization of the reactions

between phenyl propargyl thioether 1a (1.0 equiv) and 8-
methylquinoline oxide 2a (2.1 equiv) with commonly used gold
catalysts. The use of IPrAuCl/AgNTf2 (10 mol %) in hot DCE
(70 °C, 12 h) delivered an oxidative hydrative alkenylation
product 3a in 41% yield (entry 1): the molecular structure was
confirmed by X-ray diffraction. A switch to P(t-Bu)2(o-
biphenyl)AuCl/AgNTf2 increased the yield of compound 3a
to 78% yield (entry 2). Other gold catalysts PPh3AuCl/AgNTf2
and (PhO)3PAuCl/AgNTf2 were less effective, giving species 3a
in 25% and 49% yields, respectively; herein, starting 1a was
recovered in 58% and 15% yields, respectively (entries 3 and 4).
A change of silver salts with P(t-Bu)2(o-biphenyl)AuCl/AgX (X
= SbF6 and OTf) maintained the same efficiency to produce 3a
in 75% and 69% yields (entries 5 and 6). P(t-Bu)2(o-
biphenyl)AuCl/AgNTf2 in other solvents gave compound 3a
in the following yields: THF (55%), toluene (37%), andMeNO2
in traces (entries 7−9). AgNTf2 (10 mol %) alone in hot DCE
(70 °C, 24 h) was catalytically inefficient to afford compound 3a
in 4% yield (entry 10). This reaction pattern is unprecedented
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and distinct from our previous oxidative cycloalkenylations in
eqs 2 and 3 because the phenylthio group of initial 1a does not
participate in an arylation reaction.
Scheme 1 shows the scope of this new catalytic oxidation with

various phenyl propargyl thioethers 1 and 8-substituted

quinoline oxides 2 under the preceding optimized conditions.
Phenyl propargyl thioethers 1b−d bearing p-phenyl substituents
(X = F, Cl, and Br) were amenable to such catalytic reactions,
delivering the desired products 3b−d in 70−74% yields (entries
1−3). For their 2-chloro and 3,5-dichlorophenyl analogues 1e,f,
their corresponding products 3e,f were obtained in 71% and
77% yields, respectively (entries 4 and 5). The catalytic reaction

of 2-naphthyl propargyl thioether 1g yielded the corresponding
product 3g in 61% yield (entry 6). We also performed the
oxidative hydrative alkenylations of other 8-substituted quino-
line oxides 2b−d (R= Et, i-Pr, and PhCH2), which yielded the
desired products 3h−j in 39−48% yields, with R = i-Pr being the
least efficient (entries 7−9).
The results in Scheme 1 are inconclusive as to whether the

alkenylation occurs on the alkynyl C(3)-carbon of thioethers 1
to generate products 3. We thus prepared various phenyl
propargyl thioethers 4 bearing an alkyl group at the C(3)-
carbon. The results are shown in Scheme 2, revealing a 1,3-sulfur
migration and alkenylation at the alkynyl C(1)-carbon of initial
thioethers.

The 1H NMR spectra reveal the presence of two product
conformers, 5 and 5′. This structural assignment is supported by
1H and 13C NMR spectra and further confirmed by the X-ray
structure of compound 5b. For compound 5b/5b′, the two
conformers were observed by 1H NMR at 28 °C in toluene, but
the 1H resonances of the two conformers coalesced to signals of
one species at 103 °C. To rationalize this conformational barrier,
we postulate that major conformer 5b has its hydroxyl group
bonding to the ketone via a hydrogen bond, whereas the other
conformer 5b′ has a hydroxyl group bonding to the sulfur. As
shown in entries 1−4 (Scheme 2), gold-catalyzed oxidations of
thioethers 4a−d (R1=Me, n-Bu, i-Pr, and 3-pentyl) and 8-
methylquinolineN-oxides 2a delivered the desired products 5a/
5a′−5d/5d′ in reasonable yields (57−67%). Cyclopentyl-
substituted propargyl thioether 4e was an applicable substrate
to yield product 5e/5e′ in 62% (entry 5). Propargylic thioethers
4f−i bearing para-substituted phenyl groups (X = Cl, Br, Me,
and OMe) were also applicable to these reactions, affording

Table 1. Optimization of Reaction Conditions

yield (%)

entry catalyst (mol %)c solvent
temp
(°C)

time
(h) 3a 1a

1 IPrAuCl/AgNTf2 DCE 70 12 41
2 LAuCl/AgNTf2 DCE 70 10.5 78
3 PPh3AuCl/

AgNTf2
DCE 70 24 25 58

4 (PhO)3PAuCl/
AgNTf2

DCE 70 24 49 15

5 LAuCl/AgSbF6 DCE 70 10 75
6 LAuCl/AgOTf DCE 70 11 69
7 LAuCl/AgNTf2 THF 60 15 55
8 LAuCl/AgNTf2 toluene 100 21 37 d
9 LAuCl/AgNTf2 CH3NO2 90 9 trace
10 AgNTf2 DCE 70 24 4 81e

a1a = 0.16 M, 2a = 2.1 equiv. bProduct yields are reported after
purification from a silica gel column followed by trituration. cL = (t-
Bu)2(o-biphenyl)P; IPr = 1,3-Bis(2,6-diisopropylph-enyl imidazol-2-
ylidene). dStarting 2a recovered in 31%. eStarting 2a recovered in
55%.

Scheme 1. Scope of Propargyl Aryl Thioethers 1 and N-
Oxides 2

a1a = 0.16 M, 2a = 2.1 equiv, bProduct yields are reported after
purification from a silica gel column and trituration, L = (t-Bu)2(o-
biphenyl)P.

Scheme 2. Scope of Propargyl Aryl Thioethers 4 andOxides 2

a4a = 0.14 M, 2a = 2.1 equiv, bProduct yields are reported after
purification from a silica gel column and trituration, L = (t-Bu)2(o-
biphenyl)P.
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compounds 5f/5f′−5i/5i′ in 63−75% yields (entries 6−9). We
tested the oxidations of thioether 4a with other 8-substituted
quinoline oxides 2b−d (R = Et, iPr, and PhCH2), which also
yielded desired compounds 5j/5j′−5l/5l′ in 59−66% yields
(entries 10−12).
We examined the gold-catalyzed oxidation of allyl propargyl

thioether 6 with 8-methylquinoline N-oxide 2a, which provided
2-allylthietan-3-one 7 in 96% yield (eq 5). Although we did not
observe an alkenylation reaction in this case, the reaction
outcome is helpful to elucidate the 1,3-sulfur migration
mechanism.

We performed control experiments to determine the oxygen
source of the hydroxyl groups in product 3a-O (eq 6).

Treatment of propargylic thioether 1a with quinoline N-oxide
2a in the presence ofH2

18O (2.0 equiv) resulted in product 3a-O
with an oxygen content of 16O/18O = 9.7:1. A low 18O-content
for 3a-O was attributed to the production of additional water (1
equiv) from this reaction sequence; this water was bound to gold
and was proximate to the reaction inner sphere (vide infra). We
prepared substrate d2-1a bearing X = 0.72 D for each CH2
hydrogen, and its corresponding reaction gave the desired
product d2-3a in bearing X = 0.23 D for each methylene
hydrogen of the CH2OH (eq 7). Nevertheless, the result in eq 7
is less meaningful because we have deuterium-scattered product
dn-3a when D2O is present in the system (5 equiv, eq 8). We
carried out a crossover experiment (eq 9) where 4b and 4f were
treated withN-oxides 2a under standard conditions. We did not
observe any crossover products and obtained only compounds
5b and 5f in 43% and 51% yield.
We postulate the mechanism in Scheme 3, involving α-oxo

gold carbenes C generated from the oxidation of propargyl
phenyl thioethers 1 with quinoline N-oxide 2a. The attack ofN-
oxide on gold π-alkyne A generates alkenylgold species B and
gold carbene C sequentially. Intermediate C undergoes an
intramolecular attack by PhS at the gold carbene functionality
and forms a four-membered sulfonium ring D that is
subsequently cleaved by water to produce C-bound gold enolate

E. A further tautomerization yields O-bound gold enolate
intermediate F. We believe that O-bound gold enolate F attacks
a second N-oxide to deliver alkylated intermediate G that
undergoes dehydration to yield the desired product 3a. We
surmise that the O-bound enolate F is likely to have a E-
configuration so that sulfur has a weak interaction to the gold
center and its hydroxyl group can hydrogen bond with the N-
oxide; this association facilitates this alkenylation reaction. In the
final step, we note that a water molecule is released from the loss
of the oxygen of the N-oxide; this pathway indicates that the
hydroxyl oxygen of products 3 or 5 may arise from either water
or N-oxide. Water generated from the N-oxide is coordinated
with LAu+ to yield LAu(H2O)

+, which is within the inner sphere
of the reaction site. Accordingly, external H2

18O contributes
little to the oxygen source of the hydroxyl groups of products 3
and 5, consistent with our 18O experiment (eq 6).
This proposed mechanism also rationalizes the formation of

2-allylthietan-3-one 7 from gold-catalyzed oxidation of allyl
propargyl thioether 6 (eq 5). After the attack of allyl sulfide at
the gold carbene in species C, the resulting intermediate D′
undergoes a [2,3]-Wittig rearrangement9 to give the observed
product 7.
This work reports gold-catalyzed oxidative hydrative

alkenylations of propargyl aryl thioethers with quinoline N-
oxides to afford 3-hydroxy-1-alkylidene phenylthiopropan-2-
ones via a 1,3-sulfur migration. The reaction involves one alkyne,
one water, and two discrete quinoline oxides. A reaction
mechanism is postulated to involve an α-oxo gold carbene that is
S-attacked by a phenylthio group10,11 to form a four-membered
sulfonium intermediate. A ring cleavage of this sulfonium ring
with water generates a gold enolate that reacts with a second
quinoline N-oxide12 to deliver an alkenylation product via 1,3-
sulfur migration.13
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