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ABSTRACT: This work reports gold-catalyzed oxidative alkenylations of

_Z X +
quinoline N-oxides with propargyl aryl thioethers to afford 3-hydroxy-1- Phs\/ . o l:ACL;
alkylidenephenylthiopropan-2-one via a 1,3-sulfur group migration. The 1 R Ne 2
mechanism of this reaction is postulated to involve an @-oxo gold carbene .i_, Alkyl R,0

intermediate followed by formation of a four-membered sulfonium ring that is

ring-opened by one H,O to form a gold enolate. A final condensation of this enolate with a second quinoline N-oxide delivers

an alkenylation product accompanied by a 1,3-sulfur shift.

O ne noteworthy development in gold catalysis is to
generate a-oxo gold carbenes (I) from alkynes and
pyridine-based oxides." These a-oxo metal carbenes (I) are
versatile in reactions with small molecules to enable dipolar
cycloaddition reactions,” skeletal rearrangements,” X—H
insertions (X = C, N, 0),* and cyclopropanations,5 where
most of these carbene functionalizations were intramolecular. In
the presence of nucleophiles (Nu-H), the resulting a-oxo gold
carbenes are terminated with traditional 1,1-addition reactions
(eq 1).* Oxidations of alkynes with nitrones generated similar
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This work: Oxidative hydrative alkenylation involving 1,3-thio migration
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carbenes to afford 1,2-oxoamination products.® To design a new
application of these a-oxo carbenes, we reported gold-catalyzed
oxidative cycloalkenylations of phenoxyethynes with nitrones to
afford 3-alkylidenebenzofuran-2-ones; herein, gold enolate
intermediates (II) undergo hydrogen bonding with a second

-4 ACS Publications  © Xxxx American Chemical Society

nitrone to induce a cycloalkenylation reaction (eq 2).” These
gold-catalyzed oxidative cycloalkenylations were amenable to
quinoline N-oxides to afford 3-alkylidenebenzofuran-2-ones
efficiently (eq 3).° To seek new utility beyond our current work,
herein we report the development of a new oxidative hydrative
alkenylation of aryl propargylic thioethers with quinoline N-
oxides and water to deliver 3-hydroxy-1-alkylidene phenyl-
thiopropan-2-ones efficiently (eq 4). In this system, the Ph-S
group does not attack the a-oxo gold carbene via an arylation
reaction, but reactive gold enolates (III) can be generated by a
cooperative action of sulfide and H,O, and a final alkenylation
results from the attack of gold enolates (IIT) on quinoline N-
oxides. This work manifests a new system to generate gold
enolates via a 1,3-sulfur migration, thus enabling a novel
oxidative hydrative alkenylation of alkynes.

Table 1 shows the results of optimization of the reactions
between phenyl propargyl thioether la (1.0 equiv) and 8-
methylquinoline oxide 2a (2.1 equiv) with commonly used gold
catalysts. The use of IPrAuCl/AgNTf, (10 mol %) in hot DCE
(70 °C, 12 h) delivered an oxidative hydrative alkenylation
product 3a in 41% yield (entry 1): the molecular structure was
confirmed by X-ray diffraction. A switch to P(t-Bu),(o-
biphenyl)AuCl/AgNTT%, increased the yield of compound 3a
to 78% yield (entry 2). Other gold catalysts PPh;AuCl/AgNTTf,
and (PhO),PAuCl/AgNTTf, were less effective, giving species 3a
in 25% and 49% yields, respectively; herein, starting la was
recovered in 58% and 15% yields, respectively (entries 3 and 4).
A change of silver salts with P(+-Bu),(o-biphenyl) AuCl/AgX (X
= SbF, and OTf) maintained the same efficiency to produce 3a
in 75% and 69% yields (entries S and 6). P(t-Bu),(o-
biphenyl)AuCl/AgNTY, in other solvents gave compound 3a
in the following yields: THF (55%), toluene (37%), and MeNO,
in traces (entries 7—9). AgNTf, (10 mol %) alone in hot DCE
(70 °C, 24 h) was catalytically inefficient to afford compound 3a
in 4% yield (entry 10). This reaction pattern is unprecedented
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Table 1. Optimization of Reaction Conditions

catalyst (10 mol %)
©/ “solvent, temp temp
time

1alal (2.1 equiv) 3alt!

XN
IO
H

(e)
OH
yield (%)

temg time

entry catalyst (mol %)° solvent (h) 3a la

1 IPrAuCl/AgNTH, DCE 12 41

2 LAuCl/AgNTTf, DCE 70 10.5 78

3 PPh;AuCl/ DCE 70 24 25 58
AgNTf,

4 (PhO);PAuCl/ DCE 70 24 49 15
AgNTf,

S LAuCl/AgSbFq¢ DCE 70 10 75

6 LAuCl/AgOTf DCE 70 11 69

7 LAuCl/AgNTf, THF 60 15 5SS

8 LAuCl/AgNTf, toluene 100 21 37 d

9 LAuCl/AgNTTf, CH;NO, 90 9 trace

10 AgNTf, DCE 70 24 4 81°¢

“la = 0.16 M, 2a = 2.1 equiv. “Product yields are reported after
purification from a silica gel column followed by trituration. L = (¢-
Bu),(o-biphenyl)P; IPr = 1,3-Bis(2,6-diisopropylph-enyl imidazol-2-
ylidene). “Starting 2a recovered in 31%. “Starting 2a recovered in
55%.

and distinct from our previous oxidative cycloalkenylations in
eqs 2 and 3 because the phenylthio group of initial 1a does not
participate in an arylation reaction.

Scheme 1 shows the scope of this new catalytic oxidation with
various phenyl propargyl thioethers 1 and 8-substituted

Scheme 1. Scope of Propargyl Aryl Thioethers 1 and N-
Oxides 2
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“la = 0.16 M, 2a = 2.1 equiv, bProduct yields are reported after
purification from a silica gel column and trituration, L = (t-Bu),(o-

biphenyl)P.

quinoline oxides 2 under the preceding optimized conditions.
Phenyl propargyl thioethers 1b—d bearing p-phenyl substituents
(X = F, Cl, and Br) were amenable to such catalytic reactions,
delivering the desired products 3b—d in 70—74% yields (entries
1-3). For their 2-chloro and 3,5-dichlorophenyl analogues lef,
their corresponding products 3e,f were obtained in 71% and
77% yields, respectively (entries 4 and S). The catalytic reaction

of 2-naphthyl propargyl thioether 1g yielded the corresponding
product 3g in 61% yield (entry 6). We also performed the
oxidative hydrative alkenylations of other 8-substituted quino-
line oxides 2b—d (R= Et, i-Pr, and PhCH,), which yielded the
desired products 3h—j in 39—48% yields, with R = i-Pr being the
least efficient (entries 7—9).

The results in Scheme 1 are inconclusive as to whether the
alkenylation occurs on the alkynyl C(3)-carbon of thioethers 1
to generate products 3. We thus prepared various phenyl
propargyl thioethers 4 bearing an alkyl group at the C(3)-
carbon. The results are shown in Scheme 2, revealing a 1,3-sulfur
migration and alkenylation at the alkynyl C(1)-carbon of initial
thioethers.

Scheme 2. Scope of Propargyl Aryl Thioethers 4 and Oxides 2
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(8) X = Me, 5h/5h" = 1.2:1 (10 h, 64%)
(12 h, 73%)
(9) X = OMe, 5i/5i" = 1.5:1
(13 h, 75%)

= 0.14 M, 2a = 2.1 equiv, bProduct yields are reported after
purification from a silica gel column and trituration, L = (t-Bu),(o-

biphenyl)P.

The 'H NMR spectra reveal the presence of two product
conformers, § and §'. This structural assignment is supported by
'H and "3C NMR spectra and further confirmed by the X-ray
structure of compound Sb. For compound 5b/5b’, the two
conformers were observed by '"H NMR at 28 °C in toluene, but
the 'H resonances of the two conformers coalesced to signals of
one species at 103 °C. To rationalize this conformational barrier,
we postulate that major conformer Sb has its hydroxyl group
bonding to the ketone via a hydrogen bond, whereas the other
conformer Sb’ has a hydroxyl group bonding to the sulfur. As
shown in entries 1—4 (Scheme 2), gold-catalyzed oxidations of
thioethers 4a—d (R'=Me, n-Bu, i-Pr, and 3-pentyl) and 8-
methylquinoline N-oxides 2a delivered the desired products Sa/
5a’—5d/5d’ in reasonable yields (57—67%). Cyclopentyl-
substituted propargyl thioether 4e was an applicable substrate
to yield product 5e/Se’ in 62% (entry S). Propargylic thioethers
4f—i bearing para-substituted phenyl groups (X = Cl, Br, Me,
and OMe) were also applicable to these reactions, affording
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compounds 5f/5f —5i/5i" in 63—75% yields (entries 6—9). We
tested the oxidations of thioether 4a with other 8-substituted
quinoline oxides 2b—d (R = Et, iPr, and PhCH,), which also
yielded desired compounds $j/5j'—51/51" in 59—66% yields
(entries 10—12).

We examined the gold-catalyzed oxidation of allyl propargyl
thioether 6 with 8-methylquinoline N-oxide 2a, which provided
2-allylthietan-3-one 7 in 96% yield (eq S). Although we did not
observe an alkenylation reaction in this case, the reaction
outcome is helpful to elucidate the 1,3-sulfur migration
mechanism.

N 1(()3r;10| % . o)
LAUCI/AGNTf, |
g + v — (5)
. N g DCE, 70 °C, 12h s
7 (96%)

2a (2.1 equiv)

We performed control experiments to determine the oxygen
source of the hydroxyl groups in product 3a-O (eq 6).

P (10 mol %)
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1a 0°©
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2a (2.1 equiv)
16o 130 9.7 1
= BN (10 mol %) X

Ph/S/ . o  LAUCIAgNTf, WA 5Ph @

X X 0o beET0°C 12N H X

dp-1a ~57% o X

X=0.72D 2a (2 equiv) d,-3a (X =23 D) OH

= N (10 mol %)
oS . o) _LAUCIAQNTE, {SPh
N
1a Ne DZO (5.0 equiv) ®)
O® DCE,70°C, 12.5h

2a (2 equiv) ~43%
X= 0 60D

Y=0.15D
(10 mol %)

=

Ph/S\|// Cl

| S LAuCI/ ) Ph X

4b "Bu AgNTT,

e 1 i ) , N ° “

s. = @lea)] DCE,70°C H "By H

/ 12h o o Me

Me 5b (43%) OH 5f(51%) OH
c 4f

Treatment of propargylic thioether 1a with quinoline N-oxide
2a in the presence of H,'*0 (2.0 equiv) resulted in product 3a-O
with an oxygen content of '°0/**0 = 9.7:1. A low '®O-content
for 3a-O was attributed to the production of additional water (1
equiv) from this reaction sequence; this water was bound to gold
and was proximate to the reaction inner sphere (vide infra). We
prepared substrate d,-1a bearing X = 0.72 D for each CH,
hydrogen, and its corresponding reaction gave the desired
product d,-3a in bearing X = 0.23 D for each methylene
hydrogen of the CH,OH (eq 7). Nevertheless, the result in eq 7
is less meaningful because we have deuterium-scattered product
d,-3a when D,O is present in the system (S equiv, eq 8). We
carried out a crossover experiment (eq 9) where 4b and 4f were
treated with N-oxides 2a under standard conditions. We did not
observe any crossover products and obtained only compounds
Sb and 5f in 43% and 51% yield.

We postulate the mechanism in Scheme 3, involving a-oxo
gold carbenes C generated from the oxidation of propargyl
phenyl thioethers 1 with quinoline N-oxide 2a. The attack of N-
oxide on gold m-alkyne A generates alkenylgold species B and
gold carbene C sequentially. Intermediate C undergoes an
intramolecular attack by PhS at the gold carbene functionality
and forms a four-membered sulfonium ring D that is
subsequently cleaved by water to produce C-bound gold enolate

Scheme 3. Plausible Reaction Mechanism
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E. A further tautomerization yields O-bound gold enolate
intermediate F. We believe that O-bound gold enolate F attacks
a second N-oxide to deliver alkylated intermediate G that
undergoes dehydration to yield the desired product 3a. We
surmise that the O-bound enolate F is likely to have a E-
configuration so that sulfur has a weak interaction to the gold
center and its hydroxyl group can hydrogen bond with the N-
oxide; this association facilitates this alkenylation reaction. In the
final step, we note that a water molecule is released from the loss
of the oxygen of the N-oxide; this pathway indicates that the
hydroxyl oxygen of products 3 or § may arise from either water
or N-oxide. Water generated from the N-oxide is coordinated
with LAu* to yield LAu(H,0)*, which is within the inner sphere
of the reaction site. Accordingly, external H,'®O contributes
little to the oxygen source of the hydroxyl groups of products 3
and 5, consistent with our '*O experiment (eq 6).

This proposed mechanism also rationalizes the formation of
2-allylthietan-3-one 7 from gold-catalyzed oxidation of allyl
propargyl thioether 6 (eq 5). After the attack of allyl sulfide at
the gold carbene in species C, the resultmg intermediate D’
undergoes a [2,3]-Wittig rearrangement to give the observed
product 7.

This work reports gold-catalyzed oxidative hydrative
alkenylations of propargyl aryl thioethers with quinoline N-
oxides to afford 3-hydroxy-1-alkylidene phenylthiopropan-2-
ones via a 1,3-sulfur migration. The reaction involves one alkyne,
one water, and two discrete quinoline oxides. A reaction
mechanism is postulated to involve an a-oxo gold carbene that is
S-attacked by a phenylthio group'”"" to form a four-membered
sulfonium intermediate. A ring cleavage of this sulfonium ring
with water generates a gold enolate that reacts with a second
quinoline N—0x1de to deliver an alkenylation product via 1,3-
sulfur migration."’
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