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Synthesis and structure–activity relationships
of 3,4-diaminocyclobut-3-ene-1,2-dione CXCR2 antagonists
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Abstract—A novel series of 3,4-diaminocyclobut-3-ene-1,2-diones was prepared and found to show potent inhibitory activity of
CXCR2 binding and IL-8-mediated chemotaxis of a CXCR2-expressing cell line. Microsome stability and Caco2 studies were
subsequently used to show that compounds of this chemotype are predicted to have good oral bioavailability and are thus suitable
for pharmaceutical development.
� 2006 Elsevier Ltd. All rights reserved.
Inflammatory disease is mediated principally via the
migration of leukocytes into the affected tissues.1 This
influx is sustained by chemotactic cytokines, otherwise
known as chemokines.2 Neutrophils are a subset of leu-
kocytes implicated in the etiology of conditions such as
chronic obstructive pulmonary disease (COPD),3,4 rheu-
matoid arthritis (RA),3,5 inflammatory bowel disease,3,6

sepsis,3,7 and psoriasis.3,8 CXCL8 (formerly interleukin-
8 or IL-8) is a chemoattractant for neutrophils that is
readily detected at sites of inflammation.9 CXCR1 and
CXCR2 are the only known neutrophil receptors that
contain high-affinity binding sites for CXCL8.10 Specific
roles for each receptor remain elusive, but a correlation
between receptor activation and neutrophil-trafficking
has been firmly established through animal models of
human disease using either CXCR2 knockout mice,11

monoclonal antibodies,12 and CXCR2 antagonists.13

Such promising results make the development of
CXCL8 receptor antagonists an intriguing opportunity
for pharmaceutical development.

The series of ureas (Fig. 1) developed by researchers at
GlaxoSmithKline (GSK)14 has recently garnered much
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attention, as an analog related to this series is now in hu-
man trials for the treatment of COPD.15 We surmised
that 3,4-diaminocyclobut-3-ene-1,2-dione would be a
good bioisostere for this urea based on its previous use
as a cyanoguanidine replacement by researchers at
Wyeth.16

We prepared a series of cyclobutenediones in a fashion
similar to that exemplified for compound 19 in
Scheme 1. The corresponding cyclobutenedione ana-
log, 1, of GSK’s urea in Figure 1 was a potent inhib-
itor of CXCR2 binding with an IC50 of 0.036 lM.17

Further investigation of the left side aniline, Table 1,
revealed that the aniline NH and hydroxyl were criti-
cal since substitution or removal of these groups, as in
compounds 2 and 3, resulted in dramatic loss of potency.
Removal of an electron withdrawing group reduced
potency by 10-fold as in the des-nitro compound, 4, but
shifting the nitro group from position 4- to position 5-
had no impact on binding activity, 5. Replacement of
the nitro group at either the 4- or 5- position with other
electron withdrawing groups such as cyano was well toler-
ated, 6 and 7. Carboxylic acid was not well tolerated at
either position 3- or 4-, as shown in compounds 8 and 9.
However, installation of methyl ester at position 3- result-
ed in a more potent compound 10. Based on this result, the
methyl ester was replaced with a series of simple amides,
11–15. The dimethylamide 15 was found to have the best
potency within this series. When the dimethylamide
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Scheme 1. Reagents and conditions: (a) 2 M dimethylamine in THF,

PyBroP, DIEA, DCM; (b) H2, 5%Pd on C, CH3OH; (c) 3,4-

dimethoxy-3-cyclobutene-1,2-dione, CH3OH; (d) cyclopentylamine,

DIEA, CH3OH, 60 �C.
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Figure 1. GSK urea for CXCR2.
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aniline was further substituted with halide, potency was
maintained as exemplified with compound 16.

With dimethylamide aniline as the optimized left side,
we prepared a series of cyclobutenediones to explore
the right-hand side SAR, Table 2. The right side NH
was found to be critical since substitution with methyl,
17, resulted in dramatic loss of potency. Since the elec-
tron-rich aniline moiety is well-known to have an unfa-
vorable metabolic profile,18 we chose to focus on alkyl
replacements. Introduction of cyclohexyl and cyclopen-
tyl replacements for aniline provided potent compounds
18 and 19. Introduction of a heteroatom as in 20 or a
fused ring system as in 21 resulted in significant loss of
Table 1. Effect of aniline substituents on CXCR2 binding versus IL-8

O O

N
H

N
R2

R3

R4
R5

R1

Compounds R1 R2 R3 R4 R5 CXCR2 IC50 (lM)

1 H OH H NO2 H 0.036

2 Me OH H H H 28.6

3 H H H NO2 H 8.6

4 H OH H H H 0.476

5 H OH H H NO2 0.056

6 H OH H H CN 0.074

7 H OH H CN H 0.003

8 H OH H CO2H H 3.1

9 H OH CO2H H H 1.0

10 H OH CO2Me H H 0.053

11 H OH CONH2 H H 0.034

12 H OH CONHMe H H 0.022

13 H OH CONHEt H H 0.065

14 H OH CONHCH2Ph H H 0.139

15 H OH CONMe2 H H 0.002

16 H OH CONMe2 H Cl 0.002

H



Table 3. In vitro chemotaxis, Caco2, and liver microsome results for selected compounds (data shown are means ± standard deviation of two or

more measurements)

Compounds CXCR2 chemotaxis

IC50 (lM)

Caco2 Papp A:B (nm/s)

(predicted absorption)

Human microsome

(% remaining)

Rat microsome

(% remaining)

15 0.026 ± 0.011 24 ± 1.7 (low) 64 ± 2 67 ± 7

19 0.1448 ± 0.0002 101 ± 4.6 (high) 72 ± 3 56 ± 5

22 0.0191 ± 0.0099 120 ± 2.4 (high) 82 ± 5 75 ± 7
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potency. Simple acyclic alkyls were found to be as
good as cyclic alkyls, as exemplified by 2-ethylpropyl,
isopropyl, and tert-butyl compounds 22, 23, and 24.
While unbranched heterobenzylics such as furanyl
compound 25 showed significant potency, further chain
elongation to phenethyl resulted in a much weaker com-
pound, 26.

Three potent compounds, 15, 19, and 22, were selected
for further evaluation in chemotaxis19, Caco220, and
rat and human liver microsome assays,21 Table 3. All
three compounds were potent inhibitors of CXCR2-
mediated chemotaxis. Although compound 15 was the
most potent (chemotaxis IC50 = 0.026 ± 0.011 lM), its
predicted absorption based on Caco2 permeability was
low. This compound and others with right-side anilines
also had poor apparent solubility in most solvents.
Cyclobutenediones with right-side alkyls, such as 19
and 22, had much better apparent solubility and had
high predicted absorption based on Caco2 results. The
ethylpropyl compound 22 was a potent inhibitor of che-
motaxis (IC50 = 0.0191 ± 0.0099 lM), predicted to be
well-absorbed based on Caco2 results, and predicted
to have good metabolic stability based on human and
rat microsome studies (>50% remaining after 30 min
at 37 �C). These findings justify further SAR develop-
ment and in vivo studies.

In summary, we have developed a potent series of
cyclobutenedione CXCR2 receptor antagonists. Preli-
minary pharmacokinetic studies suggest that this type
of compound is amenable to further drug develop-
ment. Additional developments and in vivo results
have been reported22 and will appear in a subsequent
publication.
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