Synthesis of Bis(imidazole-2-thion-4-yl)phosphanes

Susanne Sauerbrey,¹ Paresh Kumar Majhi,¹ Sebastian Schwieger,¹ Anthony J. Arduengo III,² and Rainer Streubel¹

¹Institut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany

²Department of Chemistry, University of Alabama, Tuscaloosa, AL 35487

Received 3 March 2012; revised 20 June 2012

ABSTRACT: Novel bis(imidazole-2-thion-4-vl)phosphanes (2a-d) were synthesized via lithiation of the precursor imidazole-2-thiones followed by the phosphanylation reaction. Oxidation of *bis(imidazole-2-thion-4-yl)phosphane* **2b–d** with elemental sulfur and selenium led selectively and in good yields to the P-thio (**3b-d**) and P-seleno (**4c**) derivatives of bis(imidazole-2-thion-4-yl)phosphanes, respectively. The treatment of **2a,c** with phosphorus trichloride gives the corresponding P-chloro derivatives 5a,c. These compounds were unambiguously characterized by elemental analyses, spectroscopic and spectrometric methods, in addition by singlecrystal X-ray structure analysis in the case of 2d. © 2012 Wiley Periodicals, Inc. Heteroatom Chem 00:1-7, 2012; View this article online at wileyonlinelibrary.com. DOI 10.1002/hc.21043

INTRODUCTION

The importance of imidazole I and imidazole-2thione II derivatives (see Fig. 1) both in the field

Correspondence to: Anthony J. Arduengo III; e-mail: aj@ ajarduengo.net. Rainer Streubel; e-mail: r.streubel@uni-bonn.de. Contract grant sponsor: University of Bonn.

Contract grant sponsor: COST action cm0802 "PhoSciNet." Contract grant sponsor: National Science Foundation. Contract grant numbers: CHE-0413521 and CHE-0115760. Supporting Information is available in the online issue at wileyonlinelibrary.com.

© 2012 Wiley Periodicals, Inc.

of biologically active compounds such as antibacterial [1], anti-inflammatory [2,3], analgesic [3], antitumor [4,5], anticancer activities [6] etc., and in organic synthesis is well documented [7-10]. The synthetic access to various C-phosphorylated five-membered N-heterocycles via electrophilic phosphorylation with P(III) halides is known [10-13]. The coordination of phosphanes to metals and the spectroscopic properties of phosphorus are two important aspects of this chemistry [14]. Furthermore, it has been demonstrated that 1methyl-imidazoles substituted at the C² carbon center can be functionalized at position five (C^5) with a phosphorus-containing group IV [15,16]. Recently, we showed that imidazole-2-thiones can also be functionalized at the C⁴ position with phosphoruscontaining groups V in a similar fashion [17]. Kuhn demonstrated an efficient synthetic route to N-heterocyclic carbene (NHCs) III by the reduction of imidazole-2-thione II with potassium in boiling tetrahydrofuran [18]. Recently, Gates and colleagues [19] and Bertrand and coworkers [20] reported the first examples of C4-phosphanyl substituted NHCs VI. Two (1-methyl-2-R-imidazoles) were also added on the phosphorus center, resulting in structures VII and VIII [16]. The compounds of type VIII could be used to synthesize tripodal ligands [21], which shows interesting coordination properties and can act as a model ligand for enzymatic activities. Herein, we present the synthesis of a series of bis(imidazole-2-thion-4-yl) phosphanes.

FIGURE 1 Imidazoles (I), imidazole-2-thiones (II), imidazol-2-ylidenes (III), and selected phosphorus derivatives IV-VIII.

RESULTS AND DISCUSSION

The imidazole-2-thione derivatives **1a–c**, used in this study, were synthesized according to the reported procedures [22]. The imidazole-2-thiones were deprotonated in tetrahydrofuran with "BuLi at -78° C and allowed to react with 0.5 equiv of dichloro(organo)phosphane to afford bis(imidazole-2-thione) phosphanes **2a–d** (Scheme 1) selectively. The ³¹P NMR chemical shifts and ³*J*_{PH} coupling constants to the NMe₂ and *ortho*-phenyl protons for **2a–d** are provided in Table 1. ¹H NMR spectra revealed small couplings to the C⁵H and none to the N³-Me protons.

Single-crystal X-ray diffraction structure analysis was performed for compound **2d**. The crystal was obtained from a saturated toluene solution at low temperature (-20° C). Compound **2d** crystallizes

SCHEME 1 Synthesis of compounds 2a–d.

TABLE 1 ${}^{31}P{}^{1}H{}$ NMR Chemical Shifts and Coupling Constants for Compounds **2a–d**

	2a	2b	2c	2d
³¹ P NMR (CDCl ₃) δ (ppm) ${}^3J_{PH}$ (Hz)	14.4 10.2	16.1 10.0	16.8 9.3	-57.2 8.4

in a triclinic lattice with space group $P\overline{1}$. Selected structural parameters are given in Table 2. Crystallographic data are presented in Table 3. The structure and numbering scheme for **2d** is shown in Fig. 2 (the disordered toluene solvate unit is omitted for clarity).

Compounds **2a-d** can be converted into P(V) derivatives 3b-d, 4c by using classical oxidation methods (Scheme 2). The reactions of compounds **2b-d** with elemental sulfur and selenium appeared quantitative according to ³¹P NMR spectroscopic monitoring. The *P*-thio (**3b-d**) and *P*-seleno (**4c**) phosphorylated bis(imidazole-2-thiones) crystallized from the reaction mixtures and thus could easily be obtained in a pure form. The analytical data of phosphane sulfides and selenides are given in the Experimental section. For all P(V) derivatives described herein, the ³¹P NMR signal of **3b-d** and 4c was shifted to lower field compared to the parent phosphanes 2b-d. The same tendencies were observed before in the series of imidazolesubstituted phosphane chalcogens [16,23].

TABLE 2 Selected Bond Lengths and Angles for 2d

Property		Value
	Bond lengths (Å)	
C(1) - P(1)	5 ()	1.817(2)
C(8) - P(1)		1.814(2)
C(15) - P(1)		1.834(2)
C(2) - S(1)		1.680(2)
C(9) - S(2)		1.688(2)
C(1) - N(1)		1.396(2)
C(8) - N(3)		1.398(2)
C(1) - C(3)		1 352(3)
C(8) - C(10)		1.351(3)
	Bond angles (deg)	
C(8)-P(1)-C(1)	Bolia aligico (acg)	101.05(8)
C(8)-P(1)-C(15)		98 58(9)
C(1)-P(1)-C(15)		102 45(9)
C(3)-C(1)-P(1)		133 3(2)
C(10)-C(8)-P(1)		128.5(1)
N(1)-C(2)-N(2)		105.0(2)
N(3)-C(9)-N(4)		106.0(2) 106.1(2)
C(1)-C(3)-N(2)		108.1(2)
C(8)-C(10)-N(4)		108.4(2)

TABLE 3	Crystallographic data for 2d · 1/2C ₇ H ₈

	Crystal system Space group A (Å) b (Å) c (Å) α (°) β (°) γ (°) V (Å ³) Z d_c (g cm ⁻³) μ (mm ⁻¹) F(000) Crystal size (mm) Reflections collected Reflections unique Mo K α radiation (λ , Å) Final R indices (R1) wR2 R indices (all data) $R1wR2GQF$	$\begin{array}{c} \text{Triclinic} \\ P-1 \\ 10.5360(7) \\ 11.0711(7) \\ 11.7759(7) \\ 65.072(5) \\ 81.417(5) \\ 87.247(5) \\ 1231.5(1) \\ 1 \\ 1.253 \\ 0.299 \\ 494 \\ 0.35 \times 0.15 \times 0.09 \\ 12465 \\ 5930 \\ 0.71073 \\ 0.0409 \\ 0.0867 \\ 0.0722 \\ 0.0932 \\ 0.856 \end{array}$
Parameters 314	GOF Parameters	0.856 314

Attempted preparation of the bis(imidazole-2thion-4-yl)phosphinous chloride analogous to **5a,c** by phosphorylation of imidazole-2-thiones **1a,c** with phosphorus trichloride in a 2:1 ratio resulted

FIGURE 2 Molecular structure of 2d (at a 30% probability level).

in a mixture of mono-, bis-, and tris(imidazole)substituted phosphane derivatives. Therefore, another synthetic methodology was followed by reacting **2a,c** with a stoichiometric amount of phosphorus trichloride to yield **5a,c** as yellow solids (Scheme 2). The analytical data of **5a,c** are given in the Experimental section. Compounds **5a,c** have ³¹P NMR chemical shifts similar to their **2a,c** analogs, i.e., 22.6 (**5a**) and 19.9 (**5c**).

SCHEME 2 Synthesis of P(V) and P-chloro derivatives (for abbreviation of a-d (see Scheme 1).

CONCLUSIONS

synthetic methodology was developed Α to synthesize a series of bis(imidazole-2-thion-4-yl)phosphanes. The oxidation of bis(imidazole-2-thion-4-yl)phosphanes occurred selectively to yield the corresponding P^{V} -E products (E = S, Se) **3b-d** and 4c was firmly established by spectroscopic and spectrometric methods. The treatment of 2a,c with phosphorus trichloride leads to corresponding *P*-chloro derivatives **5a,c**. This synthetic route is amenable to the preparation of multigram quantities of product in a linear fashion. The new phosphanyland phosphoryl-substituted bis(imidazole-2-thione) could be of interest in the synthesis of backbone functionalized imidazol-2-ylidenes.

EXPERIMENTAL

General Considerations

The synthesis of the imidazole-2-thiones and the lithiation reactions were performed under argon, using common Schlenk techniques and dry solvents. Tetrahydrofuran was dried over sodium wire/benzophenone, dichloromethane over calcium hydride, and further purified by subsequent distillation. All used phosphanes were distilled prior to use and stored under argon. All other chemicals were used as received. 1,3-Dimethylimidazole-2thione (1a) [22a], 1-isopropyl-3-methyl-imidazole-2-thione (1b) [22b], and 1,3-diphenylimidazole-2-thione (1c) [22c] were synthesized following literature protocols. All NMR spectra were recorded on a Bruker (Germany) AX-300 spectrometer (300.1 MHz for ¹H, 75.5 MHz for ¹³C, 121.5 MHz for ³¹P). The ¹H and ¹³C spectra were referenced to the residual proton resonance and the ¹³C signals of the deuterated solvents, $^{31}\mathrm{P}$ to $85\%~\mathrm{H_3PO_4}$ as external standard, respectively. Melting points were determined in one-side melted off capillaries using a Büchi type S or a Carl Roth type MPM-2 apparatus (Germany), and they are uncorrected. Elemental analyses were carried out on a Vario EL gas chromatograph (Germany). Mass spectrometric data were collected on a Kratos MS 50 spectrometer (Germany) using EI, 70 eV. The infrared spectra were recorded on a Nicolet 380 FT-IR spectrometer (Germany) using KBr pellets. The singlecrystal X-ray analysis was performed on a STOE IPDS2T diffractometer (Germany) (Mo Kα radiation, graphite monochromator) at 123(2) K. The structure was solved by direct methods and refined by full-matrix least-squares technique in an

anisotropic approximation for non-hydrogen atoms using SHELXS97 and SHELXL97 [24] program packages. Hydrogen atoms were calculated on idealized positions and refined isotropically by using a riding model.

Typical Lithiation and Phosphanylation Protocol for the Synthesis of **2a-d**

In a Schlenk flask, the imidazole-2-thiones 1a-c (10 mmol) were dissolved in tetrahydrofuran (100 mL) and cooled to -78° C, *n*-butyl lithium (1.6 M in n-hexane, 17 mL, 11 mmol) was then added, and the reaction mixture was slowly warmed to -40°C; it was stirred for 2 h at this temperature. The reaction mixture was cooled again to -78° C, the dichlorophosphane (Me₂NPCl₂ or PhPCl₂) (5 mmol) was then added, and the reaction mixture was stirred for about 18 h while warming to ambient temperature. It was then concentrated in vacuo $(8 \times 10^{-3} \text{ mbar})$, and the residue was taken up in dichloromethane and filtered over celite to remove lithium chloride. The filtrate was collected, and the solvent was removed in vacuo (8 \times 10⁻³ mbar). The crude product was then purified via crystallization from hot toluene (2a-d). Colorless to light yellow crystals were obtained.

Bis(1,3-dimethyl-imidazole-2-thion-4-yl)-dimethylaminophosphane (2a). Yield: 2.42 g (62%), white solid, mp 179°C. ¹H NMR (300 MHz, CDCl₃): δ 6.60 (d, $J_{P,H} = 0.8$ Hz, 2H, C⁵-H), 3.55 (s br, 6H, N^{3} -CH₃), 3.52 (s br, 6H, N^{1} -CH₃), 2.65 (d, $J_{P,H} =$ 10.2 Hz, 6H, P-N-CH₃). ¹³C{¹H} NMR (75.0 MHz, CDCl₃): δ 165.5 (s, C=S), 125.3 (d, $J_{P,C} = 8.0$ Hz, C⁴), 122.8 (d, $J_{P,C} = 0.8$ Hz, C⁵), 40.8 (d, $J_{P,C} =$ 16.0 Hz, P-N-CH₃), 35.2 (s, N¹-CH₃), 33.5 (d, $J_{P,C} =$ 9.6 Hz, N³-CH₃). ³¹P{¹H} NMR (121.5 MHz, CDCl₃): δ 14.4. MS (EI, 70 eV): m/z (%) 329 (100) [M]^{•+}, 285 (72) [M - N(CH₃)₂]⁺, 212 (4) [M - N(CH₃)₂-2S-CH₃]⁺. HR-ESI-MS: found: 352.0790, calcd 352.0790 as $C_{12}H_{20}N_5PS_2Na^+$. IR (KBr, cm⁻¹): $\nu = 3154$, 3065, 1574, 1492, 1389, 1181, 664. EA: calcd C 43.75, H 6.12, N 21.26, S 19.47; found: C 43.98, H 6.16, N 20.93, S 19.68.

Bis(1-isopropyl-3-methyl-imidazole-2-thion-4-yl)dimethylaminophosphane (**2b**). Yield: 5.65 g (92%), white solid, mp 135°C. ¹H NMR (300 MHz, CDCl₃): δ 6.05 (s, 2H, C⁵-H), 5.05 (hept, $J_{H,H} =$ 6.8 Hz, 2H, C₃H₇-CH), 3.54 (s, 6H, N³-CH₃), 2.63 (d, $J_{H,H} =$ 10.0 Hz, 6H, P-N-CH₃), 1.31 (d, $J_{H,H} =$ 6.8 Hz, 12H, C₃H₇-CH₃). ¹³C{¹H} NMR (75.0 MHz, CDCl₃): δ 165.5 (d, $J_{P,C} =$ 1.1 Hz, C=S), 126.1 (d, $J_{P,C} =$ 8.4 Hz, C⁴), 125.6 (d, $J_{P,C} = 1.9$ Hz, C⁵), 49.6 (s, $C_{3}H_{7} - CH$), 41.3 (d, $J_{P,C} = 16.3$ Hz, P-N-CH₃), 33.6 (d, $J_{P,C} = 10.2$ Hz, N³ – CH₃), 22.2 (d, $J_{P,C} = 8.5$ Hz, N¹-C₃H₇ – CH₃). ³¹P{¹H} NMR (121.5 MHz, CDCl₃): $\delta 16.1.$ MS (EI, 70 eV): m/z (%) 385 (100) [M]^{•+}, 341 (88) [M – N(CH₃)₂]⁺, 299 (37) [M – 2(C₃H₇)]⁺, 257 (16) [C₈H₁₄N₃PS]⁺, 230 (10) [C₉H₁₇N₃PS]⁺, 91 (100) [C₅H₅N₂]⁺, 65 (14) [C₃HN₂]⁺. HR-MS: found: 385.1522, calcd 385.1535. IR (KBr, cm⁻¹): ν = 3107, 3055, 2970, 1555, 1434, 1406, 1189, 673. EA: calcd C 49.85, H 7.32, N 18.17, S 16.63; found: C 49.93, H 7.47, N 18.33, S 16.70.

Bis(1,3-diphenyl-imidazole-2-thion-4-yl) dimethylamino-phosphane (**2c**)

Yield: 3.85 g (78%), white solid, mp 217°C. ¹H NMR (300 MHz, CDCl₃): δ 7.54–7.16 (m, 20H, C₆H₅), 6.84 (s 2H, C⁵-H), 2.38 (d, *J*_{P,H} = 9.3 Hz, 6H, P-N-CH₃). ¹³C{¹H} NMR (75.0 MHz, CDCl₃): δ 166.9 (s, C=S), 137.6 (s, N-*ipso*-Ph), 136.6 (s, N-*ipso*-Ph), 129.0 (s, N-Ph), 128.4 (s, N-Ph), 127.0 (d, *J*_{P,C} = 12.5 Hz, C⁴), 125.8 (s, N-Ph), 123.4 (s, C⁵), 40.8 (d, *J*_{P,C} = 19.1 Hz, P-N-CH₃). ³¹P{¹H} NMR (121.5 MHz, CDCl₃): δ 16.8. MS (EI, 70 eV): *m*/*z* (%) 577 (100) [M]^{•+}, 533 (88) [M – N(CH₃)₂]⁺, 326 (5) [C₁₇H₁₆N₃PS]⁺, 251 (20) [C₁₅H₁₁N₂S]⁺, 77(15) [C₂H₇NP]⁺. HR-ESI-MS: found: 577.1519, calcd 577.1524. IR (KBr, cm⁻¹): ν = 3148, 3065, 1594, 1497, 1384, 1151, 691. EA: calcd C 66.53, H 4.89, N 12.12, S 11.10; found: C 66.24, H 4.73, N 12.02, S 11.01.

Bis(1-isopropyl-3-methyl-imidazole-2-thion-4-yl)phenylphosphane (**2d**)

Yield: 5.90 g (88%), white solid, mp 108° C. ¹H NMR (300 MHz, CDCl₃): δ 7.42–7.32 (m, 5H, C₆H₅), 6.26 (s, 2H, C⁵-H), 5.03 (hept, $J_{H,H} = 6.8$ Hz, 2H, C₃H₇-CH), 3.48 (s, 6H, N³-CH₃), 1.26 (dd, $J_{H,H} = 6.8$ Hz, $J_{\rm P,H} = 5.3$ Hz, 12H, C_3H_7 -C H_3). ¹³C{¹H} NMR (75.0 MHz, CDCl₃): δ 165.3 (s, C=S), 133.0 (d, $J_{P,C} = 21.2$ Hz, C_6H_5), 130.8 (s, C_6H_5), 129.5 (d, $J_{P,C} = 7.9$ Hz, C_6H_5), 129.2 (d, $J_{P,C} = 34.9$ Hz, *ipso*- C_6H_5), 128.9 (d, $J_{P,C} = 6.7$ Hz, C⁴), 120.1 (d, $J_{P,C} = 5.2$ Hz, C⁵), 49.4 (s, $C_3H_7 - CH$), 33.4 (d, $J_{P,C} = 9.5$ Hz, N^3 -CH₃), 21.7 (d, $J_{P,C} = 5.0$ Hz, N¹-C₃H₇ – CH₃³). ³¹P NMR{¹H} (121.5 MHz, CDCl₃): δ –55.0. MS (EI, 70 eV): m/z (%) 418 (8) [M]^{•+}, 320 (70) [C₁₅H₁₆N₄PS₃]⁺, 263 (17) $[C_{13}H_{16}N_2PS]^+$, 221 (30) $[C_{10}H_9N_2PS]^+$, 91 (100) [C₅H₅N₂]⁺. HR-MS: found: 418.1419, calcd 418.1414. IR (KBr, cm⁻¹): $\nu = 3140$, 3052, 1548, 1434, 1371, 1182. EA: calcd C 57.39, H 6.50, N 13.39, S 15.32; found: C 57.21, H 6.43, N 13.25, S 15.22.

Typical Procedure for the Generation of Phosphane Sulfides (**3b–d**) *and Phosphane Selenide* (**4c**)

A solution of phosphanes **2b–d** (3 mmol) in toluene (10 mL) containing elemental sulfur or selenium (3 mmol) was heated for 3 h at 110°C. The reaction mixture was cooled down to ambient temperature. The product precipitated in the form of colorless crystals. The obtained crystals were washed with *n*-pentane and dried in vacuo (8 × 10⁻³ mbar).

Bis(1-isopropyl-3-methyl-imidazole-2-thion-4-yl)dimethyl-aminophosphane Sulfide (3b). Yield: 4.4 g (95%), white solid, mp 205°C. ¹H NMR (300 MHz, CDCl₃): δ 6.94 (d, $J_{P,H}$ = 3.4 Hz, 2H, C⁵-H), 5.05 (hept, $J_{\rm H,H} = 6.8$ Hz, 2H, C₃H₇-CH), 3.71 (s, 6H, N³-CH₃), $2.74 (d, J_{P,H} = 13.9 Hz, 6H, P-N-CH_3), 1.32 (dd, J_{H,H} =$ 6.8 Hz, $J_{P,H} = 3,7$ Hz, 12H, C_3H_7 -C H_3). ¹³C{¹H} NMR (75.0 MHz, CDCl₃): δ 166.2 (d, $J_{P,C} = 5.8$ Hz, C=S), 122.0 (d, $J_{P,C} = 20.7$ Hz, C⁵), 120.8 (d, $J_{P,C} = 139.2$ Hz, C⁴), 48.7 (s, C₃H₇ – CH), 36.2 (d, $J_{P,C} = 4.5$ Hz, P-N-CH₃), 32.9 (d, $J_{P,C} = 9.5$ Hz, N³ – CH₃), 20.9 (s, $N^{1}-C_{3}H_{7} - CH_{3}$). ${}^{31}P{}^{1}H{} NMR (121.5 MHz, CDCl_{3}):$ δ 33.9. MS (EI, 70 eV): m/z (%) 417 (100) [M]^{•+}, 341 (10) $[M - N(CH_3)_2]^+$, 299 (37) $[M^{\bullet+} - 2(C_3H_7]^+$, 257 $(16) [C_8H_{14}N_3PS]^+$, 248 (18) $[C_8H_{14}N_3PS_2]^+$. HR-MS: found: 417.1247, calcd 417.1239. IR (KBr, cm⁻¹): $\nu = 3119, 3064, 1546, 1438, 1409, 1187, 647.$ EA: calcd C 46.02, H 6.76, N 16.77, S 23.04; found: C 45.94, H 6.67, N 16.68, S 23.00.

Bis(1,3-diphenyl-imidazole-2-thion-yl)-dimethylamino-phosphane Sulfide (**3c**). Yield: 1.65 g (90%), white solid, mp 195°C. ¹H NMR (300 MHz, CDCl₃): δ 7.49–7.09 (m, 20H, C₆H₅), 6.94 (d, $J_{P,H} = 3.5$ Hz, 2H, C⁵-H), 2.45 (d, $J_{P,H} = 15.1$ Hz, 6H, P-N-CH₃). ¹³C{¹H} NMR (75.0 MHz, CDCl₃): δ 169.8 (s, C=S), 136.9 (s, N-ipso-Ph), 136.2 (s, N-ipso-Ph), 129.5 (s, N-Ph), 129.0 (s, N-Ph), 127.9 (s, C⁵), 125.6 (s, N-Ph), 120.8 (d, $J_{P,C} = 141.3$ Hz, C⁴), 37.3 (d, $J_{P,C} =$ 2.4 Hz, P-N-CH₃). ³¹P{¹H} NMR (121.5 MHz, CDCl₃): δ 35.9. HR-ESI-MS: found: 632.1149, calcd 632.1137 as C₃₂H₂₈N₅PS₃Na⁺. IR (KBr, cm⁻¹): $\nu = 3132$, 3057, 1595, 1403, 1169, 663. EA: calcd. C 63.03, H 4.63, N 11.49, S 15.78; found: C 62.81, H 4.49, N 11.21, S 15.62.

Bis(1-isopropyl-3-methyl-imidazole-2-thion-4-yl)phenyl-phosphane Sulfide (**3d**). Yield: 6.5 g (81%), white solid, mp 198°C. ¹H NMR (300 MHz, CDCl₃): δ 7.76–7.09 (m, 5H, C₆H₅), 6.53 (d, $J_{P,H} = 3.9$ Hz, 2H, C⁵-H), 5.04 (hept, $J_{H,H} = 6.4$ Hz, 2H, C₃H₇-CH), 3.62 (s, 6H, N³-CH₃), 1.27 (m br, 12H, C₃H₇-CH₃). ¹³C{¹H} NMR (75.0 MHz, CDCl₃): δ 167.2 (d, $J_{P,C} = 5.3$ Hz, C=S), 133.3 (d, $J_{P,C} = 3.3$ Hz, C_6H_5), 131.6 (d, $J_{P,C} = 12.6$ Hz, C_6H_5), 129.1 (d, $J_{P,C} = 13.9$ Hz, Ph), 127.8 (d, $J_{P,C} = 97.4$ Hz, *ipso*- C_6H_5), 122.4 (d, $J_{P,C} = 19.3$ Hz, C⁵), 119.4 (d, $J_{P,C} = 117.0$ Hz, C⁴), 49.5 (s, $C_3H_7 - CH$), 34.1 (s, N³-CH₃), 21.4 (s, N¹- $C_3H_7 - CH$). ³¹P{¹H} NMR (121.5 MHz, CDCl₃): δ 10.5. MS (EI, 70 eV): m/z 450 (100) [M]⁺⁺, 418 (10) [M - S]⁺, 352 (15) [C₁₅H₁₆N₄PS₃]⁺, 250 (5) [C₁₀H₉N₂PS₂]⁺, 221 (30) [C₁₀H₉N₂PS]⁺. HR-MS: found: 450.1139, calcd 450.1127. IR (KBr, cm⁻¹): ν = 3121, 3068, 1548, 1436, 1378, 1186. EA: calcd C 53.31, H 6.04, N 12.43, S 21.35; found: C 53.20, H 6.13, N 12.38, S 21.37.

Bis (1, 3 - diphenyl - imidazole - 2 - thion - 4 - yl) dimethylamino-phosphane Selenide (4c). Yield: 1.81 g (92%), white solid, mp 190°C. ¹H NMR (300 MHz, CDCl₃): δ 7.48–7.05 (m, 20H, C₆H₅), 6.87 (d br, J_{PH} = 3.8 Hz, 2H, C⁵-H), 2.37 (d, $J_{P,H} = 16.5$ Hz, 6H, P-N-CH₃). ¹³C{¹H} NMR (75.0 MHz, CDCl₃): δ 169.5 (d, $J_{P,C} = 4.2$ Hz, C=S), 136.8 (s, N-*ipso*-Ph), 136.0 (s, N-ipso-Ph), 129.6 (s, N-Ph), 129.0 (s, N-Ph), 128.8 (d, $J_{P,C} = 10.7$ Hz, C⁵), 125.6 (s, N-Ph), 119.0 (d, $J_{P,C} = 126.4$ Hz, C⁴), 38.1 (d, $J_{P,C} = 3.0$ Hz, P-N-CH₃). ³¹P{¹H} NMR (121.5 MHz, CDCl₃): δ 29.3 ($J_{\text{Se,P}}$ = 807.4 Hz). MS (EI, 70 eV): m/z (%) 657 (65) [M]^{•+}, 577 (55) $[M - Se]^+$, 533 (100) $[M - Se-N(CH_3)_2]^+$, $281 (100) [C_{15}H_{11}N_2PS]^+$, $251 (68) [C_{15}H_{11}N_2S]^+$. EA: calcd C 58.53, H 4.30, N 10.67, Se 12.02; found: C 58.39, H 4.22, N 10.53, Se 11.88.

Typical Procedure for the Generation of Chlorophosphanes **5a,c**

In separate Schlenk flasks, the phosphanes **3a,c** (1 equiv) were dissolved in dichloromethane (10 mL) and cooled to -20° C, 1 equiv of phosphorus trichloride was added to each and the reaction mixtures were warmed up to ambient temperature. The solvent was removed from each reaction in vacuo (8 × 10^{-3} mbar), and the crude products obtained were each washed several times with *n*-pentane and then dried in vacuo (8 × 10^{-3} mbar).

Bis(1,3-dimethyl-imidazole-2-thion-4-yl)-chlorophosphane (**5a**). Yield: 1.05 g (91%), orange solid, mp 129°C. ¹H NMR (300 MHz, CDCl₃): δ 6.90 (s br, 2H, C⁵-H), 3.63 (s, 6H, N¹-CH₃), 3.58 (s br, 6H, N³-CH₃). ¹³C{¹H} NMR (75.0 MHz, CDCl₃): δ 168.1 (s, C=S), 126.7 (d, $J_{P,C} = 23.3$ Hz, C⁴), 121.6 (s, C⁵), 35.6 (s, N¹-CH₃), 34.6 (s, N³-CH₃). ³¹P{¹H} NMR (121.5 MHz, CDCl₃): δ 22.6. IR (KBr, cm⁻¹): $\nu = 3115$, 1466, 1394, 1182, 461. MS (EI, 70 eV, ³⁵Cl): m/z (%) 320 (100) [M]•⁺, 285 (67) [M – Cl]•⁺, 193 (28) [M – C₅H₇N₂S]⁺, 158 (31) [M – Cl-C₅H₇N₂S]⁺. EA: calcd C 37.44, H 4.40, N 17.46, S 19.99; found: C 37.69, H 4.56, N 17.21, S 19.76.

Bis (1, 3 - diphenyl - imidazole - 2 - thion - 4 - yl) chlorophosphane (5c). Yield: 1.70 g (92%), orange solid, mp 249°C. ¹H NMR (300 MHz, CDCl₃): δ 7.54– 7.24 (m, 20H, C_6H_5), 6.90 (s br, 2H, C^5 -H). ¹³C{¹H} NMR (75.0 MHz, CDCl₃): δ 168.3 (d, $J_{P,C} = 1.2$ Hz, C=S), 137.0 (s, N-*ipso*-Ph), 135.8 (d, $J_{P,C} = 1.2$ Hz, N-ipso-Ph), 129.4 (s, N-Ph), 129.1 (s, N-Ph), 129.0 (s, N-Ph), 128.7 (s, N-Ph), 127.0 (d, $J_{P,C} = 23.3$ Hz, C⁴), 125.6 (s, N-Ph), 122.3 (s, C⁵). ${}^{31}P{}^{1}H{}$ NMR (121.5 MHz, CDCl₃): δ 19.9. MS (EI, 70 eV, ³⁵Cl): m/z (%) 568 (100) [M]^{•+}, 533 (62) [M – Cl]⁺, 317 (8) $[C_{15}H_{11}ClN_2PS]^+$, 281 (25) $[C_{15}H_{11}N_2PS]^+$, 251 (30) $[C_{15}H_{11}N_2S]^+$, 77 (40) $[C_6H_5]^+$. HR-ESI-MS: found: 568.0716, calcd 568.0712. IR (KBr, cm⁻¹): $\nu = 3116$, 3062, 1385, 1168, 773, 762, 693, 471. UV/vis (Et₂O): λ_{max}: 209 nm. EA: calcd C 63.32, H 3.90, N 9.85, S 11.27; found: C 63.19, H 3.80, N 9.77, S 11.19.

SUPPLEMENTARY MATERIAL

Crystallographic data for the structure reported in this paper has been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 858986 and can be obtained free of charge on application to CCDC, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033; or deposit@ccdc.cam.ac.uk.

ACKNOWLEDGMENT

AJA gratefully acknowledges the Saxon Endowment of the University of Alabama.

REFERENCES

- Bell, C. A.; Dykstra, C. C.; Naiman, N. A.; Cory, M.; Fairley, T. A.; Tidwell, R. R. Antimicrobial Agents Chemother 1993, 37, 2668–2673.
- [2] Richter, J. E. Am J Gastroenterol 1997, 92, 30–34.
- [3] Sondhi, S. M.; Rajvanshi, S.; Johar, M.; Bharti, N.; Azam, A.; Singh, A. K. Eur J Med Chem 2002, 37, 835–843.
- [4] Nakano, H.; Inoue, T.; Kawasaki, N.; Miyataka, H.; Matsumoto, H.; Taguchi, T.; Inagaki, N.; Nagai, H.; Satoh, T. Bioorg Med Chem 2000, 8, 373–380.
- [5] White, A. W.; Curtin, N. J.; Eastman, B. W.; Golding, B. T.; Hostomsky, Z.; Kyle, S.; Li, J.; Maegley, K. A.; Skalitzky, D. J.; Webber, S. E.; Yu, X.-H.; Griffin, R. J. Bioorg Med Chem Lett 2004, 14, 2433–2437.
- [6] Demirayak, S.; Abu Mohsen, U.; Caqri Karaburun, A. Eur J Med Chem 2002, 37, 255–260.
- [7] Laufer, S.; Wagner, G.; Kotschenreuther, D. Angew Chem, Int Ed 2002, 41, 2290–2293.
- [8] Nair, V.; Bindu, S.; Sreekumar, V. Angew Chem, Int Ed 2004, 43, 5130–5135.

- [9] Dawood, K. M.; Abdel-Wahab, B. F. Chem Heterocyl Compd 2010, 46, 3 and references there in.
- [10] Jeught, S. V. D.; Stevens, C. V. Chem Rev 2009, 109, 2672–2702.
- [11] Keglevich, G.; Cuiuunbaatar, T.; Dobo, A.; Toke, L. J Chem Soc, Perkin Trans 2000, 1, 1495–1496.
- [12] Ivonin, S. P.; Terikovskaya, T. E.; Chaikovskaya, A. A.; Marchenko, A. P.; Koydan, G. N.; Pinchuk, A. M.; Tolmachev, A. A. Heteroatom Chem 1999, 10, 213–221.
- [13] Tolmachev, A. A.; Ivonin, S. P.; Chaikovskaya, A. A.; Terikovskaya, T. E.; Pinchuk, A. M. Heteroatom Chem 1999, 10, 223–230.
- [14] Moore, S. S.; Whitesides, G. M. J Org Chem 1982, 47, 1489–1493.
- [15] Huryeva, A. N.; Marchenko, A. P.; Koidan, G. N.; Yurchenko, A. A.; Zarudnitskii, E. V.; Pinchuk, A. M.; Kostyuk, A. N. Heteroatom Chem 2010, 21, 103–118.
- [16] Yurchenko, A. A.; Huryeva, A. N.; Zarudnitskii, E. V.; Marchenko, A. P.; Koidan, G. N.; Pinchuk, A. M. Heteroatom Chem 2009, 20, 289–308.
- [17] Sauerbrey, S.; Majhi, P. K.; Schnakenburg, G.; Moga, T. G.; Arduengo III, A. J.; Streubel, R. Dalton Trans 2012, 41(17), 5368–5376.

- [18] Kuhn, N. Synthesis 1993, 561–562.
- [19] Bates, J.; Kennepohl, P.; Gates, D. P. Angew Chem, Int Ed 2009, 48, 9844–9847.
- [20] Espinosa, D. M.; Donnadieu, B.; Bertrand, G. J Am Chem Soc 2010, 132, 7264–7265.
- [21] (a) Kunz, P. C.; Reiß, G. J.; Frank, W.; Kläui, W. Eur J Inorg Chem 2003, 3945–3951; (b) Marchenko, A. P.; Koidan, H. N.; Huryeva, A. N.; Zarudnitskii, E. V., Yurchenko, A. A.; Kostyuk, A. N. J Org Chem 2010, 75, 7141–7145.
- [22] (a) Benac, B. L.; Burgess, E. M.; Arduengo A., III; J. Org Synth 1986, 64, 92–94; (b) Wenzel, M.; Beckert, R.; Guenther, W.; Goerls, H. Eur J Org Chem 1998, 1, 183–187; (c) Wolfe, D. M.; Schreiner, P. R. Eur J Org Chem 2007, 17, 2825–2838.
- [23] Tolmachev, A. A.; Yurchenko, A. A.; Merculov, A. S.; Semenova, M. G.; Zarudnitskii, E. V.; Ivanov, V. V.; Pinchuk, A. M. Heteroatom Chem 1999, 10, 585–597.
- [24] (a) Sheldric, G. M.; SHELXS97 Program for the Solution of Crystal Structure; University of Goettingen, Germany, 1997; (b) Sheldric, G. M.; SHELXL 97 Program for the Refinement of Crystal Structure, University of Goettingen, Germany, 1997.