Preparation of Cationic $[(R_2N)P_5Cl]^+$ -Cage Compounds from $[(R_2N)PCl]^+$ and P_4

Michael H. Holthausen^[a] and Jan J. Weigand^{*[a]}

Dedicated to Professor Wolfgang Beck on the Occasion of His 80th Birthday

Keywords: P₄ activation; Phosphorus; Cations; Main group elements; Structure elucidation

Abstract. The reaction of several amino-substituted mono- and dichlorophosphanes $(R_2N)_nPCl_{3-n}$ (n = 2, R = i-Pr; n = 1, R = i-Pr, Cy) with GaCl₃ to form phosphenium cations [(i-Pr₂N)₂P]⁺ (**13**⁺) and $[(R_2N) PCl]^+$ (**14a,b**⁺) has been investigated. The isolation and fully characterization of the first amino- and chloro-substituted phosphenium cation **14b**[GaCl₄] was accomplished. The insertion of these phosphenium ions into P–P bonds of dissolved P₄ was examined. Amino- and

Introduction

A plethora of anionic and neutral phosphorus cage and ring compounds have been discovered and described in literature.^[1] However, the field of cationic polyphosphorus derivatives is still underdeveloped and mostly limited to *catenated* and cyclic compounds.^[2] Only recently, the first structurally characterized cationic phosphorus cages $[P_5X_2]^+$ (X = Br, I, Cl) (1⁺) were reported obtainable from the reaction of P_4 and PX_3 in the presence of the silver salt $Ag[Al(OR)_4]$ (OR = perfluorinated aliphatic alkoxide).^[3] Similar to other carbene like main group compounds^[4] phosphenium cations are anticipated to undergo P-P bond insertion reactions because of their amphiphilic nature.^[5] Therefore, we investigated room temperature molten media obtained from various stoichiometric combinations of Ph2PCl and GaCl3. These mixtures can be used as sources of the elusive phosphenium cation $[R_2P]^+$ (2⁺, R = Ph).^[6] Thus, dissolution of P₄ in such melts at elevated temperatures resulted in the stepwise formation of cationic cage compounds $[Ph_2P_5]^+(3^+), [Ph_4P_6]^{2+}(4^{2+}), and [Ph_6P_7]^{3+}(5^{3+}, Scheme 1).^{[7]}$ In addition, we also examined mixtures of dichlorophosphanes $RPCl_2$ (R = aryl, alkyl) and Lewis acids ECl_3 (E = Al, Ga) in fluorobenzene solution. These mixtures are suitable sources of $[RPC1]^+$ (6⁺) ions and provide access to a multitude of asymmetrically substituted cationic cage compounds $[RP_5C1]^+$ (7⁺) (Scheme 1).^[8] This approach can be applied to various chlorophosphanes, thus, the number of highly functionalized cationic

E-Mail: jweigand@uni-muenster.de [a] Institut für Anorganische und Analytische Chemie Universität Münster structures of [14b][GaCl₄] and [15b][Ga₂Cl₇] are presented and, furthermore, the intriguing NMR spectra of the P_5^+ -cations 15a,b⁺ are discussed. P₅⁺-cage compounds has been extended to zwitterionic and cationic P₅-cages from four-membered phosphorus-nitrogen (8⁺ 9²⁺¹)^[9] and phosphorus mitrogen metal betarocycles (10⁺

chloro-substituted phosphenium cations 14a,b⁺ readily form the corre-

sponding P5⁺-cages 15a,b⁺. No reaction was observed for the less elec-

trophilic diamino-substituted phosphenium cation 13⁺. The molecular

cationic P₅-cages from four-membered phosphorus-nitrogen $(\mathbf{8}^+, \mathbf{9}^{2+})^{[9]}$ and phosphorus-nitrogen-metal heterocycles $(\mathbf{10}^+, \mathbf{11})^{[10]}$ by P–P bond insertion reactions of the respective phosphenium cations (Scheme 2). Unstabilized phosphenium cations $[\mathbf{R}_2\mathbf{P}]^+$ ($\mathbf{2}^+, \mathbf{R} = aryl$, alkyl) are elusive because of their highly electrophilic nature^[9], and only N-stabilized phosphenium cations (e.g. $\mathbf{R} = NCy_2$, Ni-Pr₂) have been reported to form stable salts in which the phosphorus atom is indeed divalent.^[10]

Scheme 1. Cationic phosphorus cages and phosphenium cations.

In our present contribution we report on the reactions of amino-substituted mono- and dichlorophosphanes $(R_2N)_nPCl_{3-n}$ (n = 2, R = i-Pr; n = 1, R = i-Pr, Cy) with the Lewis acid GaCl₃. Both types of derivatives react with GaCl₃ to form the corresponding phosphenium cations [(i-Pr₂N)₂P]⁺ (**13**⁺) and $[(R_2N)PCl]^+$ (**14a**,**b**⁺) (a: R = *i*-Pr, b: R = Cy; Scheme 3).

^{*} Dr. J. J. Weigand Fax: +49-251-83-33108

Corrensstraße 30, 48149 Münster, Germany

Scheme 2. Cationic phosphorus cages from four-membered heterocycles.

However, only cations $14a,b^+$ undergo insertion reactions into one P–P bond of the P₄ tetrahedron to yield the corresponding cationic cages $[(R_2N)P_5Cl]^+$ ($15a,b^+$). In course of our investigations, we also succeeded in the isolation and characterization of the first amino- and chloro-substituted phosphenium cation ($14b^+$) as tetrachlorogallate salt. The dependency of the chemical shift of the phosphenium cations in response to the stoichiometric combination of GaCl₃ and chlorophosphanes is also discussed.

Scheme 3. Amino-substituted phosphenium cations and phosphorus cages.

Results and Discussion

The reaction of chlorophosphanes of the type R_2PCl and $RPCl_2$ (R = aryl, alkyl) with halide abstracting agents such as Me_3SiOTf or AgOTf or Lewis acids (ECl_3 , E = Ga, Al) yields a variety of products, involving phosphanylphosphonium cations and Lewis acid-base adducts between the phosphane and ECl_3 .^[13] Other structural variations are also discussed.^[8, 13b] Related reactions of amino-substituted chlorophosphanes and Lewis acids or halide abstracting agents have been investigated previously and do not show the structural variety as observed for the alkyl- or aryl-substituted chlorophosphanes.^[14] However, a series of phosphenium ions [$(R_2N)_2P$]⁺ ($\mathbf{13}^+$) were isolated and utilized for example as *NHP* ligands (*N*-Heterocyclic *P*hosphenium) in transition metal chemistry.^[15] Very few examples of phosphenium ions of the form [$(R_2N)_2PR'$]⁺ (R =

i-Pr; $R' = Mes^{[16]}$, *ortho*-(CF₃)₂C₆H₃^[17]) are known and structurally characterized. We were interested if cation 13⁺ can insert into P-P bonds of the P4 tetrahedron. The formation of cation 13^+ is achieved upon addition of GaCl₃ to $(i-Pr_2N)_2PCl$ in almost quantitative yield.^[17] However, the ³¹P{¹H} NMR spectrum of the reaction mixture of P₄, (*i*-Pr₂N)₂PCl and GaCl₃ in a 1:1:1 ratio in fluorobenzene showed only the formation of cation 13⁺ (Scheme 4) and unreacted P₄ ($\delta = -521.0$ ppm), the formation of cation 16^+ was not observed. The outcome of this reaction was found to be independent of the reaction stoichiometry of (i-Pr₂N)₂PCl and GaCl₃ (see experimental section). This might be explained with the decreased electrophilicity of cation 13^+ attributed to the optimal overlap of the lone pairs of electrons at the nitrogen atoms with the empty p-type orbital of the divalent phosphorus atom.^[18] This is in sharp contrast to the related four-membered phosphenium cations derived from $[DippNPC1]_2$ which give cations 8⁺ and 9²⁺ upon reaction with P₄ in the presence of GaCl₃ in various stoichiometries.^[9] In order to increase the electrophilicity of phosphenium cations, replacement of one substituent in $[(R_2N)_2P]^+$ by a chloride should result in a pronounced reactivity. Thus, the corresponding dichlorophosphanes (i-Pr₂N)PCl₂ and (Cy₂N)PCl₂ should yield the phosphenium cations 14a,b⁺ which are expected to display an enhanced electrophilicity. Cations 14a.b⁺ are known and have been used for the syntheses of phospholes and nitrogen-phosphorus heterocycles.^[19] However, their isolation has not been reported so far. Therefore, we investigated the reactions of (i-Pr₂N)PCl₂ and (Cy₂N)PCl₂ with GaCl₃ in 1 : 1 and 1:2 stoichiometries (Figure 1). The addition of one equivalent GaCl₃ to a C₆H₅F solution of $(i-Pr_2N)PCl_2$ or $(Cy_2N)PCl_2$ induced the formation of the expected phosphenium cations $14a^+$ and 14b⁺. This is indicated by remarkable low field shifts observed in ³¹P{¹H} NMR spectra of the reaction mixtures (n =1; **14a**⁺: δ = 292.4 ppm, $v_{1/2}$ = 105 Hz; **14b**⁺: δ = 309.8 ppm, $v_{1/2} = 110$ Hz, Figure 1) compared to the chemical shifts of the corresponding phosphanes (*i*-Pr₂N)PCl₂: $\delta = 167.7$ ppm, $v_{1/2}$ = 105 Hz; (Cy₂N)PCl₂: δ = 167.7 ppm, $v_{1/2}$ = 90 Hz).^[20] The increased low-field shift of $14b^+$ might be best explained by the less favored overlap of the free lone pair of electrons at the more sterically demanding Cy2N-substituent compared to the *i*-Pr-substituted species $14a^{+}$.^[21] In addition, the chemical shifts of the phosphenium ions strongly depend on the amount of Lewis acid added to the reaction mixture. A second equivalent of GaCl₃ leads to the formation of [Ga₂Cl₇]⁻ anions^[22] accompanied with a significant low field shift of the respective phosphenium cations **14a**,**b**⁺ (n = 2; **14a**⁺: $\delta = 340.0$ ppm, $v_{1/2}$ = 145 Hz; **14b**⁺: δ = 350.1 ppm, $v_{1/2}$ = 514 Hz; Figure 1). A comparable reliance of the ³¹P{¹H} NMR resonances of phos-

Scheme 4. Attempted reaction of P_4 with chlorophosphane 13 in the presence of Lewis acid GaCl₃.

phenium cations on the nature of the corresponding anions has been reported for cyclodiphosphadiazenium salts.^[23]

Figure 1. ${}^{31}P{}^{1}H$ NMR investigation of mixtures of (*i*-Pr₂N)PCl₂ or (Cy₂N)PCl₂ with GaCl₃ in fluorobenzene in various stoichiometries (C₆D₆ capillary, C₆H₅F).

The additional increase in line broadening of the resonances can be explained by the dynamic equilibrium dissociation of $[Ga_2Cl_7]^-$ to $[GaCl_4]^-$ and $GaCl_3$.^[8] The salt **14b**[GaCl_4] was obtained as analytically pure colorless solid in excellent yield (81%) by the slow addition of *n*-hexane to the fluorobenzene solution of the 1:1 reaction of (Cy₂N)PCl₂ and GaCl₃. Compound $14b[GaCl_4]$ was fully characterized and a section of the crystal structure is depicted in Figure 2. This compound crystallizes in the orthorhombic space group $P2_12_12_1$ as a racemic twin with four formula units in the unit cell. 14b[GaCl₄] represents the first structural characterized chloro-substituted phosphenium cation. The P1–N1 bond length (1.608(2) Å), which is comparable to known diamino-substituted phosphenium cations,^[17, 24] is substantially shorter than a typical P-N single bond $(d_{cov}(P-N) = 1.8 \text{ Å}; d_{cov}(P=N) = 1.6 \text{ Å})^{[25]}$ indicating double bond character. The nitrogen atom exhibits a planar arrangement (angular sum 359.9(1)°) indicating sp² hybridization and is located in the plane spanned by the atoms P1, Cl1 and the ipso-carbon atoms of the cyclohexyl groups (dihedral angles $6.7(2)^{\circ}$, $177.2(1)^{\circ}$). The angle involving the phosphorus atom is rather acute (Cl1-P1-N1: 104.50(7)°) compared to known phosphenium cations of type 13^+ (e.g. in [((*i*-Pr)₂N) $_{2}P][GaCl_{4}]: 117.07(7)^{\circ}),^{[17]}$ and is indicative of the higher electrophilicity of chloro-substituted phosphenium cations. The molecular structure of 14b[GaCl₄] shows two very short interatomic Cl...P contacts (P1...Cl2 3.060(1) Å, P1...Cl4ⁱ 3.207(9) Å) (symmetry operation i = -1+x, y, z) between the anions and cations which are close to the sum of the van der Waals radii $(r_{A(P)} + r_{D(Cl)} = 3.55 \text{ Å})^{[26]}$. This interaction leads to the formation of one-dimensional strands along the [100] axis ((Cl2-P1-Cl2ⁱ: 166.27(3) °, P1-Cl2-P1ⁱ: 166.27(3) °; Figure 2). Considering the second interatomic contact involving Cl4^{*i*}, the phosphorus atom shows a distorted bisphenoidal geometry (N1–P1–Cl4^{*i*}: 166.27(3)°, Cl1–P1–Cl4^{*i*}: 88.79(3)°).

Scheme 5. Reaction of P_4 with dichlorophosphanes (R_2N)PCl₂ (R = i-Pr, Cy) in the presence of the Lewis acid GaCl₃.

Figure 2. Cut-out of the crystal structure of compound **14b**[GaCl₄]. Thermal ellipsoids at 50% probability (hydrogen atoms are omitted for clarity). Selected bond lengths /Å and angles /°: P1–Cl1 2.0026(8), P1–N1 1.608(2), N1–C1 1.496(3), N1–C7 1.525(3), P1–Cl2^{*i*} 3.291(1), P1–Cl4^{*i*} 3.207(1); N1–P1–Cl1 104.50(7), N1–P1–Cl4^{*i*} 132.68(6), Cl1–P1–Cl4^{*i*} 88.79(3), Cl2–P1–Cl2^{*i*} 166.27(3), C1–N1–P1 129.0(1), C7–N1–P1 113.3(1), C1–N1–C7 129.0(1); *i*) –1+*x*, *y*, *z*.

The reaction of P_4 , $(Cy_2N)PCl_2$ and $GaCl_3$ in a 1:1:1 ratio in C_6H_5F solution has been performed to investigate the ability of cation **14b**⁺ to insert in one of the P–P bonds of P_4 (Scheme 5).

³¹P{¹H}-NMR investigation of the reaction mixture exhibits incomplete conversion to the corresponding cationic P_5^+ -cage 15b⁺ in an approximate yield of 60 % (Figure 3). Remaining P_4 and phosphenium cation $14b^+$ can be observed in the reaction mixture. The separation of compound 15b[GaCl₄] from the reaction mixture was difficult, since cation 15b⁺ is in equilibrium with cation 14b⁺ and P₄. Similar results were obtained employing a second equivalent GaCl₃ or using (*i*-Pr₂N)PCl₂ (Scheme 5; see experimental section). However, layering the reaction mixture of the 1:1:2 stoichiometry with n-hexane at -35 °C yields crystalline 15b[Ga₂Cl₇], suitable for X-ray diffraction, as a conglomerate including 14b[GaCl₄]. A view of the molecular structure of the cation $15b^+$ in $15b[Ga_2Cl_7]$ is depicted in Figure 3. The P₅⁺-cage in cation 15b⁺ displays nearly identical bond lengths and angles compared to other reported [RP₅Cl]⁺-cations (2.151(9) to 2.258(5) Å).^[9] Similarly to the latter cages, the bonds between the bridging (P2, P3) and tetracoordinate phosphorus atoms (P1) and the P4-P5 bond in cation 15b⁺ are slightly shorter by approximately 0.07 Å (2.1573(6) to 2.1981(6) Å) than the remaining P–P bonds (2.2385(6) to 2.2460(6) Å). The short P4-P5 bond length is typical for the bridgehead bond in related bicyclo[1.1.0]-tetraphosphane moieties.^[27] Likewise, the P1-N1 bond in 15b⁺ is shortened (1.612(2) Å) because of electrostatic interaction. In accordance to the molecular structure of 15b⁺ an ABMX₂ spin system is observed within the ³¹P{¹H} NMR spectra of the reaction mixtures (Figure 3).^[28] This is the result of the C_{S} symmetry of the P₅⁺-moiety. The chemical shifts and coupling

Figure 3. a) left: ³¹P{¹H} NMR spectrum of the 1:1:1 reaction of P₄, (Cy₂N)PCl₂ and GaCl₃. (C₆H₅F, C₆D₆ capillary, 300 K; insets show experimental (upwards) and fitted spectra (downwards); * marks small amounts of unidentified side products; **15b**⁺ exhibits an ABMX₂ spin system: $\delta_A = -271.8$ ppm, $\delta B = -264.8$ ppm, $\delta_M = 33.7$ ppm, $\delta_X = 116.2$ ppm, ¹*J*(P_AP_X) = -152.7 Hz, ¹*J*(P_BP_X) = -145.9 Hz, ¹*J*(P_AP_B) = -167.1 Hz, ¹*J*(P_MP_X) = -277.8 Hz, ²*J*(P_AP_M) = 17.8 Hz, ²*J*(P_BP_M) = 23.1 Hz; b) right: ORTEP plot of the molecular structure of the cation in **15b**[Ga₂Cl₇]. Thermal ellipsoids at 50% probability (hydrogen atoms and anion are omitted for clarity). Selected bond lengths /Å and angles /°: P1-Cl1 2.0523(5), P1-N1 1.612(2), N1-C1 1.500(2), N1-C7 1.500(2), P1-P2 2.1621(6), P1-P3 2.1573(6), P2-P4 2.2385(6), P2-P5 2.460(6), P3-P4 2.2424(6), P3-P5 2.2394(6), P4-P5 2.1981(6); C7-N1-C1 119.4(1), N1-P1-Cl1 110.99(5), P3-P1-P2 91.42(2), P1-P2-P4 83.73(2), P1-P3-P5 82.38(2), P2-P4-P3 87.27(2), P4-P2-P5 58.70(2), P5-P4-P2 60.82(2).

constants of 15b⁺ exhibit some interesting characteristics compared to other $C_{\rm S}$ -symmetric [RP₅Cl]⁺-cations (R = alkyl, aryl).^[8] Within alkyl- and aryl-substituted [RP₅Cl]⁺-cage compounds the chemical shifts of the phosphonium moiety shift to higher field with decreasing electronegativity of the corresponding substituents (ranging from 99 ppm (R = t-Bu) to 26 ppm (R = C_6F_5)).^[8] An opposite trend was described for the phosphorus atoms adjacent to the phosphonium moiety (ranging from 44 ppm (R = t-Bu) to 83 ppm (R = C_6F_5)).^[8] Thus, the resonance of the phosphonium moiety of 15b+ $(\delta_{M} = 33.7 \text{ ppm})$ and the resonance of the adjacent phosphorus atoms ($\delta_x = 116.2$ ppm) emphasize the electronegative character of the amino-substituent. Between the phosphonium moiety and the bridgehead phosphorus atoms (P4/P5) two different ${}^{2}J_{PP}$ coupling constants are observed (${}^{2}J(P_{A}P_{M}) = 17.8$ Hz, ${}^{2}J(P_{B}P_{M}) = 23.1 \text{ Hz}$). Also the ${}^{1}J_{PP}$ coupling constants from the bridgehead phosphorus atoms to the neighbouring ones exhibit different values $({}^{1}J(P_{A}P_{X}) = -152.7 \text{ Hz}, {}^{1}J(P_{B}P_{X}) = -$ 145.9 Hz). By comparison of these values with known $[RP_5C1]^+$, $[R_2P_5]^+$ and $[P_5X_2]^+$ -cations (R = alkyl, aryl; X = Cl, Br, I) the A part of the spin system can be assigned to the phosphorus atom in closer proximity to the Cl-substitutent due to the set of smaller coupling constants.^[3, 7, 8]

Conclusions

The reactions of amino-substituted mono- and dichlorophosphanes $(R_2N)_nPCl_{3-n}$ (n = 2, R = i-Pr; n = 1, R = i-Pr, Cy) with various amounts of the Lewis acid GaCl₃ have been investigated. In all cases the formation of phosphenium ions $(13^+, 14a,b^+)$ was observed. The isolation and characterization of the first amino- and chloro-substituted phosphenium cation $[14b][GaCl_4]$ was achieved. The ability of insertion reactions into P–P bonds of the P₄ tetrahedron was examined. Whereas chloro-substituted phosphenium cations 14^+ undergo P–P bond insertion reactions to form the amino-substituted cations $[(R_2N)P_5Cl]^+$ (**15a,b**⁺) no reaction was observed for the diamino-substituted phosphenium cation $[(i-Pr_2N)_2P]$ (**13**⁺). This study gives an insight into the properties relevant for phosphenium cations to undergo reactions with P₄ and extends the number of cationic P₅⁺-cage compounds to amino-substituted derivates. This will help to design appropriate chlorophosphane precursor for the transformation of P₄ into cationic polyphosphorus compounds.

Experimental Section

All reactions were carried out in either a glove box or using standard Schlenk techniques under an inert Ar atmosphere. Dry, oxygen-free solvents were employed. P4 was dried with (CH3)3SiCl and recrystallized from CS2 prior to use. Reagent grade GaCl3 and (i-Pr2N)2PCl were used as received from commercial suppliers. (i-Pr₂N)PCl₂ and (Cy₂N)PCl₂ were prepared according to the previously described methods.^[29] NMR spectra were measured at 300 K on a Bruker AVANCE III 400 or a Bruker AVANCE II 200 spectrometer, and spectra were referenced either to residual solvent (1H, 13C) or externally [31P (H₃PO₄), ²⁷Al (Al(NO₃)₃), ⁷¹Ga (Ga(NO₃)₃)]. Chemical shifts are reported in ppm. J values are reported in Hz. CD₂Cl₂ was purchased from Sigma-Aldrich and stored over 3 Å molecular sieves prior to use. To obtain ³¹P{¹H} NMR spectra of reaction mixtures, a C₆D₆-capillary was inserted into the NMR tube. For compounds which give rise to a higher order spin systems in their ³¹P{¹H} NMR spectra, the resolution-enhanced ³¹P{¹H} spectra were transferred to the software program gNMR, version 5.0, by Cherwell Scientific.^[30] The full lineshape iteration procedure of gNMR was applied to obtain the best match of the calculated to the experimental spectra along with the assignment of all the peaks revealed in the resolution-enhanced spectra. The signs for the ${}^{1}J({}^{31}P,{}^{31}P)$ coupling constants were set negative and all other signs obtained accordingly.^[31] Melting points were recorded on an electrothermal melting point apparatus in sealed capillaries under Argon atmosphere and are uncorrected. Infrared (IR) spectra were recorded using a Bruker Vertex 70 spectrometer. Elemental analyses

were performed on a Vario EL III CHNS elemental analyzer at the IAAC, University of Münster.

Recrystallization of [14b][GaCl₄] from fluorobenzene by *n*-hexane diffusion gave single crystals suitable for X-ray diffraction. Layering 1:1:2 reaction mixtures of (Cy₂N)PCl₂, P₄ and GaCl₃ with *n*-hexane gave single crystals of [15b][Ga₂Cl₇] suitable for X-ray analysis. Single crystals of [14b][GaCl₄] and [15b][Ga₂Cl₇] were mounted in Paratone oil and transferred to the cold N2 gas stream of a Bruker AXS APEX CCD diffractometer equipped with a rotation anode at 153(1) K (graphite-monochromated Mo- K_a radiation with $\lambda = 0.71073$ Å). Crystal data: [14b][GaCl₄], C₁₂H₂₂Cl₅GaNP, FW = 458.25, orthorhombic, space group $P2_12_12_1$, Z = 4, a = 6.9315(4) Å, b = 16.584(1)Å, c = 16.734(1) Å, $a = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$, V = 1923.7(2) Å³, F(000)= 928, T = 153(1), $\mu = 2.198$, 9161 reflections collected, 5159 reflections unique ($R_{int} = 0.0283$), 4620 reflections observed ($F > 2\sigma$ (F)). The final was $R_1 = 0.0344$ and $wR_2 = 0.0662$ (all data). CCDC-871709; [15b][Ga₂Cl₇], C₁₂H₂₂Cl₈Ga₂NP₅, FW = 758.20, monoclinic, space group $P2_1/n$, Z = 4, a = 9.2899(5) Å, b = 25.734(1) Å, c = 11.9087(7)Å, V = 2786.3(3) Å³, F(000) = 1496, T = 153(1), $\mu = 2.992$, 29837 reflections collected, 7198 reflections unique ($R_{int} = 0.0234$), 6360 reflections observed ($F > 2\sigma$ (F)). The final was $R_1 = 0.0265$ and wR_2 = 0.0494 (all data) CCDC-871709. For crystallographic data in CIF or other electronic format see DOI: 10.1039/b000000x

³¹P{¹H} NMR Experiments of (*i*-Pr₂N)₂PCl/GaCl₃/P₄ Mixtures: A suspension of P₄ (0.5 mmol) in a solution of (*i*-Pr₂N)₂PCl (0.5 mmol) and GaCl₃ (0.5(i)/1.0(ii) mmol) in CH₂Cl₂ ((i), 2 mL or C₆H₅F ((ii), 2 mL),^[32] respectively) was stirred for 12 h at room temperature after which ³¹P{¹H} spectra were recorded ((i), CH₂Cl₂, C₆D₆-capillary, 25 °C): δ = 304.7 ([(*i*-Pr₂N)₂P][GaCl₄], $v_{1/2}$ = 50 Hz), 521.5 (P₄); ((ii), C₆H₅F, C₆D₆-capillary, 25 °C,): δ = 315.7 ([(*i*-Pr₂N)₂P][Ga₂Cl₇], $v_{1/2}$ = 35 Hz), 521.5 (P₄)).

³¹P{¹H} NMR Experiments of (R₂N)PCl₂/GaCl₃ Mixtures: (R = *i*-Pr, Cy). A solution of (R₂N)PCl₂ (0.5 mmol) and GaCl₃ (0.5/ 1.0 mmol) in C₆H₅F (2 mL) was stirred for 15 min at room temperature after which ³¹P{¹H} NMR spectra were recorded (Figure 1).

³¹P{¹H} NMR Experiments of (Cy₂N)PCl₂/GaCl₃/P₄ Mixtures: A suspension of P₄ (0.5 mmol) in a solution of (Cy₂N)PCl₂ (0.5 mmol) and GaCl₃ (0.5(i)/1.0 mmol(ii)) in C₆H₃F (2 mL) was stirred for 12 h at room temperature after which ³¹P{¹H} spectra were recorded ((i): Figure 3, (ii): ³¹P{¹H} NMR spectrum was found to be similar to (i)).

³¹P{¹H} NMR Experiments of (*i*-Pr₂N)PCl₂/GaCl₃/P₄ Mixtures: A suspension of P₄ (0.5 mmol) in a solution of (*i*-Pr₂N)PCl₂ (0.5 mmol) and GaCl₃ (0.5(*i*)/1.0 mmol(*ii*)) in C₆H₃F (2 mL) was stirred for 12 h at room temperature after which ³¹P{¹H} spectra were recorded. The ³¹P{¹H} NMR spectra of (*i*) and (*ii*) were found to be similar to the data obtained for (Cy₂N)PCl₂. [(*i*-Pr₂N)P₅Cl]⁺ (**15a**⁺) (C₆H₅F, C₆D₆-capillary, 25 °C): ABMX₂ spin system: ($\delta_A = -274.6$ ppm, $\delta_B = -266.6$ ppm, $\delta_M = 33.1$ ppm, $\delta_X = 118.0$ ppm, ¹J(P_AP_X) = -152.9 Hz, ¹J(P_BP_X) = -144.4 Hz, ¹J(P_AP_B) = -161.3 Hz, ¹J(P_MP_X) = -278.3 Hz, ²J(P_AP_M) = 18.1 Hz, ²J(P_BP_M) = -24.0 Hz.

Synthesis of [14b][GaCl₄]: To a solution of $(Cy_2N)PCl_2$ (1.0 mmol) in C_6H_5F (5 mL) GaCl₃ (1.0 mmol) was added. The reaction mixture was stirred for 1 h at room temperature accompanied by the formation of small amounts of a white precipitate. *n*-Hexane (2 mL) was slowly added to complete precipitation. The white solid was isolated, washed with *n*-hexane (3 x 2 mL) and dried in vacuo. **[14b]**[GaCl₄] Yield: 81 % (370 mg, 0.8 mmol); m.p. 110.0–110.6 °C; **IR** (KBr, 25 °C, (cm⁻¹)): 2937 (vs), 2857 (w), 1447 (s), 1386 (vw), 1257 (vw), 1165 (w), 1144

(vw), 1064 (s), 1014 (w), 947 (w), 894 (m), 610 (w), 550 (m), 504 (vw), 430 (vw); ¹H NMR (CD₂Cl₂, 25 °C): $\delta = 1.16-1.28$ (2H, m, CH₂), 1.37-1.50 (4H, m, CH₂), 1.70-1.85 (6H, m, CH₂), 1.90-1.98 (4H, m, CH₂), 2.02-2.09 (4H, m, CH₂), 4.11-4.23 (2H, m, CH); ¹³C{¹H} NMR (CD₂Cl₂, 25 °C): $\delta = 25.0$ (2C, s, CH₂), 26.3 (4C, s, CH₂), 34.6 (4C, d, ³J_{PC} = 6.9 Hz), 65.8 (2C, d, CH, ³J_{PC} = 6.4 Hz); ⁷¹Ga{¹H} NMR (CD₂Cl₂, 25 °C): $\delta = 250.7$ (1 Ga, s(br), $v_{1/2} = 5000$ Hz); ³¹P{¹H} NMR (CD₂Cl₂, 25 °C): $\delta = 250.7$ (1 Ga, s(br), $v_{1/2} = 113$ Hz); elemental analysis for C₁₂H₂₂Cl₅GaNP (458.27): calcd. N: 3.1 C: 31.4, H 4.8; found: N: 2.8 C 30.8, H 4.7 %.

Acknowledgement

We gratefully acknowledge the Fonds der Chemischen Industrie (FCI) (fellowship for M.H.H.), the European Phosphorus Science Network (PhoSciNet CM0802) and the Deutsche Forschungsgemeinschaft (DFG) (WE 4621/2–1). J.J.W. thanks *Prof. F. Ekkehardt Hahn* (WWU Münster) for his generous support.

References

- a) M. Baudler, Angew. Chem. 1982, 94, 520; b) M. Baudler, Angew. Chem. 1987, 99, 428; c) M. Baudler, Chem. Rev. 1994, 94, 1273.
- [2] C. A. Dyker, N. Burford, *Chem. Asian J.* **2008**, *3*, 28.
- [3] a) I. Krossing, I. Raabe, Angew. Chem. Int. Ed. 2001, 40, 4406;
 b) A. Bihlmeier, M. Gonsior, I. Raabe, N. Trapp, I. Krossing, Chem. Eur. J. 2004, 10, 5041; c) I. Krossing, J. Chem. Soc., Dalton Trans. 2002, 500; d) M. Gonsior, I. Krossing, L. Müller, I. Raabe, M. Jansen, L. van Wüllen, Chem. Eur. J. 2002, 8, 4475.
- [4] a) C. Dohmeier, H. Schnöckel, C. Robl, U. Schneider, R. Ahlrichs, Angew. Chem. 1994, 106, 225; Angew. Chem. Int. Ed. Engl. 1994, 33, 199; b) Y. Peng, H. Fan, H. Zhu, H. W. Roesky, J. Magull, C. E. Hughes, Angew. Chem. Int. Ed. 2004, 43, 3443; c) M. B. Power, A. R. Barron, Angew. Chem. Int. Ed. Engl. 1991, 30, 1353; d) W. Uhl, M. Benter, Chem. Commun. 1999, 771; e) A. R. Fox, R. J. Wright, E. Rivard, P. P. Power, Angew. Chem. Int. Ed. 2005, 44, 7729; f) N. Wiberg, A. Wörner, K. Karaghiosoff, D. Fenske, Chem. Ber./Recueil 1997, 130, 135; g) H.-W. Lerner, M. Bolte, K. Karaghiosoff, M. Wagner, Organometallics 2004, 23, 6073; h) W. T. K. Chan, F. García, A. D. Hopkins, L. C. Martin, M. McPartlin, D. S. Wright, Angew. Chem. Int. Ed. 2007, 46, 3084; i) Y. Xiong, S. Yao, M. Brym, M. Driess, Angew. Chem. Int. Ed. 2007, 46, 4511.
- [5] D. Gudat, Eur. J. Inorg. Chem. 1998, 1087.
- [6] J. J. Weigand, N. Burford, A. Decken, Eur. J. Inorg. Chem. 2008, 4343.
- [7] J. J. Weigand, M. H. Holthausen, R. Fröhlich, Angew. Chem. Int. Ed. 2009, 48, 295.
- [8] M. H. Holthausen, K.-O. Feldmann, S. Schulz, A. Hepp, J. J. Weigand, *Inorg. Chem.* 2012, 51, 3374.
- [9] M. H. Holthausen, J. J. Weigand, J. Am. Chem. Soc. 2009, 131, 14210.
- [10] M. H. Holthausen, C. Richter, A. Hepp, J. J. Weigand, *Chem. Commun.* 2010, 46, 6921.
- [11] J. M. Slattery, S. Hussein, Dalton Trans. 2012, 41, 1808.
- [12] A. H. Cowley, R. A. Kemp, Chem. Rev. 1985, 85, 367.
- [13] a) F. S. Shagvaleev, T. V. Zykova, R. I. Tarasova, T. S. Sitdikova, V. V. Moskva, J. Gen. Chem. USSR (Engl. Trans.) 1990, 60, 1585;
 Z. Obshch. Khim. 1990, 60, 1775; b) N. Burford, T. S. Cameron, D. J. LeBlanc, P. Losier, S. Sereda, G. Wu, Organometallics 1997, 4712; c) Y. Carpenter, N. Burford, M. Lumsden, R. McDonald, Inorg. Chem. 2011, 50, 3342.
- [14] S. Burck, D. Gudat, Inorg. Chem. 2008, 47, 315.
- [15] a) D. Gudat, *Top. Heterocycl. Chem.* 2010, 21, 63; b) H. Nakazawa, *J. Organomet. Chem.* 2000, 611, 349; c) R. W. Reed, Z. Xie, C. A. Reed, *Organometallics* 1995, 14, 5002.

ARTICLE

- [16] A. Dumitrescu, H. Gornitzka, W. W. Schoeller, D. Bourissou, G. Bertrand, *Eur. J. Inorg. Chem.* 2002, 1953.
- [17] N. Burford, P. Losier, C. MacDonald, V. Kyrimis, P. K. Bakshi, T. S. Cameron, *Inorg. Chem.* **1994**, *33*, 1434.
- [18] D. Gudat, Coord. Chem. Rev. 1997, 163, 71.
- [19] a) M.-R. Marr, M. Sanchez, R. Wolf, J. Chem. Soc., Chem. Commun. 1984, 566; b) S. A. Weissmann, S. G. Baxter, A. M. Arif, A. H. Cowley, J. Chem. Soc., Chem. Commun. 1986, 1082; c) C. Roques, M.-R. Mazieres, J.-P. Majoral, M. Sanchez, Inorg. Chem. 1989, 28, 3991; d) V. D. Romanenko, T. V. Sarina, M. Sanchez, A. N. Chernega, A. B. Rozhenko, M.-R. Mazieres, M. I. Povolotski, J. Chem. Soc., Chem. Commun. 1993, 963; e) J. Hydrio, M. Gouygou, F. Dallemer, G. G. A. Balavoine, J.-C. Daran, Eur. J. Org. Chem. 2002, 675.
- [20] ${}^{31}P{}^{1}H$ NMR measurements of $(i-Pr)_2NPCl_2$ and $(Cy)_2NPCl_2$ in C_6H_5F solutions with C_6D_6 capillary.
- [21] A. H. Cowley, M. Lattman, J. C. Wulburn, Inorg. Chem. 1981, 20, 515.
- [22] S. Ulvenlund, A. Whaetley, L. A. Bengtsson, J. Chem. Soc., Dalton Trans. 1995, 2, 245.
- [23] R. Kuzora, A. Schulz, A. Villinger, R. Wustrack, *Dalton Trans.* 2009, 9304.
- [24] A. H. Cowley, M. C. Cushner, J. S. Szobota, J. Am. Chem. Soc. 1978, 100, 7784.
- [25] Sum of covalent radii: r(P) = 1.1 and r(N) = 0.7; N. Wiberg, E.

Wiberg, A. F. Holleman, *Lehrbuch der Anorganischen Chemie*, 102. Aufl., Walter de Gruyter, Berlin, **2007**, Anhang IV.

- [26] A. Bondi, J. Phys. Chem. 1964, 68, 441.
- [27] M. Donath, E. Conrad, P. Jerabek, G. Frenking, R. Fröhlich, N. Burford, J. J. Weigand, Angew. Chem. Int. Ed. 2012, 51, 2964.
- [28] Designation of the spin system by convention. Furthest downfield resonance is denoted by the latest letter in the alphabet, and furthest upfield by the earliest: $\Delta \delta(P_iP_{ii})/J(P_iP_{ii}) > 10$ (resonance considered to be pseudo first order and the assigned letters are separated) < 10 (consecutive letters are assigned).
- [29] a) (Cy)₂NPCl₂: G. Markl, B. Alig, J. Organomet. Chem. **1984**, 273, 29; b) (*i*-Pr)₂NPCl₂: A. H. Cowley, R. A. Kemp, J. G. Lasch, N. C. Norman, C. A. Stewart, B. R. Whittlesey, T. C. Wright, *In*org. Chem. **1986**, 25, 740.
- [30] P. H. M. Budzelaar, gNMR for Windows (5.0.6.0) NMR Simulation Program, IvorySoft 2006.
- [31] a) H. C. E. McFarlane, W. McFarlane, J. A. Nash, J. Chem. Soc., Dalton Trans. 1980, 240; b) S. Aime, R. K. Harris, E. M. McVicker, M. Fild, J. Chem. Soc., Dalton Trans. 1976, 2144; c) M. A. M. Forgeron, M. Gee, R. E. Wasylishen, J. Phys. Chem. 2004, 108, 4895; d) J. E. Del Bene, J. Elguero, I. Alkorta, J. Phys. Chem. 2004, 108, 3662.
- [32] Performing the 1:1:1 reaction in C₆H₅F leads to the precipitation of [(*i*-Pr₂N)₂P][GaCl₄].

Received: March 20, 2012 Published Online: May 15, 2012