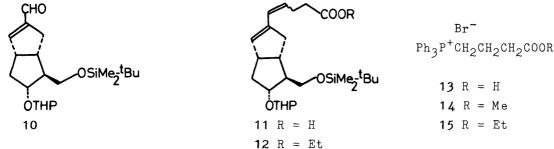

SYNTHESIS OF (\underline{Z}) -4,5,13,14-TETRADEHYDRO-9(0)-METHANO- $\Delta^{6(9\alpha)}$ -PGI₁

Katsuhiko ISEKI,^{*} Masaki SHINODA, Chiyoko ISHIYAMA, Yosio HAYASI, Shun-ichi YAMADA,[†] and Masakatsu SHIBASAKI^{††} Research Laboratory, Mitsubishi Yuka Pharmaceutical Co., LTD., Ami, Inashiki, Ibaraki 300-03 [†]Faculty of Pharmaceutical Science, Josai University, Keyakidai, Sakado, Saitama 350-02 ^{††}Sagami Chemical Research Center, Nishi-Ohnuma, Sagamihara, Kanagawa 229


A stereoselective synthesis of $(\underline{Z})-4,5,13,14,-$ tetradehydro-9(0)-methano- $\Delta^{6}(9\alpha)$ -PGI₁, a potent prostacyclin analog, has been accomplished.

The conjugated dienes (1-4) were demonstrated to be the key intermediates for some carbacyclins, intravenous and orally active prostacyclin derivatives.¹⁾ The deprotected dienes (5-8) were found to be also highly stable and biologically potent analogs which might be of therapeutic value for occlusive peripheral vascular diseases, etc. The 4-Z stereoisomer of 7 is approximately one hundred times as potent as the 4-E isomer in inhibiting human platelet aggregation and the separation of the stereoisomer 7 is extremely difficult.²⁾ In this communication we wish to report a solution to this serious synthetic problem and the synthesis of a new prostacyclin analog 9 which contains the triple bond at $C_{13}-C_{14}$ (PG numbering).³⁾

Wittig reaction of the α,β -unsaturated aldehyde 10 with the ylide derived from 3-carboxypropyltriphenylphosphonium bromide (13) and potassium <u>t</u>-butoxide in THF gave the mixture of the stereoisomers 11 (<u>E:Z</u> = ca. 1:2).⁴) We have examined

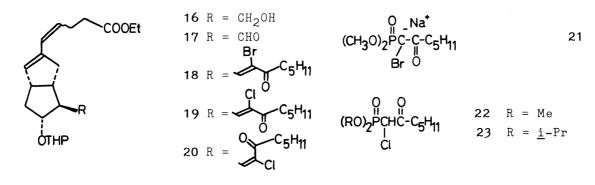

the reaction of 10 with the ylides derived from the phosphonium bromides (14 and 15)⁵⁾ under a variety of conditions. Table 1 summarizes the representative results. The <u>Z/E</u> ratio was determined by 270-MHz NMR spectra.⁶⁾ We found that treatment of 10 with the ylide derived from 15 and potassium <u>t</u>-butoxide in THF at -78 °C for 1.5 h afforded the conjugated diene 12 in 93% yield and, very fortunately, in an extremely high stereoselectivity (Table 1, entry 5).

Table 1. Wittig reaction of 10 with the ylides derived from 14 and 15											
Entry	Phosphonium	bromide	Base	Solvent	Temp/ ^O (<u>z</u>	:	E	yield / % ^{a)}		
₁ Ъ)	13		<u>t</u> -BuOK	THF	r.t.	1	:	2	85		
2 ^{c)}	14		<u>t</u> -BuOK	THF	r.t.		-		-		
3	15		dimsyl Na	DMSO	r.t.	89	:	11	96		
4	15		<u>t</u> -BuOK	THF	r.t.	87	:	13	94		
5 ^d)	15		<u>t</u> -BuOK	THF	-78	>98	:	<2	93		
6 ^{d)}	15		NaH	DMF	-60	94	:	6	81		

a) All yields are for isolated pure compounds. b) See Ref. 4. c) The substrate 10 was recovered. d) The reaction mixture was gradually warmed to room temperature over 2 h to be quenched with aqueous $NH_{\lambda}Cl$ solution.

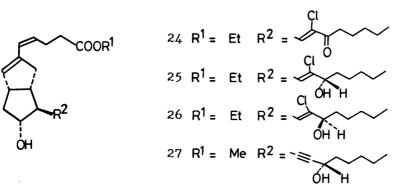
With the high stereoselectivity described above, we next turned our attention to the conversion of the key intermediate 12 to the α -bromoenone 18 which would be transformed to the new prostacyclin analog 9. Treatment of 12 with $\operatorname{Bu}_4 \operatorname{N}^+ \operatorname{F}^-$ in THF gave the alcohol 16 in quantitative yield. Oxidation of 16 with SO_3 -pyridine complex and triethylamine in DMSO gave the aldehyde 17, which was directly treated with the anion 21 derived from dimethyl (2-oxoheptyl)phosphonate, N-bromosuccinimide, and sodium hydride in situ according to the method reported by Vorbrüggen and co-workers.⁷) However, the desired product 18 was not obtained.

560

IADIC Z.	neaction of the	arucilyuc	WI UII UIIC	phosphona cos	(~~ and ~)/	
Entry	Phosphonate	Base	Solvent	Yield / % ^{a)}		
				19	20	
1	22	NaH	DME	31	49	
2	23	NaH	DME	57	21	

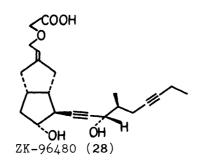
Table 2. Reaction of the aldehyde 17 with the phosphonates (22 and 23)

a) All yields are for isolated pure compounds.

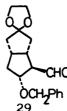

b) The molar ratio of 17/22 (or 23)/NaH is 1.0 : 2.0 : 1.5.

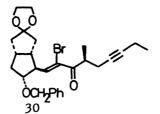
Therefore, the α -chlorophosphonate (22 and 23)⁸⁾ has been examined (Table 2). Reaction of 17 with 22 and sodium hydride in 1,2-dimethoxyethane at room temperature for 24 h gave the <u>Z</u>-enone 19⁹⁾ in 31% yield together with the <u>E</u>-enone 20¹⁰⁾ (49%)(Table 2, entry 1). Instead of 22, use of 23 under the same conditions gave 19 in 57% yield together with 20 (21%)(Table 2, entry 2).

The <u>Z</u>-enone 19 was then transformed to the new carbacyclin analog 9 in the following manner. Deprotection of 19 with 65% aqueous acetic acid at 50 °C for 2 h afforded the alcohol 24, which was reduced with diisobutylaluminum-2,6-di-<u>t</u>-butyl-4-methylphenoxide¹¹⁾ to give the more polar diol 25 in 56% overall yield together with the less polar diol 26 (22%). Elimination of 25 with potassium <u>t</u>butoxide in THF at room temperature for 3 h followed by treatment with ethereal diazomethane gave the diol 27 in 67% yield. Finally, hydrolysis of 27 with sodium hydroxide in aqueous ethanol followed by acidic extraction provided (\underline{Z}) -4,5,13,14-tetradehydro-9(0)-methano- $\Delta^{6}(9\alpha)$ -PGI₁ 9¹²⁾ as a colorless oil in 92% yield.


Preliminary biological results obtained with ${\bf 9}$ indicated potent inhibitory activity in human platelet aggregation. $^{13)}$

The authors are grateful to Mr. Kanayama and Miss Jindo for test of biological activities.




References

- 1) M.Shibasaki, M.Sodeoka, and Y.Ogawa, J. Org. Chem., <u>49</u>, 4096 (1984).
- 2) The stereoisomers 7 were separated by AgNO3-impregnated silica gel column chromatography, unpublished result by M.Shibasaki, Y.Ogawa, M.Sodeoka, and T. Mase in Sagami Chemical Research Center.
- 3) ZK-96480 (28) containing the triple bond at C₁₃-C₁₄ (PG numbering) was described to be metabolically stable and therefore orally active in rats up to 48 h, see: H.Vorbrüggen, W.Skuballa, and B.Radüchel, Kyoto Conference on Prostaglandins, Kyoto, 1984, Abstr., p.36.

- 4) M.Sodeoka and M.Shibasaki, Chem. Lett., <u>1984</u>, 579.
- 5) Reflux of triphenylphosphine and methyl 4-bromobutyrate in acetonitrile gave the phosphonium bromide 14. Under the same conditions, 15 was prepared from ethyl 4-bromobutyrate.
- 6) The NMR spectrum of the $4-\underline{E}$ isomer (12) in CDCl₃ solvent showed one proton \underline{d} (δ 6.24, J=16 Hz) and for the $4-\underline{Z}$ isomer (12) was shown one proton \underline{d} (δ 5.98, J=11 Hz).
- Conversion of the aldehyde 29 to the α-bromoenone 30 was described by H.
 Vorbrüggen in Kyoto Conference on Prostaglandins (1984), see Ref. 3.

- 8) Dialkyl (1-chloro-2-oxoheptyl)phosphonate was easily prepared by treatment of dialkyl (2-oxoheptyl)phosphonate with sodium hydride (2 equiv.) and N-chlorosuccinimide (1 equiv.) in 1,2-dimethoxyethane at room temperature.
- 9) $PMR(CDCl_3)\delta(ppm): 6.85(\underline{d}, J=10.4 \text{ Hz}, 1\text{H}), 6.00(\underline{d}, J=11 \text{ Hz}, 1\text{H}), 5.58(\underline{s}, 1\text{H}), 5.35(\underline{m}, 1\text{H}), 4.60(\underline{m}, 1\text{H}), 4.12(\underline{q}, J=7.1 \text{ Hz}, 2\text{H}), and 1.27(\underline{t}, J=7.1 \text{ Hz}, 3\text{H}).$ $IRv_{max}(neat): 2930, 1735, 1690, and 1610 \text{ cm}^{-1}.$ Mass m/z: 492(M⁺),410, 408, 216, 117, and 85.
- 10) $PMR(CDCl_3)\delta(ppm)$: 6.03(two <u>d</u>, J=11 Hz, 2H), 5.60(<u>s</u>, 1H), 5.35(<u>m</u>, 1H), 4.68(<u>m</u>, 1H), 4.16(<u>q</u>, J=7.1Hz, 2H), and 1.27(<u>t</u>, J=7.1Hz, 3H). IRv_{max} (neat): 2930, 1735, 1693, and 1600 cm⁻¹. Mass m/z: 492(M⁺), 449, 447, 410, 408, 216, 117, and 85.
- 11) S.Iguchi, H.Nakai, M.Hayashi, and H.Yamamoto, J. Org. Chem., <u>44</u>, 1363 (1979).
- 12) $PMR(CDCl_3)\delta(ppm)$: 6.01(\underline{d} , J=11.2 Hz, 1H), 5.60(\underline{s} , 1H), 5.38(\underline{m} , 1H), 4.39(\underline{m} , 1H), 4.03(\underline{m} , 1H), 3.14(\underline{m} , 1H), and 0.90-2.95(\underline{m} , 21H). $IRv_{max}(neat)$: 3350, 2930, 2230, 1705, 1450, 1410, 1265, 1090, and 840 cm⁻¹. Mass m/z: 346(M^+), 328, 310, 237, 117, and 43.
- 13) The new prostacyclin analog 9 was approximately as potent as PGE₁ in inhibiting human platelet aggregation induced by ADP.

(Received January 6, 1986)