

Bioorganic & Medicinal Chemistry Letters 11 (2001) 99-101

Synthesis of 7,8-Disubstituted Benzolactam-V8 and Its Binding to Protein Kinase C

Dawei Ma,^{a,*} Tao Zhang,^a Guoqiang Wang,^a Alan P. Kozikowski,^{b,*} Nancy E. Lewin^c and Peter M. Blumberg^c

^aState Key Laboratory of Bio-organic and Natural Product Chemistry, Shanghai Institute of Organic Chemistry,

Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China

^bDrug Discovery Laboratory, Institute for Cognitive & Computational Sciences, Georgetown University Medical Center,

3970 Reservoir Road, N.W., Washington, DC 20007-2197, USA

^cNational Cancer Institute, Bethesda, MD 20892, USA

Received 21 August 2000; accepted 12 October 2000

Abstract—7-Methoxy-8-decynyl-benzolactam-V8 **4** is synthesized using a catalytic asymmetric alkylation reaction as a key step. This compound shows potent activity to three PKC isozymes tested ($K_i = 45.6, 91.1$, and 121.3 nM to PKC α , δ , and ε , respectively), indicating that introduction of a suitable substituent at the 7-position of 8-decynyl-benzolactam-V8 only slightly reduces the PKC binding affinity. © 2001 Elsevier Science Ltd. All rights reserved.

PKCs are a growing family of isozymes involved in a wide variety of cellular processes.¹ Marked differences in tissue distribution and substrate specificities have suggested that these isozymes may play the different roles in physiological and pathophysiological processes.^{1,2} The isozyme-specific modulators are highly required in identifying these different roles, especially in vivo.^{1,2} However, although several isozyme-selective inhibitors for PKCs have been developed in recent years,3-6 few isozyme-selective activators have been reported up to now.⁷ The teleocidins are a class of natural products that were found to have potent activity for PKCs but with little selectivity.8 Endo and coworkers reported that benzolactam-V8 1a (Fig. 1), a twist-like conformation mimic of indolactam is still a potent activator to PKCs.9 We felt that this compound is a good lead compound for developing isozyme-selective activators owing to its simplicity. In a previous report,¹⁰ we have mentioned that if an acetylene chain is placed at the 8-position of benzolactam-V8, the generated compound 2a had improved isozyme-selectivity in either activation or down-regulation to PKCs, while analogue 2b with a saturated chain at the 8-position of benzolactam-V8 did not show marked isoform-selectivity. Further studies have shown that **2a** had marked antiproliferative activity against two breast carcinoma cell lines. These results implied that the substituted groups at the aromatic ring of the benzolactam-V8s might play some roles to their isoform-selectivity. Encouraged by these results, we designed two new analogues **3** and **4**, in which a methoxy group was introduced at the 7-position

Figure 1. Structures of teleocidin family and benzolactam-V8 analogues.

0960-894X/01/\$ - see front matter \bigcirc 2001 Elsevier Science Ltd. All rights reserved. PII: S0960-894X(00)00609-0

^{*}Corresponding author. Tel.: +86-21-64163300; fax: +86-21-64163300; e-mail: madw@pub.sioc.ac.cn

of **1a** and **2a**, respectively, in order to check if a 7-substituted group could change the activity or selectivity of this class of compounds to PKCs.

Our synthesis for **3** and **4** is outlined in Scheme 1. 5-Nitro-1,3-benzodioxane **5**, prepared from 3-nitrophenol according to the known procedure¹¹ with an improved yield, was refluxed in 1 N HCl for 48 h to provide alcohol **6** (87% yield based on about 30% starting material recovery). Methylation of phenol **6** with iodomethane under the assistance of K_2CO_3 followed by bromination of the primary alcohol afforded bromide **7**. Next, we tried to use a newly reported method to introduce the chiral phenylalanine moiety.¹² As a result, treatment of **7** with Schiff base derived from *tert*-butyl glycinate¹² under asymmetric phase transfer condition (catalyst: cinchonidine-derived salt **15**) gave the coupling product,

which was hydrolyzed with hydrochloric acid to produce the desired amino ester 8. In our laboratory, this reaction was carried out in a scale of more than 20 g and therefore proven to be a very practical procedure. Because it was not easy to determine the enantiomeric purity of the resultant α -amino acid derivative and the absolute configuration of the major enantiomer at this stage, we planned to solve this problem by transforming 8 into the target molecules. Thus, N-protection of 8 with Boc and reduction of ester with lithium borohydride afforded alcohol 9. Hydrogenation of 9 catalyzed by Pd/ C released amine 10, which was coupled with D-valinederived triflate 11 to afford the substitution product 12. After hydrolysis of 12 with 2 N NaOH, the generated acid 13 was cyclized via the activated ester approach^{9,10} to give two lactams, which were subjected to reductive methylation to provide separable 3 and 14 in a ratio of 3/1. By this result we concluded that the ee value of the asymmetric alkylation step (from 7 to 8) was about 75%. The stereochemistry of 3^{13} and 14^{13} was confirmed by comparing their spectra with (2S,5S)- and (2S,5R)-benzolactam-V8s.^{10,11} Therefore, we concluded that the configuration of the major enantiomer in step alkylation should be S, which is consistent with Lygo's report.¹² In addition, by NOE studies and comparison of the chemical shifts of 3 with those of (2S,5S)-benzolactam-V8, it was found that compound 3 displayed the twist-conformation in solution. It was notable that if the cyclization method mediated by DPPA in the transformation of 12 to 3 was used, a quite lower yield (23% yield) was obtained. This result gave an additional example to demonstrate that the activated ester approach was a general method for synthesizing this class of lactams although the DPPA method gave a high yield in some cases.¹⁴ Finally, iodination of **3** assisted by mercury(II) chloride followed by palladium-catalyzed coupling reaction with 1-decyne produced 4^{15} in 75% yield.

Compounds 3 and 4 have been evaluated for their ability to displace phorbol 12,13-dibutyrate (PDBU) binding from recombinant PKC α .^{5a} K_i values for 3, 4, benzolactam-V8 and 8-decynyl benzolactam-V8 were 7162, 45.6, 334 and 15 nM, respectively. This meant that 4 was 3-fold less potent than 8-decynyl benzolactam-V8, while 3 was 22-fold less potent than benzolactam-V8. It indicated that introduction of a suitable substituent at the 7-position of 8-decynyl benzolactam-V8 only slightly reduced its activity. In addition, compound 4 was found to have potent binding affinities to PKCS and ε (K_i=91.1 and 121.3 nM, respectively), which implied that this analogue had similar but poorer isoform-selectivity in comparison with 8-decynyl-benzolactam-V8. Further development of more analogues using this methodology, as well as their isoform-selectivity studies are in progress.

Acknowledgements

The authors are grateful to the Chinese Academy of Sciences, National Natural Science Foundation of China (Project 29725205) and the NIHAU (CA79601) for their financial support.

References and Notes

1. (a) Nishizuka, Y. *Nature* **1988**, *334*, 661. (b) Basu, A. *Pharmacol. Ther.* **1993**, *59*, 257. (c) Stabel, S.; Parker, P. J. *Pharmacol. Ther.* **1991**, *51*, 71.

Dekker, L. V.; Parker, P. J. *Trends Biochem. Sci.* **1994**, *19*, 73.
Bradshaw, D.; Hill, C. H.; Nixon, J. S.; Wilkinson, S. E.

Agents Actions 1993, 38, 135.

4. Jirousek, M. R.; Gillig, J. R.; Gonzalez, C. M.; Heath,

W. F.; McDonald, J. H., III; Neel, D. A.; Rito, C. J.; Singh,

U.; Stramm, L. E.; Melikian-Badalian, A.; Baevsky, M.; Bal-

las, L. M.; Hall, S. E.; Winneroski, L. L.; Faul, M. M. J. Med. Chem. 1996, 39, 2664.

5. Wilkinson, S. E.; Parker, P. J.; Nixon, J. S. Biochem. J. 1993, 294, 335.

6. Martiny-Baron, G.; Kazanietz, M. G.; Mischak, H.; Blumberg, P. M.; Kochs, G.; Hug, H.; Marme, D.; Schachele, C. J. Biol. Chem. **1993**, 268, 9194.

7. Szallasi, Z.; Denning, M. F.; Smith, C. B.; Dlugosz, A. A.; Yuspa, S. H.; Pettit, G. R.; Blumberg, P. M. *Mol. Pharmacol.* **1994**, *46*, 840 and references cited therein.

8. Kishi, Y.; Rando, R. R. Acc. Chem. Res. 1998, 31, 163.

9. (a) Endo, Y.; Ohno, M.; Hirano, M.; Itai, A.; Shudo, K. J. *Am. Chem. Soc.* **1996**, *118*, 1841. (b) Endo, Y.; Takehana, S.; Ohno, M.; Driedger, P. E.; Stabel, S.; Mizutani, M. Y.; Tomioka, N.; Itai, A.; Shudo, K. J. Med. Chem. **1998**, *41*, 1476.

10. Kozikowski, A. P.; Wang, S.; Ma, D.; Yao, J.; Ahmad, S.; Glazer, R. I.; Bogi, K.; Acs, P.; Modarres, S.; Lewin, N. E.; Blumberg, P. M. J. Med. Chem. **1997**, 40, 1316.

Ando, M.; Emoto, S. Bull. Chem. Soc. Jpn. 1973, 46, 2903.
Lygo, B.; Wainwright, P. G. Tetrahedron Lett. 1997, 38, 8595.

13. Selected data for **3**: $[\alpha]_{22}^{22} - 275$ (*c* 0.82, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.11 (t, *J*=8.1 Hz, 1H), 6.77 (br s, 1H), 6.65 (d, *J*=8.1 Hz, 1H), 6.48 (d, *J*=8.2 Hz, 1H), 3.82 (s, 3H), 3.70 (dd, *J*=10.8, 4.0 Hz, 1H), 3.58 (d, *J*=9.1 Hz, 2H), 3.52 (d, *J*=8.1 Hz, 1H), 3.23 (d, *J*=17.5 Hz, 1H), 2.79 (s, 3H), 2.68 (dd, *J*=17.5, 7.5 Hz, 1H), 2.43 (m, 1H), 0.96 (d, *J*=6.3 Hz, 3H), 0.84 (d, *J*=6.3 Hz, 3H); HRMS found *m*/*z* 292.1791; C₁₆H₂₄N₂O₃ requires 292.1793. Selected data for **14**: $[\alpha]_{22}^{22}$ -159 (*c* 0.34, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.71 (br s, 1H), 7.12 (t, *J*=8.0 Hz, 1H), 6.77 (d, *J*=8.1 Hz, 1H), 6.57 (d, *J*=8.1 Hz, 1H), 3.83 (m, 1H), 3.79 (s, 3H), 3.65 (m, 1H), 3.34 (d, *J*=14.9 Hz, 1H), 3.18 (d, *J*=10.5 Hz, 1H), 2.92 (s, 3H), 2.47 (dd, *J*=15.1, 6.1 Hz, 1H), 2.40 (m, 1H), 0.95 (d, *J*=6.3 Hz, 3H), 0.85 (d, *J*=6.3 Hz, 3H); HRMS found *m*/*z* 292.1791; C₁₆H₂₄N₂O₃ requires 292.1793.

14. (a) Ma, D.; Tang, W. *Tetrahedron Lett.* **1998**, *39*, 7369. (b) Ma, D.; Zhang, Y.; Yao, J.; Wu, S.; Tao, F. *J. Am. Chem. Soc.* **1998**, *120*, 12459. (c) Ma, D.; Tang, W.; Kozikowski, A. P.; Lewin, N. E.; Blumberg, P. M. *J. Org. Chem.* **1999**, *64*, 6366. 15. Selected data for **4**: $[\alpha]_{D}^{22}$ –286 (*c* 0.08, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.16 (d, *J*=8.4 Hz, 1H), 6.93 (br s, 1H), 6.61 (d, *J*=8.4 Hz, 1H), 3.83 (s, 3H), 3.70–3.49 (m, 3H), 3.43 (d, *J*=8.7 Hz, 1H), 3.21 (d, *J*=17.6 Hz, 1H), 2.75 (s, 3H), 2.72 (dd, *J*=17.5, 5.8 Hz, 1H), 2.40 (m, 3H), 1.60 (m, 2H), 1.23 (m, 10H), 1.02 (d, *J*=6.3 Hz, 3H), 0.84 (t, *J*=6.4 Hz, 3H), 0.76 (d, *J*=6.3 Hz, 3H); HRMS found *m*/*z* 428.3021; C₂₆H₄₀N₂O₃ requires 428.3042.