Association of a Regulatory Gene, *slyA* with a Mouse Virulence of *Salmonella* Serovar Choleraesuis

Aki Kaneko^{*, 1, 3}, Masaharu Mita², Kachiko Sekiya^{1, ±1}, Hidenori Matsui^{3, ±2}, Kazuyoshi Kawahara³, and Hirofumi Danbara¹

¹Department of Microbiology, ²Laboratory Animal Research Center, School of Pharmaceutical Science, Kitasato University, Minato-ku, Tokyo 108 8641, Japan, and ³Department of Bacteriology, The Kitasato Institute, Minato-ku, Tokyo 108 8642, Japan

Received August 16, 2001; in revised form, October 15, 2001. Accepted November 1, 2001

Abstract: The influence of *slyA* gene, originally found in *Salmonella* serovar Typhimurium as a regulatory gene for the expression of virulence genes, on a mouse virulence of *S*. serovar Choleraesuis was investigated by using an *slyA*-defective mutant. The defective mutant was constructed by the insertion of a kanamycin-resistance gene (*aph*) into the cloned *slyA* gene, and the homologous recombination with the intact *slyA* gene on the chromosome. The mutant strain showed the LD₅₀ value for BALB/c mouse approximately 10⁵ higher than that of the parent strain. The increase of the LD₅₀ value was the same order as that shown by the mutation of the *slyA* gene of *S*. serovar Typhimurium, although LD₅₀ of the wild-type strain of *S*. serovar Choleraesuis was 40-fold higher than that of *S*. serovar Typhimurium. The time course of infection observed in the mice organs also proved the clear difference of the virulence between the parent and the mutant strains. These results suggested that the *slyA* gene product functions as a virulence-associated regulator also in *S*. serovar Choleraesuis.

Key words: Virulence, slyA, Salmonella serovar Choleraesuis

For the full expression of the Salmonella virulence, many classes of virulence genes such as inv genes (7), pag genes (10), and plasmid-encoded spv genes (9, 11) are required. Among them regulatory genes are of highest importance for the timely expression of the virulence genes to adapt to the environmental changes during the infection process. Besides phoP/phoQ (19) and rpoS (27), a new regulatory gene slyA was cloned by Libby et al. (15) from Salmonella serovar Typhimurium as a cytolysin-encoding gene, but later it was proved to be a gene encoding a transcriptional regulatory protein (5), which belongs to a family of regulators including EmrR (16), MarR (28), HprR (23), and PecS (21). This regulatory gene of S. serovar Typhimurium is required for cytotoxicity to M-cells (4), survival in macrophages (13), and resistance to oxidative stress (3). In contrast, slyA is not involved in invasion or colonization in the murine intestine, and therefore is not essential for the enteric salmonellosis (29).

The *slyA* gene is commonly shared among major pathogenic serovars of Salmonella (14, 15), and homologous genes have been found also in other members of Enterobacteriaseae such as Escherichia coli (17, 22), Shigella (17), and Yersinia (24). We have sequenced ORF and upstream region of *slyA* of several serovars of Salmonella, and found that all of the serovars so far examined use the sequence TTG as initiation codon of slyA, and the nucleotide sequences of this region were highly conserved (14). In our study of Salmonella virulence, S. serovar Choleraesuis has been mainly used (1, 11, 13, 18), because this serovar shows a high tendency to cause systemic salmonellosis to human and swine compared with S. serovar Typhimurium (2, 25), and the genes responsible for systemic salmonellosis are expected to be studied in simpler system by using this serovar. In this context the function of *slyA* in *S*. serovar Choleraesuis has been investigated in relation to our previous and ongoing studies on the pathogenesis of this serovar. In the present study, *slyA*-defective mutants of *S*. serovar

^{*}*Address correspondence to* Dr. Aki Kaneko, Department of Bacteriology, The Kitasato Institute, 5 9 1, Shirokane, Minatoku, Tokyo 108 8642, Japan. Fax: + 81 5791 6127. E-mail: kaneko-a@kitasato.or.jp

Present addresses: ^{‡1} Laboratory of Electron Microscopy. ^{‡2} Kitasato Institute for Life Science.

Abbreviations: CFU, colony forming unit; LB broth, Luria-Bertani broth; LPS, lipopolysaccharide; ORF, open reading frame.

F				
Strain and plasmid		Relevant characteristics	Reference	
Strain				
E. coli DH5 α		$F^{-} \Phi 80 dlac Z\Delta M15 \Delta (lac ZYA-arg F) U169 end A1 recA1 hsd R17$	Gibco/BRL	
E. coli S17-1 λpir		RP4-2-Tc::Mu-Km::Tn7 λpir	26	
S. serovar Choleraesuis				
	RF-1	wild type, Rf, derived from a swine isolate	12	
	KAD001	RF-1 <i>slyA</i> _{sc} :: <i>aph</i> , Km ^r	This study	
S. serovar Typhimurium				
	SR-11	wild type, Nr'	8	
	KAD101	SR-11 $slyA_{st}$:: <i>aph</i> , Km ^r	This study	
Plasmid				
pUC119		cloning vector, Ap ^r	Toyobo	
pUC4K		Km cassette (<i>aph</i>), Ap ^r , Km ^r	Toyobo	
pCVD442		suicide vector for homologous recombination, Ap ^r	26	
pKAD301		pUC119, <i>slyA</i> _{sc}	14	
pKAD302		pUC119, <i>slyA</i> _{sc} :: <i>aph</i>	This study	
pKAD306		pCVD442, <i>slyA</i> _{sc} :: <i>aph</i>	This study	
pKAD308		pUC119, $slyA_{ST}$	14	
pKAD309		pUC119, $slyA_{st}$::aph	This study	
pKAD313		pCVD442, <i>slyA</i> _{sr} :: <i>aph</i>	This study	

Table 1. Bacterial strains and plasmids

Choleraesuis and *S*. serovar Typhimurium were constructed and the decrease of virulence from these mutations were compared.

The *slyA*-defective mutants were constructed by the method of homologous recombination. The *slyA* genes of *S*. serovar Choleraesuis RF-1 and *S*. serovar Typhimurium SR-11 were amplified by PCR and ligated into pUC119 as described in a previous paper (14). The kanamycin-resistance cassette gene (*aph*) was prepared from pUC4K by *Bam*HI digestion, blunted, and inserted into *Rsa*I site of *slyA* gene to form pKAD302 and pKAD309. The mutated *slyA* genes (*slyA*::*aph*) were prepared from pKAD302 and pKAD309 by *Bam*HI and *Eco*RI digestions, blunted, and ligated into *Sma*I site of the suicide vector pCVD442 to form pKAD306 and pKAD313.

Conjugation and allelic exchange was performed using pKAD306 and pKAD313 by the conventional method (26), and putative transconjugants were designated KAD001 and KAD101. The bacterial strains and plasmids used or prepared in this study are summarized in Table 1. The chromosomal DNA preparations of these transconjugants were digested, and the insertion of the *aph* gene was examined by Southern hybridization. When the 40 bp (from 318 to 357) of *slyA* gene from *S*. serovar Typhimurium (15) was used as a DNA probe, increase of molecular size of the *slyA*-containing fragments was observed for both transconjugant strains,

Fig. 1. Southern hybridization of wild-type and *slyA* mutant strains by the 40 bp DNA probe from *slyA* gene. Chromosomal DNA prepared from each strain was digested with *Not*I. Lanes 1, RF-1; 2, KAD001; 3, SR-11; 4, KAD101.

KAD001 and KAD101 as shown in Fig. 1. These results indicated that *slyA* genes of the parent strains were knocked out by the *aph* gene insertion. By the *slyA* mutation, colony morphology, polysaccharide length of

Table 2. Effect of the slyA mutation on Salmonella virulence

Strain	Genotype	LD ₅₀ (CFU/mouse)			
S. serovar Choleraesuis					
RF-1	wild type	7.6×10^{2}			
KAD001	slyA _{sc} ::aph	5.7×10^{7}			
S serover Tunhimurium					
SP 11	wild type	1.0×10^{1}			
VAD101	shut ype	1.7×10^{6}			
KADIUI	styrist.apn	1.1 × 10			

Salmonella strains grown overnight in LB broth were recovered by centrifugation and resuspended in sterile PBS () to approximately 5×10^1 to 10^8 CFU/ml. The actual number of bacteria present was determined by plating on agar medium. BALB/c mice were challenged intraperitoneally (0.2 ml of bacterial suspension), and observed for 14 days.

LPS, O and H antigenicity, and growth rate in LB broth were found to be unchanged.

The parent (wild-type) strains and the *slyA*-defective strains were grown in LB broth and inoculated to BALB/c mice (female, 5 weeks old, CLEA Japan, Tokyo) intraperitoneally (5 mice/dose) according to the method described previously (20). The LD₅₀s of the strains were determined by the method of Beherns-Karber (6). All animal experiments were done in accordance with the Kitasato University Guideline for Animal Care and Experimentation. As shown in Table 2, LD₅₀ of *S*. serovar Typhimurium was much lower than that of *S*. serovar Choleraesuis as reported previously (20). The LD₅₀ values in this study are generally higher than those reported in the previous paper (20), but these differ-

Fig. 2. Course of infection of wild-type and *slyA* mutant strains. A: *S.* serovar Choleraesuis KAD001 (dotted line) and RF-1(solid line). B: *S.* serovar Typhimurium KAD101 (dotted line) and SR-11(solid line). Mice were inoculated intraperitoneally with 1×10^4 CFU/mouse, and sacrificed on the days indicated. Livers (,), spleens (,) and intestinal lymph nodes (,) were dissected and homogenized, and the number of bacteria in each organ was determined by plating homogenates onto LB agar. Asterisks indicate the death of mice.

ences might arise from the difference of mice age used in the experiments. By the mutation in slyA, LD_{50} of *S*. serovar Choleraesuis was increased in the order of 10^5 , and the same degree of increase in LD_{50} was observed by the slyA mutation of *S*. serovar Typhimurium. These results suggested that SlyA protein of *S*. serovar Choleraesuis behaves in a manner similar to that of *S*. serovar Typhimurium, although other virulence factors and the potency of mouse virulence are different between these two serovars.

In the next experiment, the bacterial cell number in the organs of mice was measured after intraperitoneal infection of the Salmonella strains. The bacterial cell suspension in PBS() was inoculated intraperitoneally to BALB/c mice (female, 5 weeks old, CLEA Japan) at the dose of 10⁴ CFU/mouse. Bacterial cell number (CFU) in the liver, spleen, and intestinal lymph nodes at day 1, 3, 7, and 10 was measured by plating on agar medium after the organs were homogenized by a stomacher (Japan Organo Co., Ltd., Tokyo). Five mice were used for one group, and the mean values of CFU were calculated. The results shown in Fig. 2 indicated that the numbers of wild-type strains of S. serovar Choleraesuis and S. serovar Typhimurium increased rapidly from day 1 to day 3. There was a clear difference between bacterial numbers of both serovars, but no difference of mice death between both serovars was observed because all mice died before day 7. In contrast, the mutant strains showed slow growth from day 1 to day 3 and the bacterial number decreased or kept constant after day 3. These results agreed with the values of LD₅₀ shown in Table 2, and clearly indicated that the virulence of S. serovar Choleraesuis was much reduced by the slyA destruction in the same manner as for S. serovar Typhimurium.

In the present study we could demonstrate that in *S*. serovar Choleraesuis *slyA* gene is associated with mouse virulence. In *S*. serovar Typhimurium, *slyA* was reported to be required for survival in macrophages, and for systemic infection. The present results suggested that the *slyA* gene functions in *S*. serovar Choleraesuis as in *S*. serovar Typhimurium. As shown in our previous studies, *S*. serovar Choleraesuis harbors plasmid-encoded (11) as well as chromosomal virulence genes (H. Danbara et al., unpublished data). Together with the present results *S*. serovar Choleraesuis was proved to have a full set of functioning genes required for systemic infection, and therefore be a useful organism to study *Salmonella* pathogenesis.

The authors are very grateful to Drs. A. Abe, T. Kawakami, M. Nagai and Mr. S. Ishikawa for useful discussions. CLEA Japan Inc. is acknowledged for collaboration in this study.

References

- Abe, A., Matsui, H., Danbara, H., Tanaka, K., Takahashi, H., and Kawahara, K. 1994. Regulation of *spvR* gene expression of *Salmonella* virulence plasmid pKDSC50 in *Salmonella choleraesuis* serovar Choleraesuis. Mol. Microbiol. **12**: 779–787.
- Blaster, M.J., and Feldman, R.A. 1981. Salmonella bacterimia: reports to the Centers of Disease Control, 1968 1979. J. Infect. Dis. 143: 743 746.
- 3) Buchmeier, N., Bossie, S., Chen, C.Y., Fang, F.C., Guiney, D.G., and Libby, S.J. 1997. SlyA, a transcriptional regulator of *Salmonella typhimurium*, is required for resistance to oxidative stress and is expressed in the intracellular environment of macrophages. Infect. Immun. **65**: 3725–3730.
- 4) Daniels, J.J., Autenrieth, I.B., Ludwig, A., and Goebel, W. 1996. The gene *slyA* of *Salmonella typhimurium* is required for destruction of M cells and intracellular survival but not for invasion or colonization of the murine small intestine. Infect. Immun. **64**: 5075–5084.
- Dehoux, P., and Cossart, P. 1995. Homologies between salmolysin and some bacterial regulatory proteins. Mol. Microbiol. 15: 591.
- Finney, D.J. 1978. Statistical method in biological assay, 3rd ed, Charles Griffin and Company Ltd., London.
- Galan, J.E., Ginocchio, C., and Costeas, P. 1992. Molecular and functional characterization of the *Salmonella* invasion gene *invA*: homology of InvA to members of a new protein family. J. Bacteriol. **174**: 4338–4349.
- Gulig, P.A., and Curtiss, R., III. 1987. Plasmid-associated virulence of *Salmonella typhimurium*. Infect. Immun. 55: 2891 2901.
- Gulig, P.A., Danbara, H., Guiney, D.G., Lax, A.J., Norel, F., and Rhen, M. 1993. Molecular analysis of *spv* virulence genes of the *Salmonella* virulence plasmids. Mol. Microbiol. 7: 825–830.
- Gunn, J.S., Alpuche-Aranda, C.M., Loomis, W.P., Belden, W.J., and Miller, S.I. 1995. Characterization of the *Salmo-nella typhimurium pagC/pagD* chromosomal region. J. Bacteriol. **177**: 5040–5047.
- Haneda, T., Okada, N., Nakazawa, N., Kawakami, T., and Danbara, H. 2001. Complete DNA sequence and comparative analysis of the 50-kilobase virulence plasmid of *Salmonella enterica* serovar Choleraesuis. Infect. Immun. **69**: 2612 2620.
- 12) Kawahara, K., Haraguchi, Y., Tsuchimoto, M., Terakado, N., and Danbara, H. 1988. Evidence of correlation between 50kilobase plasmid of *Salmonella choleraesuis* and its virulence. Microb. Pathog. 4: 155–163.
- 13) Kawahara, K., Tsuchimoto, M., Sudo, K., Terakado, N., and Danbara, H. 1990. Identification and mapping of *mba* regions of the *Salmonella choleraesuis* virulence plasmid pKDSC50 responsible for mouse bacteremia. Microb. Pathog. 8: 13 21.
- 14) Kawakami, T., Kaneko, A., Okada, N., Imajoh-Ohmi, S., Nonaka, T., Matsui, H., Kawahara, K., and Danbara, H. 1999. TTG as the initiation codon of *Salmonella slyA*, a gene required for survival within macrophages. Microbiol.

Immunol. 43: 351 357.

- 15) Libby, S.J., Goebel, W., Ludwig, A., Buchmeier, N., Bowe, F., Fang, F.C., Guiney, D.G., Songer, J.G., and Heffron, F. 1994. A cytolysin encoded by *Salmonella* is required for survival within macrophages. Proc. Natl. Acad. Sci. U.S.A. 91: 489–493.
- 16) Lomovskaya, O., Lewis, K., and Matin, A. 1995. EmrR is a negative regulator of the *Escherichia coli* multidrug resistance pump EmrAB. J. Bacteriol. **177**: 2328 2334.
- 17) Ludwig, A., Tengel, C., Bauer, S., Bubert, A., Benz, R., Mollenkopf, H.J., and Goebel, W. 1995. SlyA, a regulatory protein from *Salmonella typhimurium*, induces a haemolytic and pore-forming protein in *Escherichia coli*. Mol. Gen. Genet. **249**: 474–486.
- 18) Matsui, H., Abe, A., Suzuki, S., Kijima, M., Tamura, Y., Nakamura, M., Kawahara, K., and Danbara, H. 1993. Molecular mechanism of the regulation of expression of plasmidencoded mouse bacteremia (*mba*) genes in *Salmonella* serovar Choleraesuis. Mol. Gen. Genet. **236**: 219–226.
- Miller, S.I., Kukral, A.M., and Mekalanos, J.J. 1989. A two-component regulatory system (*phoP/phoQ*) controls *Salmonella typhimurium* virulence. Proc. Natl. Acad. Sci. U.S.A. 86: 5054–5058.
- 20) Mitsui-Yamaguchi, T., Abe, A., Danbara, H., and Kawahara, K. 1997. Induction of TNF-α mRNA in murine macrophages by virulent and avirulent strains of *Salmonella choleraesuis* serovar Typhimurium and serovar Choleraesuis. Microb. Pathog. 22: 59–66.
- Nikaido, H. 1996. Multidrug efflux pumps of gram-negative bacteria. J. Bacteriol. 178: 5853 5859.

- 22) Oscarsson, J., Mizunoe, Y., Uhlin, B.E., and Haydon, D.J. 1996. Induction of haemolytic activity in *Escherichia coli* by the *slyA* gene product. Mol. Microbiol. **20**: 191–199.
- Perego, M., and Hoch, J.A. 1988. Sequence analysis and regulation of the *hpr* locus, a regulatory gene for protease production and sporulation in *Bacillus subtilis*. J. Bacteriol. 170: 2560 2567.
- Revell, P.A., and Miller, V.L. 2000. A chromosomally encoded regulator is required for expression of the *Yersinia enter-ocolitica inv* gene and for virulence. Mol. Microbiol. 35: 677–685.
- Salyers, A.A., and Whitt, D.D. 1994. *Salmonella* infections, p. 229 243. *In* Bacterial pathogenesis: a molecular approach, ASM Press, Washington, D.C.
- 26) Simon, R., Pfeifer, U., and Puhler, A. 1983. A broad host range mobilization system for *in vivo* genetic engineering: transposon mutagenesis in gram-negative bacteria. Biotechnology 1: 784–789.
- 27) Swords, W.E., Cannon, B.M., and Benjamin, W.H., Jr. 1997. Avirulence of LT2 strains of *Salmonella typhimurium* results from a defective *rpoS* gene. Infect. Immun. 65: 2451–2453.
- 28) Valdivia, R.H., and Falkow, S. 1996. Bacterial genetics by flow cytometry: rapid isolation of *Salmonella typhimurium* acid-inducible promoters by differential fluorescence induction. Mol. Microbiol. **22**: 367–378.
- 29) Watson, P.R., Paulin, S.M., Bland, A.P., Libby, S.J., Jones, P.W., and Wallis, T.S. 1999. Differential regulation of enteric and systemic salmonellosis by *slyA*. Infect. Immun. 67: 4950–4954.