A Highly Stereoselective Preparation of *l*-Isopulegol

Yôichi Nakatani*, Kaoru Kawashima

Laboratory of Food Chemistry, Ochanomizu University, Bunkyoku, Tokyo, Japan

l-Isopulegol (2) is an important intermediate for the manufacture of *l*-menthol¹. Earlier preparations utilized the cyclization of *d*-citronellal (1) with reagents such as active carbon², silica gel^{3,4}, diatomaceous earth⁵, sulfuric acid⁶, boric acid⁴ with or without aluminum oxide, acetic anhydride^{6,7}, and catalysts^{8,9} for hydrogenation such as Cu—Cr, Raney Ni—Fe, etc., or by a simple thermal process¹⁰. However, these procedures result in mixtures, where extensive purification¹ is needed to isolate pure *l*-isopulegol (2).

We report here a highly stereoselective preparation of l-isopulegol (2) from d-citronellal (1) using Lewis acids (ZnCl₂, ZnBr₂, ZnJ₂) for cyclization. The Table summarizes the results.

Under optimum reaction conditions (equimolar amount of $ZnBr_2$ in benzene, 5–10°), the cyclization product is obtained in 70% yield and has a 94% content of *l*-isopulegol (2). Of the other three possible diastereomers, *d*-neoisopulegol (3) is the main component; the other two diastereomers are only present in trace amounts.

In order to find out if this by-product can possibly be isomerized to isopulegol (2) under the reaction conditions used for cyclization

148 Communications SYNTHESIS

Table. Cyclization of d-Citronellal (1) to l-Isopulegol (2) with Lewis acids in Berzene (5–10°, 15 min)

d-Citronellal [mmol]	Lewis Acid [mmol]	Yield [%]	Ratio of <i>l</i> -isopulegol to other diastereomers
20	ZnCl ₂ (20)	53	88/12
39	$ZnBr_2$ (39)	70	94/6
20	$ZnJ_{2}(20)$	50	95/5
20	$ZnF_2(20)$	0	(a) (1991) (c)
20	$Zn(OAc)_2$ (20)	0	
20	$Zn(NO_3)_2$ (20)	0	10 M M
20	ZnSO ₄ (20)	0	1.006.1
20	$Zn_3(PO_4)_2$ (20)	0	
20	FeCl ₃ (2)	20	76/24
20	BF ₃ (2)	30	74/26
20	AlCl ₃ (2)	30	71/29
20	SbCl ₃ (2)	25	71/29
20	SbCl ₅ (2)	22	43/57
20	SnCl ₃ (OCH ₃)·CH ₃ OH (2)	50	71/29
20	$SnCl_3(OC_2H_5)\cdot C_2H_5OH$ (2)	57	69/31
20	SnCl ₄ (2)	81	69/31
20	$Ti(i-C_3H_7O)_4 + TiCl_4$ (1.1)	47	63/37
20	$Ti(i-C_4H_9O)_4 + TiCl_4$ (1.1)	50	58/42
20	$Ti(n-C_{18}H_{37}O)_4 + TiCl_4(1.1)$	57	57/43
20	TiCl ₄ (2)	60	50/50
20	$Ti(OR)_4^a$ (2)	0	armen, a

^a $R = i-C_3H_7$, $i-C_4H_9$, $n-C_{18}H_{37}$.

of 1, we prepared a mixture of the diastereomers 2 (64%) and 3 (36%) according to Ref.⁷ and subjected this mixture to our reaction conditions. The product mixture thus obtained consisted of 62% 2 and 38% 3 (after distillation). This result indicates that no stereoisomerization takes place under our cyclization conditions.

l-Isopulegol (2) from d-Citronellal (1) by Cyclization:

To an ice-cooled and stirred solution of d-citronellal (1; 6.0 g, $\sim 39 \text{ mmol}$; $[\alpha]_D$: $+12.1^\circ$) in anhydrous benzene (20 ml), powdered zinc bromide (8.8 g, 39 mmol) is added carefully (in portions of ~ 0.8 g each), while the reaction temperature is kept at 5–10°. After the addition is complete ($\sim 10 \text{ min}$), stirring is continued for 10 min at 5–10°. The precipitated zinc bromide is filtered off and the filtrate is steam-distilled for 1 h. The distillate is extracted with ether ($3 \times 150 \text{ ml}$), washed with saturated sodium chloride solution ($3 \times 20 \text{ ml}$), and dried with magnesium sulfate. The solvent is removed in vacuo and the residue distilled in vacuo to give a product which consists of 94% l-isopulegol (2) (by G.L.C. analysis on two columns of different polarity)¹¹; yield: 4.2 g (70%); b.p. $58-59^\circ$; $[\alpha]_D$: -17.5° (Ref. 10 , $[\alpha]_D$: -22°).

 $C_{10}H_{18}O$ (154.3)

M.S.: m/e = 154 (M⁺), 139, 136, 121, 95, 93, 84, 81, 71, 69, 55, 43, 41. I.R. (CHCl₃): $v_{\text{max}} = 3560$; 3450; 3070; 1640; 1050; 1020; 900 cm⁻¹. ¹H-N.M.R. (CDCl₃): $\delta = 0.95$ (d, 3 H, J = 5.5 Hz); 1.72 (d, 3 H, J = 0.5 Hz); 3.47 (t × d, 1 H, $J_t = 10$ Hz, $J_d = 4.5$ Hz); 4.86 ppm (m, 2H). These data are consistent with those of an authentic sample.

We thank Dr. Tetsuo Moroe, Takagaso Perfumery Co., for a sample of l-isopulegol.

Received: June 27, 1977 (Revised form: August 31, 1977)

S. Katsura, H. Okuda, A. Komatsu, *Jap. Patent* 57/8875 (1957), Takasago Perfumery Industries Co.; C. A. 52, 1233 (1958).

⁵ C. O. Terwillinger, U. S. Patent 2117463 (1936), Theodore Swann; C. A. 32, 5160 (1938).

⁶ Z. Horiuchi, Mem. Coll. Science Kyoto Univ. 1937, 171.

H. Ueda, S. Shimizu, Bull. Agr. Chem. Soc. Jpn. 24, 402 (1960); and references cited therein.

⁸ K. Kogami, J. Kumanotani, Bull. Chem. Soc. Jpn. 41, 2530 (1968).

T. Kuwata et al., Jap. Patent 66/1529 (1966), Hasegawa Co.;
C. A. 64, 14230 (1966).

¹⁰ K. H. Schulte-Elte, G. Ohloff, Helv. Chim. Acta 21, 153 (1967).

The following columns were used for G.L.C. analysis: (1) 25% SE 30 on Chromosorb AW, 3 mm (i. d.) × 3 m Stainless Steel Column, temperature 130° (isothermal), detector TCD: *l*-isopulegol 6.3 min; (2) 1% OV 101 on Gaschrom Q, 2 mm (i. d.) × 2.1 m glass column, temperature 80→120° (2°/min), detector FID: *l*-isopulegol 7.8 min, acetate 13.2 min. The products were identified by coinjection with authentic samples.

^{*} Author to whom correspondence should be addressed.

¹ J. C. Leffingwell, R. E. Shackelford, Cosmetics and Perfumery **89**, 69 (1974); C. A. **81**, 78093 (1974).

² S. Kimura, J. Chem. Soc. Japan **53**, 777 (1932).

³ H. G. Glass, U. S. Patent 2117414 (1936), Theodore Swann; C. A. 32, 5160 (1938).