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Synthesis of multifunctional ligands: a
2,9-diaryl-1,10-phenanthroline/2,2%:6%,2¦-terpyridine conjugate
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Abstract—The synthesis of a ligand including a 1,10-phenanthroline and a 2,2%:6%,2¦-terpyridine separated by a 1,3-phenylene
spacer is presented. The different aromatic carbon�carbon bonds have been generated by reactions with organolithium
compounds, and by Stille and Suzuki couplings. © 2001 Elsevier Science Ltd. All rights reserved.

Multifunctional ligands incorporating several coordina-
tion sites are of special interest in coordination chem-
istry because they are useful building blocks in the
templated synthesis of multicomponent molecular
assemblies,1 including motors and machines,1,2 or topo-
logical non-trivial compounds, like catenanes, rotax-
anes and knots.3,4 In particular, 1,10-phenanthroline
and 2,2%:6%,2¦-terpyridine moieties have been extensively
used in the design of such ligands using either Cu(I) or
Fe(II) as templating species.5,6 We would now like to
report a convenient directed synthesis of a dissymmetri-
cal ligand containing two different chelates: a 1,10-
phenanthroline and a 2,2%:6%,2¦-terpyridine connected
by a 1,3-phenylene spacer. In previous work, the meta-
phenylene spacer has been shown to favour the forma-
tion of helical arrangements7 and, when used as a
bridge, to insure a significant level of electronic
communication.8

The main difficulty of the synthesis of such a ligand is
related to its unsymmetrical feature. The use of the
non-symmetrical single synthon 5-bromo-2-chloropy-
ridine 19 (Fig. 1) associated with that of NaSnMe3

10

appeared highly beneficial. Indeed, the key synthon 1
bears one bromine and one chlorine which differ
strongly in reactivity. Due to this large difference of
reactivity, only the bromine in the 5-position leads, by
interconversion with butyllithium, to the 5-lithio-2-

chloropyridine required for the preparation of boronic
ester 2 (pathway A). This same bromine will be selec-
tively involved in the Suzuki coupling reaction afford-
ing 4 (pathway B). Therefore, both intermediates 6 and
4 still bear an intact 2-chloro substituent and have been
later converted into the trimethylstannanes 8 and 7,
respectively, required for the further C�C coupling
reactions (routes C,D and D,E, respectively). Taking
advantage of this striking difference of reactivity, we
were able to build in both a parallel and convergent
way the differently substituted phenanthroline and the
immediate precursor to the terpyridine, which is only
formed in the ultimate connection step (F). Our syn-
thetic strategy, based on a cascade like successive for-
mation of the different carbon�carbon bonds of ligand
10, is depicted in Fig. 1.

Compound 1 was selectively lithiated at the 5 position
with butyllithium in ether at −78°C; further treatment
with B(OMe)3 at −78°C and transesterification with
2,2-dimethylpropane-1,3-diol gave 2 in 74% yield.11

Reaction of 2 with 1 equiv. of the 2,9-disubstituted
phenanthroline 3,12 under Suzuki cross-coupling condi-
tions,13 afforded compound 6 in 55% yield. The chlo-
rine of compound 6 was then converted into a
trimethylstannyl group by reaction of a suspension of 6
with a solution of NaSnMe3

10 in DME. A very short
filtration over dry alumina gave stannane derivative 8
in 80% yield.

Reaction of 1 with 1 equiv. of the ester of p-
methoxyphenylboronic acid,14 under Suzuki cross-cou-
pling conditions (Pd[P(C6H5)3]4 in toluene, aqueous
Na2CO3, 60°C, 40 h), afforded pyridine derivative 4 in
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Figure 1. Conditions: (A) (1) BuLi, Et2O, −78°C, 6 h, (2) B(OMe)3, Et2O, −78°C to rt, 12 h, (3) 2,2-dimethylpropane-1,3-diol,
Et2O, 1 h, 0°C, (4) methanesulfonic acid, Et2O, 0°C, 30 min; (B) 2% Pd[P(C6H5)3]4, C6H5CH3, 2 M Na2CO3, 60°C, 40 h; (C) 2%
Pd[P(C6H5)3]4, C6H5CH3, 2 M Na2CO3, 110°C, 7 h; (D) NaSnMe3, DME, −13°C to rt, 15 h; (E) 2,6-dibromopyridine (1 equiv.),
1% Pd[P(C6H5)3]4, C6H5CH3, 110°C, 15 h; (F) 2% Pd[P(C6H5)3]4, C6H5CH3, 110°C, 15 h.

70% yield. Conversion of the chlorine of 4 into a
trimethylstannyl group with NaSnMe3 in DME gave
stannane derivative 7 after a short column over alu-
mina. The latter was reacted with 1 equiv. of 2,6-dibro-
mopyridine to afford the bipyridine 9 in 50% yield.15 In
a final step, reaction of stannane 8 and bipyridine 9,
under Stille16 cross-coupling conditions, afforded ligand
1017 in 83% yield.

In conclusion, we have developed a convenient synthe-

sis of a functionalised bischelate ligand that can be
obtained on a gram scale.
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