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Robust Phosphorescent Platinum(II) Complexes Containing Tetradentate
O~AN2CAN Ligands: Excimeric Excited State and Application in Organic
White-Light-Emitting Diodes

Steven C. F. Kui, Pui Keong Chow, Glenna So Ming Tong, Shiu-Lun Lai, Gan% Cheng,
Chi-Chung Kwok, Kam-Hung Low, Man Ying Ko, and Chi-Ming Che**

Intra- and intermolecular
metal-metal and ligand-ligand
interactions are important
characteristic features of plati-
num(II) complexes that have
chelating C and/or N atom —
donor ligands;™such com- [Pt(bpy)2]**
plexes could be harnessed for
self-assembly of nanostruc-
tured materials®! and used for
developing luminescent sensors of biological targets.”! These
intramolecular/intermolecular interactions give rise to low-
energy metal-metal-to-ligand charge transfer (MMLCT)
and/or m(ligand)--m(ligand) excimeric excited states leading
to red-shifts in both absorption and emission energies of
oligomers from the corresponding monomeric counter-
parts.’?! In this area, cyclometalated platinum(IT) com-
plexes have been extensively studied as they exhibit dual
phosphorescence in the high-energy (bluish green) and low-
energy (reddish orange) spectral regions. These two types of
emission bands are often attributed to monomeric and exci-
meric emissions, respectively. The electronic structure of the
excimeric excited states of Pt" complexes (Figure 1), howev-
er, remains elusive. More than 20 years ago, Miskowski
et al. suggested that the low-energy excimer emission is as-
cribed to 1) metal-metal-to-ligand charge transfer
(*MMLCT) for which upon excitation, there is an enhanced
Pt--Pt interaction with concomitant shortening of the Pt---Pt
distance or 2) transitions involving st interactions be-
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Figure 1. Chemical structures of selected Pt" complexes showing low-energy excimeric emissions.

tween aromatic ligands of interplanar separation <3.5 A.1
Brédas and Kim lately reported DFT/TDDFT calculations
on FPt1 (FPtl =[2-(4',6'-difluorophenyl)pyridinato-
N,C*](2,4-pentanedionato)platinum(II)) and their conclu-
sion is in concordance with the proposal of Miskowski and
co-workers, namely, an excimer is formed through the coop-
erative effect of both Pt--Pt and interligand -7 interac-
tions.”! On the other hand, Forrest and D’Andrade, based
on the photoluminescent and electroluminescent studies on
neat films of FPtl, proposed that the triplet excimer is
formed through interactions between a monomer triplet ex-
citon and a monomer ground state; the stabilization of the
excimer is accounted for by a configuration interaction be-
tween exciton resonance and charge-transfer resonance
states.’] Recently, Kalinowski et al. made a similar conclu-
sion on the formation of excimers from [Pt(N*C"N)CI]
(NACAN =1,3-di(2-pyridyl)benzene and it’s derivatives).”)
Herein, we report a new series of cyclometalated plati-
num(Il) complexes supported by a rigid tetradentate ligand
OANACAN (OANACAN =5,5-dibutyl-2-(3-(pyridin-2-yl)-
phenyl)-SH-indeno[1,2-b]pyridin-9-olate and it’s derivatives;
1-5 Scheme 1). The substitution pattern of the O*N~C"N
ligand was found to significantly affect the properties of the
excimeric emissive excited states. High-efficiency white or-
ganic light-emitting diodes (WOLEDs) [peak current effi-

R™®=H;1
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Scheme 1. Chemical structure of complexes 1-5.
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ciency  (7igma)=71.0cdA™", power efficiency (1,max)=
55.81Im W', external quantum efficiency (MExi(max) = 16.5 %,
CIE =0.33, 0.42, CRI=77] and white polymer light-emitting
diodes (WPLEDS) (11 (ma)=17.0 cdA™", 1 (may=9-1 Im W,
Next(may) = 9-7 %, CIE=0.43, 0.45, CRI=78) have been fabri-
cated using a simple device architecture and with § as a
single emissive dopant.

Platinum(I) complexes bearing symmetric tetradentate
chelating ligands, such as octaethylporphyrin (OEP),
bis(2’-phenol)bipyridine (N,0,),"! Schiff base (Salphen),!
bis(pyrrole)diimine  (Prtmen),'”  N,N-di(2-phenylpyrid-6-
yl)aniline (CANAN~C)!"! and bis(N-heterocyclic carbene)
(tetra-NHC),!™) are good phosphorescent emitters. The un-
symmetric Pt" complexes of O*"N”C”N ligands in this work
are highly emissive (¢ up to 0.93), thermally stable
(T4>400°C), and could be obtained in high purity by subli-
mation at about 290°C under 4 x 107> Torr. They were pre-
pared by a procedure that gave high product yields (up to
80%). The characterization data of 1-5 and X-ray crystallo-
graphic data of 1, 3, and § are given in the Supporting Infor-
mation along with the synthetic procedures.'® A perspective
view of 5 is depicted in Figure 2.

The [(OA"N”C~N)Pt] motifs of 1, 3, and 5 are virtually
planar with the O1-N2-C11-N1 torsion angles being 0.13,
0.69, and 0.17°, respectively. Orthogonal packing is observed
in the unit cells of 1, 3, and 5 with short intermolecular
C—H--x distances in the range of 2.67-2.81 A between the
H atoms of the n-butyl chain and the O"N”CAN moiety. In
the crystal structures of 1, 3, and 5, the molecules in each
case are orientated in pairs with a head-to-tail arrangement.
Extensive intermolecular 77t interactions (st-+-7 distances =
3.48-3.51 A) are observed, but the intermolecular Pt---Pt dis-
tances are greater than 4.5 A, revealing no intermolecular
Pt--Pt interactions.

The absorption spectra of 1-5 in CH,Cl, (Table 1) display
intense bands at wavelengths below 300 nm (¢ in the range
2.1-4.8x10* dm*mol 'em™!) and moderate intense absorp-
tion bands at 400-435nm (¢ in the range 5300-
9600 dm*mol ' cm™") with weak absorption tails at >460 nm
(e in the range 400-600 dm®mol~'cm™). These absorptions

Table 1. Physical data of complexes 1-5.
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Figure 2. Perspective view (top) and molecular packing (bottom) of com-
plex 5 (all hydrogen atoms are omitted for clarity).

are assigned to intraligand 'm-m* transitions of the
O~NACAN ligands and mixed 'MLCT/'n—m* transitions
(MLCT =metal-to-ligand charge transfer), respectively.

Complexes 1-5 show vibronic structured emission bands
at A, in the range 480-520 nm with emission quantum
yields of 0.72-0.93 and emission lifetimes (7) in the micro-
second time regime in degassed CH,Cl, (Table 1). As the vi-
brational spacings of 1300-1400 cm™' correspond to the
C=N/C=C stretching frequencies of the O*N*C”N ligands,
the emissions are attributed to come from triplet excited
states with predominant ligand character.

Upon increase in complex concentration, a low-energy
emission is observed with 2, 4, or 5 in CH,Cl,. As depicted
in Figure 3, the high-energy vibronic structured emission at

UV/Vis absorption!®! Emission HOMOY LUMOY  Electro- T,
Amax [nm] (e [x 10* mol ' dm*cm™]) Solution 1! Quantum K, [eV] [eV] chemical [°C]
Amax[nm] (7 [ps]) yield™ [mol'dm?s™'] bandgap [eV]"¥!

1 254 (4.59), 280 (3.16), 354 (1.77), 390 (1.46), 485, 517, 557 (120) 0.7 5.4x10° 511 262 2.49 414
426 (0.91)

2 254 (4.24),261 (4.18),290 (2.51), 352 (1.71), 488, 522 (28.0) 0.80 3.3x10°% -5.17 —2.66 2.51 418
388 (1.42), 429 (0.57)

3 247 (3.72), 261 (3.43), 279 (2.67), 356 (1.52), 508, 543,594 (11.0)  0.89 8.5x10° -5.12 —2.70 2.42 411
395 (1.15), 439 (0.70)

4 251 (4.82), 261 (4.55), 294 (2.07), 350 (1.83), 488, 518 (13.2) 0.93 13x10° _5.15 27 243 406
381(1.40), 424 (0.86)

5 245 (4.58), 259 (4.45), 289 (2.65), 3.01 (1.86), 482, 512 (17.7) 0.75 12x10° 524 27 2.53 432

349 (1.78), 376 (1.35), 424 (0.66)

[a] Determined in degassed CH,Cl, (2x10~> moldm~). [b] Emission quantum yield was measured in degassed CH,Cl, (2x 10~> moldm~) by the optical
dilute method with [Ru(bpy);](PF), (bpy =2,2'-bipyridine) in degassed CH;CN as standard (¢, =0.062). [c] Self-quenching constant. [d] The HOMO and

LUMO levels are estimated from onset potentials using Cp,Fe”*
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value of 4.8 eV below the vacuum level.
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Figure 3. Emission spectra of 1-5 in CH,CI, (top: 2.0x10~° moldm™;
bottom: 1.0x 10~* moldm ).

480-520 nm decreases in intensity, while a low-energy emis-
sion band at about 620 nm develops as the complex concen-
tration increases from 2x107° to 1x10™*moldm™ (see
Figure 3 and Figure S15 in the Supporting Information). As
the excitation spectra for both the high- and low-energy
emissions are the same and the absorption spectra of these
three Pt" complexes obey the Beer—Lambert law in the con-
centration range of 2x107° to 1x10™*moldm™?, the low-
energy emission in each of the three cases should not come
from a ground-state dimer of the Pt" complex with a close
Pt--Pt contact. Instead, we attribute this finding to excimer
emission. In contrast, both 1 and 3 display high-energy vi-
bronic structured emission even at concentrations of 1x
10~ moldm™ (Figure 3). The details are given in Figure S14
in the Supporting Information.

DFT/TDDFT calculations were performed on complexes
3 and 5. Two triplet excited states, labeled here as ‘MLCT,
and *MLCTj}, have been located for both complexes. For
*MLCT,, the transition is mainly localized on the phenyl
and pyridyl rings of the ON~CAN ligand, whereas for
*MLCTj, the transition is localized mainly on the phenyl
and the indenyl rings (see Figure 4 for the difference density
plots for the two triplet excited states of §; similar plots

Chem. Eur. J. 2013, 19, 69-73
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Figure 4. Difference density plots of *MLCT, (left) and * MLCTj (right)
for complex 5. Black: decrease in electron density; gray: increase in elec-
tron density.

were found for complex 3, see the Supporting Information).
In the case of 5, these two triplet excited states are separat-
ed by about 0.18-0.24 eV in CH,Cl,, with *MLCTjy being
lower in energy at their optimized geometries. The calculat-
ed emission energies for *"MLCT, and *MLCTjy are 564 and
593-642 nm, respectively.'”! On the other hand, for 3, the
two triplet excited states are quasi-degenerate in CH,Cl,,
with *MLCT, being 0.01-0.07 eV more stable than *MLCTp,
The calculated emission energies for *MLCT, and *MLCTjy
are 586 and 555 nm, respectively. Thus, for 5, two emission
peaks are observed, while for 3, the two emission peaks may
coincide. We thus assign the high-energy emission peak of §
at 480-520 nm to be derived from *MLCT, and the accom-
panying low-energy emission peak at 620 nm to be coming
from *MLCTj, whereas for 3, the band at about 510 nm may
possibly arise from both *MLCT, and *MLCTj,

Conventionally, the low-energy emission that grows as the
concentration increases is attributed to excimer formation.
Here, we propose that the low-energy “excimer”-like emis-
sion of § at about 620 nm could be mainly attributed to
emission from the *MLCT}y excited state localized on one
[Pt(OAN~CAN)] motif. We have also performed calculations
of the dimer of complex 5 to see if there is a triplet excited
state that delocalizes over the two monomers and has simi-
lar emission energy as the low-energy emission at about
620 nm. It was found that the optimized triplet excited state
of the dimer of 5 is localized on only one monomer and the
nature is similar to *MLCT}, with emission energy calculated
to be at approximately 640 nm (see Figure 5).

The strong excimer emission of 5 with high emission
quantum yield even in dilute solution (x 10~ moldm™) sug-
gests the potential of using this complex as a single emitter
for WOLEDs. Devices A-F were fabricated with a simple
configuration of ITO/NPB (40 nm)/mCP:complex 5 (6-
16 %, 30 nm)/BAlq (40 nm)/LiF (0.5 nm)/Al (80 nm) [ITO=
indium tin oxide; NPB=N,N'-diphenyl-N,N'-bis(1-naph-
thyl)-(1,1-biphenyl)-4,4'-diamine; mCP =1,3-bis(N-carbazo-
lyl)benzene; BAIlq=aluminum(III) bis(2-methyl-8-quinoli-
nate)-4-phenylphenolate]. The electroluminescence (EL)
spectra and CIE coordinates of devices A-F are depicted in
Figures 6 and 7, respectively. Device A (6%, complex 5)
shows a warm white emission with CIE coordinates of (0.32,
0.43), 1 (max) Of 36.6 cdA™", Ny Of 25.5Im W™, and 7, of

www.chemeurj.org — 71
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Figure 5. Difference density plots of the optimized triplet excited state of
complex 5 dimer. Black: decrease in electron density; gray: increase in
electron density.
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Figure 6. Top: EL spectra of devices A-F based on complex 5§ with 6—
16% dopant concentration at 100 cdm™. Bottom: EL spectra of device
A at different luminance (inset: a plot of CIE against luminance).

17.7% (Table S16 in the Supporting Information). The EL
spectra and CIE coordinates of device A are insensitive to
luminance (1-1000 cdm?) (Figure 6).

To further improve the device efficiency, an electron
blocking layer (EBL) was inserted between the hole-trans-
port layer and the emissive layer to give devices G-J (ITO/
NPB (40 nm)/EBL (10 nm; G: mCP or H: TCTA or I: [Ir-
(ppz);]; J: NPB)/mCP:complex 5 (6%, 20nm)/BAlq
(40 nm)/LiF (0.5 nm)/Al (80 nm) [TCTA =44'4"-tris-(N-
carbazolyl)triphenlyamine]. The CIE coordinates of devices

77— www.chemeurj.org
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Figure 7. CIE 1931 chromaticity coordinates of devices A-F, H, and K;
the inset shows a photograph of device H at 9 V.

G-J were kept to be the same as device A at around (0.32,
0.43) with CRI about 77. The turn-on voltages of devices G—
J were found to be below 4 V. Values for the parameters
Mimay Of 71.0cdA™", 5y Of 55.8ImW™', and #5g, of
16.5% were obtained with device H (Table S16 in the Sup-
porting Information). The performance of device H is com-
parable with the WOLED fabricated by Jabbour et al. and
Williams et al. by using FPt1'® and [Pt(NACAN)CI|!"*2"
(Figure 1), respectively, as single emissive dopant, which
have the an ng, of about 18% and #,u. of about
30 lmW

To demonstrate further application of these complexes,
white polymer light-emitting devices (WPLEDs) based on
the emissions of complex 5 were fabricated and character-
ized. The optimized device (device K) had a struc-
ture of ITO/PEDOT:PSS/PVK:0OXD-7:complex 5/TmPyPb
(40 nm)/LiF (0.8 nm)/Al (100 nm) [PEDOT:PSS=poly(3,4-
ethylenedioxythiophene):poly(styrene sulfonate); PVK=
polyvinylcarbazole, OXD-7 =1,3-bis[(4-tert-butylphenyl)-
1,3,4-oxadiazolyl|phenylene, TmPyPb=1,35-tri(m-pyrid-3-
ylphenyl)benzene]. In the active layer, the weight ratio of
PVK/OXD-7/complex 5§ was 100:5:20. A value of 17.0 cd A™"
for 7y (max) Was obtained at 100 cdm™. In addition, the EL
spectrum was stable, CIE coordinates were only slightly
shifted from (0.43, 0.45) with CRI=78 at 100 cdm™ to
(0.44, 0.44) with CRI=81 at 10000 cdm> (Figure 7 and
Table S16 in the Supporting Information). To the best of our
knowledge, the efficiencies of device K with 5 as single
emissive dopant are the best among the reported blend-type
WPLEDs.!l
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In conclusion, a series of highly robust platinum(IT) com-
plexes 1-5 supported by tetradentate O~N"C~N ligands
with high emission quantum yields (0.72-0.93) and high T}
(> 400°C) have been synthesized. And high-efficiency
WOLED (1L (may=71.0 cd A", 7pmay =558 ImW ', 7=
16.5%, CIE=0.33, 042, CRI=77) and WPLED (y =
17.0cdA™, 7,=911mW™, 55, =9.7%, CIE=0.43, 0.45,
CRI=178) have been achieved with single emissive dopant 5.
DFT/TDDFT calculations revealed that the low-energy
emission of 5 comes from excimeric excited state with a lo-
calized structure. We thus conceive that it may be possible
to obtain both high- and low-energy emissions with high
quantum yields by varying the substitution pattern of the
tetradentate ligands without recourse to *MMLCT excited
state, which is governed by Pt---Pt contacts, a factor difficult
to be systematically varied or controlled.
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