SYNTHESIS AND REPELLENT PROPERTIES

OF N-ALKYLANILIDES AND ESTERS

OF BUTANESULFONIC ACID

V. B. Kazhdan, Yu. A. Naumov, I. D. Dunaeva, and M. V. Moskvicheva UDC 615.285.7:547.436

There are compounds possessing expressed repellent activity in relation to insects [1-3] among disubstituted amides and esters of organic sulfonic acids. In this connection, it was of interest to us to synthesize and examine a series of N-alkylanilides and esters of butanesulfonic acid as insect repellents, all the more because, according to literature data [4], certain acyl derivatives of alkylanilides, for example butylacetanilide, are active mite repellents.

N-Alkylanilides (I-V) were obtained by reaction of butanesulfonyl chloride with N-alkylanilines in the presence of pyridine.

$$C_4H_9SO_2Cl + C_6H_5NHR \rightarrow C_4H_9SO_2N (C_6H_5) R.$$

These are thick pale-yellow liquids or colorless crystalline materials without odor (Table 1).

Esters of butanesulfonic acids (VI-XVI) were synthesized by reaction of butanesulfonyl chloride with basic solutions of phenols at room temperature [5-7].

$$C_4H_9SO_2CI + HOC_6H_4R \rightarrow C_4H_9SO_2OC_6H_4R$$
.

The obtained aromatic esters are thick light-yellow liquids; a portion of the compounds are colorless crystalline materials (Table 2).

Aliphatic esters of butanesulfonic acid (XVII-XXV) were synthesized by reaction of butanesulfonylchloride with alcohols in pyridine.

$$C_4H_9SO_2Cl + ROH \rightarrow C_4H_9SO_2OR$$
.
XVII – XXV

These compounds are colorless or lightly yellow liquids having a unique odor; methoxy- and ethoxyethyl esters (XXIV and XXV) darken strongly upon standing in air. Constants of the synthesized compounds are presented in Table 3.

The repellent activity of the obtained compounds was studied by the method developed at the Miltary-Medicinal Academy [8]. The preparations were applied to a cotton diagonal in a dose of 40 g/m², using the flea <u>Ceratophyllus tesquorum</u> as the biological model. The effectiveness of the investigated materials was evaluated from the size of coefficients of repellent effect (CRE) on the day of treatment of the fabric, and in the case of sufficiently expressed repellent properties, additionally after each two weeks until CRE fell below 70%.

All experiments were set in five repetitions using 100 fleas in each of them. Examination was carried out at a temperature of 20-22°C and a relative humidity of the air of 55-75%. Experimental samples were

Kirov Military-Medicinal Academy. Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 6, No. 2, pp. 6-10, February, 1972. Original article submitted July 30, 1970

© 1973 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without permission of the publisher. A copy of this article is available from the publisher for \$15.00.

TABLE 1. N-Alkylanilides of Butanesulfonic Acid

						Four	Found, %				Calcu	Calculated, %	φ 20	
Compound	æ	Yield,	dq	dur	"20 D	, C	7	2	v	Empirical formula	C	ı	Z	v.
		ol,	deg			,	;	-	,		,	:		, [
1	CH3	92,1	143—145 (0,3 mm)	5254	I				13,96	C ₁₁ H ₁₇ NO ₂ S	58,12	58,12 7,54 6,16 14,10	6,16	14,10
=	C ₂ H ₅	41,5	142145 (0,3 mm)	1	1,5159				12,57	C ₁₂ H ₁₉ NO ₂ S	59,72 7,93	7,93	5,80	13,28
Ш	C ₃ H,	44,5	178—180 (0,75 mm)	америа	1,5099				12,35	C ₁₃ H ₂₁ NO ₂ S	61,14	61,14 8,29	5,49	12,55
ΙV	C4H,	87,4	145—148 (0,2 mm)	30—31	Í				11,83	C ₁₄ H ₂₃ NO ₂ S	62,42	62,42 8,61 5,19	61,19	11,90
^	C ₅ H ₁₁	46,6	140—142 (0,25 mm)	27—28	l	63,74 63,74	0,00,00 0,00,00 0,00,00	, 0, 0, 0 0, 10, 0	11,12	C ₁₅ H ₂₅ NO ₂ S	63,34	63,34 8,86	4,93	11,27

TABLE 2. Aromatic Esters of Butanesulfonic Acid

	S	1		14,04	14,04	13,12	13,12	13,12	11,86	- 1	11,31
Calculated, %	н	1	-	2,06	7,06	09'9	09'9	09'9	8,21	1	4,27
Calct	ပ	ı	1	57,86	57,86	54,08	54,08	54,08	62,18	I	42,41
Empirical	Empirical formula		1	$C_{11}H_{14}O_8S$	$C_{11}H_{16}O_3S$	$C_{11}H_{16}O_4S$	C11H16O4S	C11H16O4S	C14H22O8S	1	C ₁₀ H ₁₂ Cl ₂ O ₃ S
	s	ı		13,60	13,90 13,85 13,85				12,00	2	10,92
Found, %	Н			7,22	6,85 6,75	7,05	86,7	7,10	8,8,8 10,70	51	4,65
Fou	၁			57,47	57,71 57,71 57,64	53,73	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	54,8 1,00	62,02		42,59
20 nD		1 5096	1,0020	1,5042	1,5038	1.	1,5101	1,5108	1,5102	1,5170	1,5162
20	d4]	1,1433	1,1408	atendo	1,1964	1,1947	1,0802	******	1,3496
	mp (deg)	100 106 (1 9 01	123 120 (1-21)	124—127 (0,6 mm)	122—125 (0,5 mm)	138—142 (0,6 mm)	134—138 (0,2mm)	150—152 (0,6 mm)	138—140 (0,8 mm)	125—129 (0.7 mm)	144—146 (1 mm) 128—132 (0,3 mm)
Vield	iniain,	7.02	# C	71,1	6119	66,4	71,3	70,1	43,0		79,0
	œ		-	o-CH ₃	p-CH3	o-CH3O	O ^c HO-m	p-CH ₃ O	2-iso -C ₃ H ₇ -	E CH	D-d-o
	bound		-I ^	riio Niii	XI	×	ΙX	ХІІ	XIII	V 177	XVIX XVI3

*Literature data: VI, bp. 166° (10 mm), n β 1.5011 [5]; VII, bp 150-152° (5 mm), n β 1.5120 [7]; XV, bp 186-189° (7 mm), n β 1.5165 [5]. † bp 42.5-43.5°. † Found, %: CI 24.65, 24.81. Calculated, %: CI 25.07.

TABLE 3. Aliphatic Esters of Butanesulfonic Acid

						Fou	Found, %			Calc	Calculated.	60
	Ω	Yield.	Bn(dea)	420	020			4	Empirical			
	:	9%	r	ŧ.	÷	o	H	S	formula	0	Ξ	S
П	XVII C5H11	8,89	110—114 (0,9 mm)	1,0128	1,4361	51,92	10,08	15,18	C ₉ H ₂₀ O ₃ S	51,88	79,6	15,38
XVIII	iso-C ₅ H ₁₁	68,3	104—107 (1 mm)	1,0411	1,4360	. 12. 88. 88.	10,13	15,12	C ₉ H ₂₀ O ₃ S	51,88	29'6	15,38
×	XIX C ₆ H ₁₃	6,77	115—117 (0,7 mm)	1,0066	1,4384	53,80 08,80 08,80	76,6	14,33	C10H22O3S	54,02	26'6	14,42
XX	C,H _I s	74,2	140—143 (1 mm)	0,9916	1,4420	55,55 7,84,55	10,28	13,43	$C_{11}H_{24}O_3S$	55,89	10,24	13,57
XXI	CH,	78,8	140144 (1 mm)	9086,0	1,4423	57,89	10,70	12,74	C ₁₂ H ₂₆ O ₃ S	57,56	10,47	12,81
ххп	C ₆ H ₁₉	76,1	153—155 (1 mm)	0,9760	1,4440	59,65	10,53	12,53	$C_{13}H_{28}O_3S$	59,04	10,67	12,12
ххш	C ₁₀ H ₂₁	75,5	150—157 (1 mm)	0,9607	1,4454	86,93 22,23 24,23	11,13	11,40	C ₁₄ H ₃₀ O ₃ S	86,09	10,86	11,52
N	XXIV CH2CH2OCH3	33,7	95—98 (0,6 mm)	1,1311	1,4400	42,89	8,56 8,56	16,22	C,H1604S	42,84	8,21	16,34
\ \ \	XXV CH2CH2OC2H5	0'69	125—127 (0,4 mm)	1,0986	1,4384	45,13 45,33	8,8 1,28 1,28	14,89	C ₈ H ₁₈ O ₄ S	45,69	8,62	15,25

TABLE 4. Repellent Activity of Derivatives of Butanesulfonic Acid in Relation to Fleas C. tesquorum (dose 40 g/m², exposure 1 min)

			E(%)					CRE. %						
Com- pound	ter eatment the cloth	weeks	after	treatr	nent		Compound	after treatment of the cloth	wee	ks af	ter t	reatr	nent	
	after treati of the	2	4	6	8	10		after treatr of the	2	4	6	8	10	
I	87	73	16.			_	XIV	90	77	84	62	_		
II	93	68				l —	XV	81	61		_	—		
111	49		_		l —		XVI	64			 	 -		
IV	18		_		_	-	XVII	81	65		 	-		
v	0 .		_		-	_	XVIII	100	62		 	-	-	
VI	90	77	84	69	_		XIX	90	47			_		
VII	95	67			l —	_	XX	91	63			_		
VIII	87	83	75	80	88	55	XXI	76	63			_		
IX	75	68			 	-	XXII	91	46			-		
X	63				—	 —	XXIII	92	63		—	-	_	
XI	81	56			l —	l —	XXIV	98	91	81	17			
XII	90	62				-	XXV	97	96	81	75	73	45	
XIII	47		_				N, N-Di- ethyl-m- toluamide	100	100	85	46	_	_	

stored under these same conditions. Diethyltoluamide served as a standard. Results of examinations are presented in Table 4. As is seen, of the synthesized groups of compounds the most effect had the aliphatic esters of butanesulfonic acid, the CRE of the majority of which was greater than 90% upon fresh impregnation of the cloth. However, with the exception of the methoxyethyl (XXIV) and ethoxyethyl (XXV) esters, similar in strength and duration of effect to diethyltoluamide, taken as a standard, all compounds of this group were found to be unstable and virtually lost activity already in the course of the first two weeks.

All compounds of the group of aromatic esters of butanesulfonic acid also showed significant repellant activity, but among the most strongly acting of them, the phenyl (VI), o-cresyl (VII), m-cresyl (VIII), p-methoxyphenyl (XII), and o-chlorophenyl (XIV) esters, only (VI), (VIII), and (XIV) did not yield in length of effect to diethyltoluamide.

Of the N-alkylanilides of butanesulfonic acid, the methyl- and ethylanilides (I and II) showed expressed effectiveness, but at low stability. The remaining compounds of the given homologous series were found to be virtually inactive.

LITERATURE CITED

- 1. B. V. Aleksandrov, V. T. Osipyan, A. K. Shustrov, et al., Author's Certificate No. 188212; Byull. Izobret., No. 21 (1966).
- 2. L. K. Maslii and T. P. Razbegaeva, Zh. Organ. Khim., 2, 2014 (1966).
- 3. G. S. Pervomaiskii, V. T. Osipyan, V. B. Kazhdan, et al., Med. Parazitol., No. 6, 730 (1967).
- 4. V. I. Vashkov, M. I. Brun, and V. I. Zakolodkina, Tr. Tsentral'nogo Nauchno-Issled. Dezinfektsionnogo In-ta, 12, 210 (1959).
- 5. V. D. Azatyan and G. T. Esayan, Izv. Akad. Nauk Armyansk. SSR, Khim. Nauki, 11, 369 (1958).
- 6. V. D. Azatyan, G. T. Esayan, and A. O. Nshanyan, Izv. Akad. Nauk Armyansk. SSR, Khim. Nauki, 14, No. 2, 173 (1961).
- 7. G. T. Esayan, S. G. Agbalyan, and M. A. Grigoryan, Izv. Akad. Nauk Arm. SSR, Khim. Nauki, 15, 279 (1962).
- 8. V. B. Kazhdan, B. S. Grabovskii, and I. D. Dunaeva, Med. Parazitol., No. 3, 327 (1967).