

Synthesis of Pyrimidine-Modified NHC Ruthenium-Alkylidene Catalysts and Their Application in RCM, CM, EM and ROMP Reactions

Guang-Long Wu,^[a,b] Sheng-Li Cao,^{*[a]} Jian Chen,^{*[b]} and Zili Chen^{*[c]}

Keywords: Synthetic methods / Homogeneous catalysis / Ruthenium / Nitrogen heterocycles / Metathesis

A new type of N-heterocyclic carbene bearing ruthenium olefin metathesis catalyst was prepared through the incorporation of a chelated pyrimidinyl methylene subunit, in which electron-rich substituents were attached to stabilize the ruthenium complexes. These catalysts were successfully used in various types of olefin metathesis reactions, including

Introduction

The development of powerful air-stable catalysts has made olefin metathesis an indispensable tool in a variety of fields including organic synthesis, materials science, and biochemistry.^[1] Among multiple metal-based complexes enabling olefin metathesis transformations, ruthenium-benzylidene pre-catalysts bearing N-heterocyclic carbene (NHC) ligands exhibited extraordinary activity and stability.^[2] Mechanistic studies upon the NHC-complexed rutheniumbenzylidene pre-catalysts 1 (Figure 1) revealed that a low ratio of phosphane reassociation to substrate binding was necessary for its high activity.^[3] In 2000, phosphane-free NHC complex 2 (Grubbs-Hoveyda catalyst) was developed, in which, a chelating benzylidene structure (Figure 1) provided superior stability.^[4] However, this catalyst initiates ring-closing metathesis (RCM), cross-metathesis (CM), enyne metathesis (EM), and ring-opening metathesis polymerization (ROMP) reactions. The results therein showed that the presence of an electron-deficient pyrimidine structure greatly enhanced the new NHC ruthenium complexes' catalytic activities.

more slowly than highly-active catalyst **1** as a result of steric (large isopropoxy group) and electronic factors (*i*PrO to ruthenium electron donation). Based on these findings, significant effort has been devoted to develop stable and active new catalysts through modifying the benzylidene unit or chelated isopropoxy fragment of complex 2.^[5–7]

In order to enhance the leaving ability of the benzylidene ligand, complex **3** was reported by Blechert group, which increased the neighboring steric bulk of the isopropoxy group (Figure 1).^[6] Almost at the same time, the Grela group developed complex **4** through a different approach, in which an electron-withdrawing nitro group was introduced to reduce the benzylidene unit's chelating ability (Figure 1), thus facilitating formation of the catalytically active 14-electron Ru carbene species, and suppressing repeated reassociation to the metal center.^[7] We herein want

Figure 1. Ruthenium metathesis catalysts.

- [a] Department of Chemistry, Capital Normal University, Beijing 100048, P. R. China E-mail: slcao@cnu.edu.cn Homepage: http://202.204.208.66/hxx/index.php?q=node/207
- [b] Bioduro (Beijing) Co. Ltd., Beijing 102206, P. R. China
- [c] Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201200989.

to report a new variant of complex 2 in which we replace the phenyl group with an electron-deficient pyrimidine unit (complex 5, Figure 1). We envisioned that the presence of the electron-deficient pyrimidine group would also improve the ruthenium complex's reactivity. Additionally, the ease of introducing functionality between the two nitrogen atoms in complex 5 might provide new possibilities in the design of new types of ruthenium olefin-metathesis cata-

lysts. In previous reports, a heterocyclic pyridine group has been used as a complexing ligand in phosphane-free ruthenium catalysts.^[8] However, this is the first report, to the best of our knowledge, of incorporating a chelating heterocyclic unit into the alkylidene unit in NHC-ruthenium complexes (Figure 1).

Results and Discussion

A variety of vinylpyrimidine derivatives 8a-f have been designed for the preparation of the pyrimidine-modified NHC ruthenium-alkylidene complexes 5. Our synthetic routes started from commercially available 5-bromopyrimidin-4(3*H*)-one (6) and 5-bromo-2,4-dichloropyrimidine (9). As shown in Scheme 1, treating compound 6 with POCl₃ under reflux conditions gave its 4-chloro analogue, which then reacted with *i*PrONa in THF at low temperature to provide 7a in 90% yield (2 steps). Stille coupling of 7a with tributylvinyltin by using palladium catalysis in a mixture of dioxane/H₂O afforded 4-isopropoxy-5-vinylpyrimidine (8a) in 89% yield. However, the reaction of 8a with complex 1 in CH₂Cl₂ gave no desired pyrimidine-modified NHC ruthenium-alkylidene 5a, possibly owing to its instability.^[9,10]

We then turned to synthesize 2,4-diisopropoxy-5-vinylpyrimidine (8b). Its bromo precursor 7b was prepared from reaction of compound **9** with *i*PrONa (2 equiv.). Stille coupling of **7b** provided **8b** in 84% yield. But the effort to synthesize **5b** from **8b** was fruitless.

We considered that a more electron-rich pyrimidinylmethylene subunit would stabilize the ruthenium complex. Therefore, electron-rich amino substituents bearing vinylpyrimidine derivatives **8c–e** were designed. Treating **9** with *i*PrONa (1 mol equiv.), followed by piperidine attachment readily afforded 4-isopropoxy-2-piperidiny-5-vinylpyrimidine (**7c**) in 85% yield. Compound **8c**, synthesized from **7c** through a Stille coupling, reacted with complex **1** in CH₂Cl₂ by using CuCl as a scavenger, giving pyrimidine-modified NHC ruthenium-alkylidene complex **5c** in 75% yield. Similarly, complexes **5d** and **5e** were also prepared in moderate to good yields through four step reactions (Scheme 1).

A symmetric dimeric pyrimidine-modified NHC ruthenium-alkylidene **5f** was then synthesized by using piperazine as the bridge. Successive treatment of **9** with *i*PrONa (1 mol equiv.) and piperazine (0.5 mol equiv.) gave **7f** in 91% yield. Subsequent vinyl coupling and complexation with ruthenium afforded dimeric complex **5f** in 72% yield (Scheme 1).

The structures of complexes **5c–f** were all characterized from their ¹H NMR and ¹³C NMR spectroscopic data and element analyses.

Scheme 1. Preparation of catalysts **5c**–f. *Reagents and conditions:* (a) POCl₃, reflux, 2 h. (b) THF, *i*PrONa (1.0 equiv.), -20 °C to r.t. (c) CH₂=CHSnBu₃ (1.5 equiv.), Pd(dppf)Cl₂ (5 mol-% equiv.), dioxane/H₂O (5:1), 60 °C, overnight. (d) **1** (1.05 equiv.), CuCl (3.0 equiv.), CH₂Cl₂, reflux, 1 h. (e) THF, *i*PrONa (2.0 equiv.), -20 °C to r.t.. (f) RH (3.0 equiv.), 60 °C, 6 h. (g) Piperazine (0.5 equiv.), 60 °C, 6 h. (h) CH₂=CHSnBu₃ (3 equiv.), Pd(dppf)Cl₂ (0.1 equiv.), dioxane, H₂O, 60 °C, overnight. (i) **1** (2.1 equiv.), CuCl (6.0 equiv.), CH₂Cl₂, reflux, 1 h.

Having these new complexes in hand, we started to explore their relative catalytic activities. RCM reaction of diallyltosylamide (**10a**) was chosen as the model system for our initial investigation. All representative results are collected in Figure 2. As shown in Figure 2, the difference between the catalytic activities of complexes **5c**, **5e** and **5f** were minimal. Complex **5d** exhibited the lowest activity, whereas **5c** and **5f** showed better activities. Although the activities of **5c–f** were lower than that of catalyst **4**, complexes **5c–f** were dramatically more active than parent Hoveyda catalyst **2**. Interestingly, bis-ruthenium complex **5f** (0.5 mol-% of **5f**) initializes the reaction visibly faster than mono-ruthenium **5c**, **5d** and **5e** (1.0 mol-%; Figure 2).

Figure 2. Relative rates of diene 10a's RCM reaction with catalysts 2, 5c, 5d and 5e (1 mol-%), and 5f (0.5 mol-%). (diamond: catalyst 2, square: catalyst 4, triangle: catalyst 5c, cross: 5d, asterisk: 5e, circle: 5f).

In order to further explore the complexes' catalytic activities, a series of low-catalyst-loading experiments were performed. RCM reactions of diene substrates **10a**, **10d**, **10f** and **10g** were tested, in which four carbo- or heterocyclic molecules **11** were obtained. As shown in Table 1, three levels of catalyst loading (1 mol-%, 0.5 mol-% and 0.2 mol-% based on ruthenium metal concentration) were tested. When 1 mol-% of catalyst was utilized, all reactions were complete in 1 h, giving the desired product in quantitative yields (Table 1, Entries 1, 4, 7 and 10). When 0.5 mol-% of catalyst was added, high reaction yields were obtained in 2 h (Table 1, Entries 2, 5, 8 and 11). However, when 0.2 mol-% of catalyst was added, the reaction yields decreased significantly, even after a longer reaction time (Table 1, Entries 3, 6, 9 and 12).

Encouraged by previous results, metathesis reactions of various diene or enyne substrates were then examined and representative results are shown in Table 2. As illustrated in Table 2, complexes **5c**–**e** served as effective catalysts for the formation of di- and trisubstituted five-, six-, and seven-membered cyclic molecules from TsN- or malonate-bridged

TD 1 1	1	т , 1	. 1	1.	• •	[a 1	h
Lable	I .	Low-catal	vst-le	oading	experiment	[a,	υ
raore	±.	Don outur	, oc 1	outaning	enpermient.		

	Substrate	Product	Catalyst	Yield [%] ^[c]			
	Substrate	Tioduct	loading	5c	5d	5e	5f
1 ^[e]	TaN	Ts	1.0%	99 (98 ^[d])	99	99	99
2			0.5%	99	99	98	99
3	10a	11a	0.2%	41	50	31	52
4	TsN	TsN	1.0%	99	99 (95 ^[d])	99	99
5			0.5%	99	99	99	99
6	100	110	0.2%	64	59	61	72
7		\sum	1.0%	99	99	99 (93 ^[d])	99
8	105	MeO ₂ C CO ₂ Me	0.5%	99	98	95	99
9	101		0.2%	44	50	31	26
10		$\int \mathcal{O}$	1.0%	99	99	99	99 (99 ^[d])
11	10a	Ph Ph	0.5%	99	99	99	99
12	.59	11g	0.2%	73	60	61	75

[a] Unless noted, all reactions were performed in CH_2Cl_2 at 25 °C and the catalyst loading ranged from 1.0% to 0.2% (based on ruthenium metal concentration). [b] Reaction time: 1 h for 1.0% catalyst loading, 2 h for 0.5% and 4 h for 0.2%. [c] Yields were determined by GC. [d] Isolated yields. [e] The percentage recovery of catalysts **5c–f: 5c**, 74%; **5d**, 68%; **5e**, 71%; **5f**, 27%.

Table 2. Catalysts 5c, 5d, 5e and 5f in RCM and EM reactions.^[a]

Entry	Substrate	Cataly	st ([mol-%	%]) Conditions	Product	Yield [%] ^[b]
	~	5c	0.50	25 °C 2 h		>99
1		5d	0.50	25 °C 2 h	ToN	>99
	TsN	5e	0.50	25 °C 2 h	ISIN	>98
	10a	5f	0.25	25 °C 2 h	11a	>99
	~ //	5c	0.50	25 °C 2 h	~	95
2		5d	0.50	25 °C 2 h		>99
	TsŃ,	5e	0.50	25 °C 2 h	TsN	96
	10b	5f	0.25	25 °C 2 h	11b	>98(97 ^[c])
		50	0.50	25 °C 2 h	~	>99
3	/-NTs //	50	0.50	25 0 21		>99
	$\langle \neg \langle$	50	0.50	25 0 21	TsN.	96
	10c	5e 5f	0.25	25 °C 2 h	11c	>99(97 ^[c])
	100				110	>00
4	\frown	5c	0.50	25 °C 2 h	\frown	>99
4	TsN	5d	0.50	25 °C 2 h	TsN	>00
		5e	0.50	25 °C 2 h	\smile	>99
	10d	5f	0.25	25 °C 2 h	11d	-33
5[d]	1	5c	4.0	80 °C 5 h	~/	68
0		5d	4.0	80 °C 5 h	TsN	62
	TON	5e	4.0	80 °C 5 h		63
	100	5f	2.0	80 °C 5 h	11e	70(70 ^[C])
	IVe					
		5c	0.50	25 °C 2 h		>99
6	CO ₂ Me	5d	0.50	25 °C 2 h	CO ₂ Me	>98
	/ CO ₂ Me	5e	0.50	25 °C 2 h	└/ `CO₂Me	>95
	10f	5f	0.25	25 °C 2 h	11f	>99
		5c	0.50	25 °C 2 h	-	>99
-	.0.	5d	0.50	25 °C 2 h		>99
1	$X \sim \otimes$	5e	0.50	25 °C 2 h		>99
	Ph Ph	5f	0.25	25 °C 2 h	Ph Ph	>99
	10g				11g	[0].
		5c	0.50	25 °C 2 h	5	>99(95 ^[C])
8		5d	0.50	25 °C 2 h		97
	Ph	5e	0.50	25 °C 2 h		96
	10h	5f	0.25	25 °C 2 h	11h	>99
				00.00.041		er (enici)
oldi	Ph.,	50	4.0	80 °C 24 h	Ph. N	00(00 ^{,01})
9 ^{rol}	N N	5d	4.0	80 °C 24 h		70
	Ph	5e	4.0	80 °C 24 h		15
	101	5f	2.0	80 °C 24 h	111 -	87

[a] Unless noted, all reactions were performed in CH_2Cl_2 and the catalyst loading ranged from 4.0% to 0.25% (based on ruthenium metal concentration). [b] Yields were determined by GC. [c] Isolated yields. [d] Decomposition of complexes **5c**–**f** were observed at a high temperature.

FULL PAPER

Table 3. Catalysts 5c and 5f in intermolecular cross-metathesis reaction.^[a]

	•	+		5c or 5f	R'	
	R ≫			DCM		
Entry	Substrate	e Ca	atalys	t (mol-%)	Product	Yield [%] ^[b]
1 ^{TE}	3SO ₁₁₄ +	EtO ₂ C	5c 5f	1.0 0.5	TBSO 4 13a (<i>E/Z</i> = 97/3)	92(89 ^[c]) 90
2 ^{TE}	3SO (14 12a +	NC /	5c 5f	4.0 1.0	TBSO 13b (E/Z =75/25)	70(65 ^[c]) 57
т 3	BSO (14 + 12a +	OAc OAc 12d , 2 equiv.	5c 5f	1.0 0.5	TBSO $(E/Z = 93/7)$	96(90 ^[c]) 94(93 ^[c])
4 ^[d] 7	rBSO (4 + 12a	CO ₂ Me NHCbz 12e, 2 equiv.	5c 5f	2.0 0.5	TBSO $(+)_4$ $(E/Z > 99/1)$	86(62 ^[c]) 2 85(65 ^[c])
5 ^[d] 1	rBSO ₁₄ + 12a	Ph 12f, 2 equiv.	5c 5f	2.0 0.5	TBSO 4 13e (<i>E/Z</i> > 99/1)	91(83 ^[c]) 90(85 ^[c])
6	Ph + 12f , 2eq	OAc OAc 12d, 2 equiv.	5c 5f	2.0 0.5	Ph OAc 13f (<i>E</i> / <i>Z</i> > 99/1)	87(84 ^[c]) 92(92 ^[c])

[a] Unless noted, all reactions were performed in CH_2Cl_2 for 2 h and the catalyst loading ranged from 1.0% to 4.0% (based on ruthenium metal concentration). [b] Yields were calculated from GC data. [c] Isolated yields. [d] Reaction time is 5 h.

substrates (Table 2, Entries 1–3, 5–7). The corresponding products were obtained in excellent yields at room temperature. In the reaction of diisobutenyl tosylamide substrate **10e**, tetrasubstituted olefin product **11e** was obtained in moderate yields in 5 h at an elevated temperature (Table 2, Entry 5). Enyne metathesis reaction of **10g** and **10h** afforded **11g** and **11h** in excellent yields at room temperature (Table 2, Entries 7 and 8). In addition, double-enyne metathesis reaction of dienyne substrate **10i** gave 3,3'-bipyrrole **11i** in moderate to good yields (Table 2, Entry 9). Relative to the results reported by the Grela group with catalyst **4**, complexes **5c–e** performed better in RCM reactions of **10g**.^[7]

We then turned to investigate the intermolecular CM reactions of various substrates by using **5c** and **5f** as catalysts (Table 3). In CM reactions of **12a** (1 mol equiv.) with other alkenes (2 mol equiv.), including electron-deficient acrylate **12b**, electron-rich 2-butene-1,4-diacetate **12d**, allylamine substrate **12e** and styrene (**12f**), unsymmetrical disubstituted olefin products **13c**–**f** were obtained in good to excellent yields with a high degree of *E*-selectivity. Whereas in the reaction of **12a** with acrylonitrile **12c**, low to moderate yields and poor E/Z selectivity were observed, the CM reaction of **12f** with **12d**, *E*-configuration cinnamyl acetate (**13f**) was obtained in high yield.

We studied the catalytic activity of the new pyrimidinebearing complexes in the ROMP of norbornene (14) by means of ¹H NMR spectroscopy monitoring (Table 4). It was found that ROMP reactions of 14 were complete in 30 min with catalysts 5c–f with catalyst loadings as low as 0.5 mol-% (based on ruthenium concentration). The *cis/trans* ratio of polymer 15 was similar to Grubbs' result.^[11,12]

Table 4. ROMP reactions of norbornene (14) with catalysts 5c, 5d, 5e and 5f^[a]

4	14	0.50 mol-% CDCl ₃ , 25	[Ru] ℃	√ * n
Cata	lyst ([mol-%])	Conditions	Conv. [%] ^[b]	cis/trans ratio ^[b]
5c	0.50%	25°C 0.5 h	99	42/58
5d	0.50%	25°C 0.5 h	99	45/55
5e	0.50%	25°C 0.5 h	99	46/54
5f	0.25%	25°C 0.5 h	99	43/57

[a] Unless noted, all reactions were performed in CH_2Cl_2 with 0.5 mol-% catalyst (based on ruthenium metal concentration). [b] Yield and *cis/trans* ratio were determined by means of NMR spectroscopy.

The air stabilities of complexes **5c–f** were also tested. As shown in Table 5, the catalytic activities of **5c–f** remained

the same after 10 to 30 d air-storage, which indicates that complexes 5c-f are quite stable.

Table 5. Stability study of the catalysts.[a]

[a] The catalysts were kept in air at room temperature. Unless noted, all reactions were performed in CH_2Cl_2 with 0.5 mol-% catalyst (based on ruthenium metal concentration). [b] Yields were determined by means of GC–MS analysis.

One of the unique properties of Hoveyda–Grubbs carbene **2** is that up to 95% of the catalyst can be recovered after the reaction.^[4] We also attempted to recover the catalysts in the RCM reactions of **10a** (Table 1, Entry 1). It was found that **5c**, **5d**, **5e** and **5f** could be recovered with good to moderate efficiency (74–27%, Table 1 footnote), whereas high temperatures and longer reaction times (Table 2, Entries 5 and 9) lead to decomposition of **5c–f**.

Conclusions

In conclusion, a series of pyrimidine-modified NHC ruthenium-alkylidene complexes 5c-f were prepared through the reaction of complex 1 with pyrimidine derivatives 8c-f. Electron-rich 2-substituents, such as morpholinyl-, piperazinyl- and tosyl-piperazinyl groups, were attached to enhance these complexes' stabilities. All these complexes exhibited good air-stability and excellent catalytic activity^[13] in metathesis reactions of dienes or enynes, and also in CM reactions and ROMP reactions. Considering its simple preparation, high activity and excellent stability, the preparation of new pyrimidine NHC ruthenium-alkylidene complexes could provide an attractive new approach to develop practical olefin metathesis catalysts.

Experimental Section

General: Unless otherwise noted, all reactions were performed under an inert atmosphere (N₂) with flame-dried glassware using standard techniques for manipulating air-sensitive compounds. The solvents were dried by distillation over the following drying agents: THF (Na/benzophenone), toluene (Na), *n*-pentane, *n*-hexane, CH₂Cl₂ (CaH₂), Et₂O (LiAlH₄), MeOH (Mg). All commercial reagents were used as received or purified by standard techniques where necessary. Column chromatography was performed using 200–300 mesh silica with the proper solvent system according to TLC analysis using KMnO₄ stain and UV light to visualize the reaction components. Unless otherwise noted, NMR spectra were

recorded in CDCl₃, with proton and carbon resonances at 300 and 75 MHz, respectively, and are referenced to the residual solvent signal at δ = 7.26 ppm for ¹H and δ = 77.36 ppm for ¹³C. Data for ¹H are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, sept = septet), coupling constant and integration. Data for ¹³C NMR are reported in terms of chemical shift.

5-Bromo-4-isopropoxypyrimidine (7a): A solution of 5-bromopyrimidin-4(3*H*)-one (6) (2 g, 11.5 mmol) in POCl₃ (10 mL) was heated to reflux for 2 h. After removal of the solvent, the residue was dissolved in THF (5 mL). A solution of sodium isopropanoxide (11.5 mmol, 1.0 equiv.) in anhydrous 2-propanol (20 mL) was then added dropwise at -20 °C under a N₂ atmosphere. After 1 h, the reaction mixture slowly warmed to room temperature. Concentration and purification with SiO₂ (eluant ethyl ether) afforded compound **7a** as a colorless oil (2.25 g, 90% yield). ¹H NMR (300 MHz, CDCl₃): δ = 8.69 (br. s, 2 H, aromatic H), 5.42 [sept, *J* = 6.3 Hz, 1 H, (CH₃)₂CHO], 1.42 [d, *J* = 6.3 Hz, 6 H, (CH₃)₂-CHO] ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 164.73, 158.22, 156.44, 90.05, 71.67, 22.14 ppm. MS (ESI): m/z = 217, 219 [M + H]⁺. HRMS (ESI): calcd. for C₇H₁₀⁷⁹BrN₂O [M + H]⁺ 216.9977; found 216.9983.

5-Bromo-2,4-diisopropoxypyrimidine (7b): To a solution of 5bromo-2,4-dichloropyrimidine (**9**, 2.5 g, 11.5 mmol) in THF (100 mL) was added a solution of sodium isopropanoxide (22 mmol, 2.0 equiv.) in anhydrous 2-propanol (50 mL) dropwise at -20 °C under a N₂ atmosphere. After 1 h, the reaction mixture slowly warmed to room temperature. The routine work-up procedure afforded **7b** as a colorless oil (3.04 g, 96% yield). ¹H NMR (300 MHz, CDCl₃): δ = 8.26 (s, 1 H, aromatic H), 5.41 [sept, *J* = 6.3 Hz, 1 H, (CH₃)₂CHO], 5.18 [sept, *J* = 6.3 Hz, 1 H, (CH₃)₂-CHO], 1.40–1.37 [m, 12 H, (CH₃)₂CHO] ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 166.20, 163.53, 159.38, 98.25, 71.45, 71.29, 22.29, 22.25 ppm. MS (ESI): *m*/*z* = 275, 277 [M + H]⁺. HRMS (ESI): calcd. for C₁₀H₁₆⁷⁹BrN₂O₂ [M + H]⁺ 275.0395; found 275.0379.

5-Bromo-4-isopropoxy-2-(morpholin-1-yl)pyrimidine (7c): To a solution of 5-bromo-2,4-dichloropyrimidine (9, 5 g, 21.9 mmol) in THF (100 mL) was added a solution of sodium isopropanoxide (21.9 mmol, 1.0 equiv.) in anhydrous 2-propanol (50 mL) dropwise at -20 °C under a N₂ atmosphere. After 1h, the reaction mixture slowly warmed to room temperature. Then, morphiline (1.9 g, 21.9 mmol) was slowly added. The reaction mixture was heated at 60 °C for 3 h. Concentration and purification with SiO₂ (eluant diethyl ether) afforded 7c as a white solid (5.63 g, 85% yield). ¹H NMR (300 MHz, CDCl₃): δ = 8.12 (s, 1 H, aromatic H), 5.30 [sept, J = 6.3 Hz, 1 H, (CH₃)₂CHO], 3.75–3.72 (m, 8 H, morpholinyl H), 1.38 [d, J = 6.3 Hz, 6 H, (CH₃)₂CHO] ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 164.58, 160.44, 158.67, 93.27, 70.51, 67.03, 44.84, 22.19 ppm. MS (ESI): m/z = 302, 304 [M + H]⁺. C₁₁H₁₆BrN₃O₂ (302.17): calcd. C 43.72, H 5.34, N 13.91; found C 44.33, H 5.26, N 13.84. HRMS (ESI): calcd. for $C_{11}H_{17}^{79}BrN_3O_2$ [M + H]⁺ 302.0504; found 302.0493.

5-Bromo-4-isopropoxy-2-(piperidin-1-yl)pyrimidine (7d): By using the same method as for the synthesis of 7c, compound 7d was obtained as a colorless oil (6.05 g, 92% yield). ¹H NMR (300 MHz, CDCl₃): δ = 8.09 (s, 1 H, aromatic H), 5.30 [sept, *J* = 6.3 Hz, 1 H, (CH₃)₂CHO], 3.72–3.68 (m, 4 H, CH₂NCH₂), 1.64–1.57 (m, 6 H, CH₂CH₂CH₂), 1.38 [d, *J* = 6.3 Hz, 6 H, (CH₃)₂CHO] ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 164.30, 160.38, 158.73, 91.75, 70.12, 45.50, 26.06, 25.21, 22.21 ppm. MS (ESI): *m*/*z* = 299, 301 [M]⁺. HRMS (EI): calcd. for C₁₂H₁₈BrN₃O 299.0633, 301.0613; found 299.0634, 301.0617.

5-Bromo-4-isopropoxy-2-(4-tosylpiperazin-1-yl)pyrimidine (7e): By using the same method as for the synthesis of **7c**, compound **7e** was obtained as a white solid (8.29 g, 83% yield). ¹H NMR (300 MHz, CDCl₃): δ = 8.04 (s, 1 H, aromatic H), 7.64 (d, *J* = 8.4 Hz, 2 H, aromatic H), 7.32 (d, *J* = 8.4 Hz, 2 H, aromatic H), 5.23 [sept, *J* = 6.3 Hz, 1 H, (CH₃)₂CHO], 3.85 (t, *J* = 4.8 Hz, 4 H, piperazinyl H), 3.02 (t, *J* = 4.8 Hz, 4 H, piperazinyl H), 2.41 (s, 3 H, CH₃Ph), 1.35 [d, *J* = 6.3 Hz, 6 H, (CH₃)₂CHO] ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 164.55, 159.86, 158.74, 144.08, 132.51, 129.97, 127.99, 93.46, 70.55, 46.15, 43.69, 22.13, 21.95 ppm. MS (ESI): *m*/*z* = 455, 457 [M + H]⁺. C₁₈H₂₃BrN₄O₃S (455.37): calcd. C 47.48, H 5.09, N 12.30; found C 47.30, H 5.05, N 12.02.

1,4-Bis(5-bromo-4-isopropoxypyrimidin-2-yl)piperazine (7f): By using the same method as for the synthesis of 7c, compound 7f was obtained as a white solid (5.12 g, 91% yield). ¹H NMR (300 MHz, CDCl₃): δ = 8.13 (s, 2 H, aromatic H), 5.32 [sept, *J* = 6.3 Hz, 2 H, (CH₃)₂CHO], 3.81 (s, 8 H, piperazinyl H), 1.40 [d, *J* = 6.3 Hz, 12 H, (CH₃)₂CHO] ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 164.56, 160.40, 158.79, 93.13, 70.50, 44.15, 22.22 ppm. MS (ESI): *m*/*z* = 517 [M + H]⁺. C₁₈H₂₄Br₂N₆O₂ (516.23): calcd. C 41.88, H 4.69, N 16.28; found C 41.83, H 4.68, N 16.11.

4-Isopropoxy-5-vinylpyrimidine (8a): To a solution of 7a (2.00 g, 9.22 mmol) in a mixture of dioxane (30 mL) and water (6 mL), was added tributyl(vinyl)stannane (4.38 g, 13.82 mmol, 1.5 equiv.), Pd(dppf)Cl₂ (337 mg, 0.46 mmol, 0.05 equiv.) and K₂CO₃ (2.55 g, 18.44 mmol, 2 equiv.). After stirring at 60 °C overnight under a N₂ atmosphere, the reaction mixture was filtered through a short pad of silica gel $(1 \times 5 \text{ cm})$ and washed with ethyl acetate $(3 \times 50 \text{ mL})$. Removal of the solvent and purification with SiO₂ (eluant 5% ethyl acetate/petroleum ether) afforded 8a as a colorless oil (1.35 g, 89% yield). ¹H NMR (300 MHz, CDCl₃): δ = 8.61 (s, 1 H, aromatic H), 8.47 (s, 1 H, aromatic H), 6.70 (dd, J = 17.7, 11.4 Hz, 1 H, ArCH=CH₂), 5.96 (dd, J = 17.7, 1.5 Hz, 1 H, ArCH=CH₂), 5.50-5.38 [m, 2 H, ArCH= CH_2 , (CH₃)₂CHO], 1.39 [d, J = 6.0 Hz, 6 H, $(CH_3)_2$ CHO] ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 167.80$, 160.19, 156.97, 154.49, 128.55, 118.55, 70.08, 22.19 ppm. MS (ESI): $m/z = 165 [M + H]^+$. HRMS (ESI): calcd. for C₉H₁₃N₂O $[M + H]^+$ 165.1028; found 165.1030.

2,4-Diisopropoxy-5-vinylpyrimidine (8b): By using the same method as for the synthesis of **8a**, compound **8b** was obtained as a colorless oil (1.36 g, 84% yield). ¹H NMR (300 MHz, CDCl₃): δ = 8.24 (s, 1 H, aromatic H), 6.62 (dd, *J* = 17.7, 11.4 Hz, 1 H, ArCH=CH₂), 5.79 (dd, *J* = 17.7, 1.5 Hz, 1 H, ArCH=CH₂), 5.45 [sept, *J* = 6.3 Hz, 1 H, (CH₃)₂CHO], 5.27–5.19 [m, 2 H, (CH₃)₂CHO, ArCH=CH₂], 1.38 [d, *J* = 6.0 Hz, 6 H, (CH₃)₂CHO], 1.36 [d, *J* = 6.3 Hz, 6 H, (CH₃)₂CHO] ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 167.56, 156.52, 128.47, 115.11, 112.83, 100.47, 70.51, 69.98, 22.41, 22.37 ppm. MS (ESI): *m/z* = 223 [M + H]⁺. HRMS (ESI): calcd. for C₁₂H₁₉N₂O₂ [M + H]⁺ 223.1447; found 223.1442.

4-Isopropoxy-2-(morpholin-1-yl)-5-vinylpyrimidine (8c): By using the same method as for the synthesis of **8a**, compound **8c** was obtained as a colorless oil (1.31 g, 79% yield). ¹H NMR (300 MHz, CDCl₃): δ = 8.15 (s, 1 H, aromatic H), 6.58 (dd, *J* = 17.7, 11.4 Hz, 1 H, ArCH=CH₂), 5.72 (dd, *J* = 17.7, 1.5 Hz, 1 H, ArCH=CH₂), 5.34 [sept, *J* = 6.3 Hz, 1 H, (CH₃)₂CHO], 5.12 (dd, *J* = 11.4, 1.5 Hz, 1 H, ArCH=CH₂), 3.76 (s, 8 H, morpholinyl H), 1.38 [d, *J* = 6.3 Hz, 6 H, (CH₃)₂CHO] ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 166.25, 160.66, 156.17, 129.14, 112.84, 108.76, 69.22, 67.15, 44.76, 22.38 ppm. MS (ESI): *m/z* = 249 [M]⁺. HRMS (EI): calcd. for C₁₃H₁₉N₃O₂ 249.1477; found 249.1480.

4-Isopropoxy-2-(piperidin-1-yl)-5-vinylpyrimidine (8d): By using the same method as for the synthesis of **8a**, compound **8d** was obtained

as a colorless oil (1.39 g, 84% yield). ¹H NMR (300 MHz, CDCl₃): $\delta = 8.13$ (s, 1 H, aromatic H), 6.57 (dd, J = 17.7, 11.4 Hz, 1 H, ArCH=CH₂), 5.68 (dd, J = 17.7, 1.5 Hz, 1 H, ArCH=CH₂), 5.34 [sept, J = 6.3 Hz, 1 H, (CH₃)₂CHO], 5.07 (dd, $J_1 = 11.4$, 1.5 Hz, 1 H, ArCH=CH₂), 3.77–3.73 (m, 4 H, piperidinyl H), 1.66–1.58 (m, 6 H, piperidinyl H), 1.38 [d, J = 6.3 Hz, 6 H, (CH₃)₂CHO] ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 166.04$, 160.47, 156.25, 129.35, 111.84, 107.50, 68.92, 45.42, 26.22, 25.41, 22.46 ppm. MS (ESI): m/z = 247 [M]⁺. HRMS (EI): calcd. for C₁₄H₂₁N₃O [M]⁺ 247.1685; found 247.1687.

4-Isopropoxy-2-(4-tosylpiperazin-1-yl)-5-vinylpyrimidine (8e): By using the same method as for the synthesis of **8a**, compound **8e** was obtained as a white solid (1.51 g, 85% yield). ¹H NMR (300 MHz, CDCl₃): δ = 8.07 (s, 1 H, aromatic H), 7.64 (d, *J* = 8.1 Hz, aromatic H), 7.32 (d, *J* = 8.1 Hz, aromatic H), 6.53 (dd, *J* = 17.7, 11.4 Hz, 1 H, ArCH=CH₂), 5.68 (dd, *J* = 17.7, 1.5 Hz, 1 H, ArCH=CH₂), 5.28 [sept, *J* = 6.3 Hz, 1 H, (CH₃)₂CHO], 5.10 (dd, *J* = 11.4, 1.5 Hz, 1 H, ArCH=CH₂), 3.89 (t, *J* = 5.1 Hz, 4 H, piperazinyl H), 3.03 (t, *J* = 5.1 Hz, 4 H, piperazine H), 2.41 (s, 3 H, PhCH₃), 1.34 [d, *J* = 6.3 Hz, 6 H, (CH₃)₂CHO] ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 166.24, 159.99, 156.11, 144.04, 132.56, 129.96, 128.92, 128.02, 113.09, 108.90, 69.30, 46.25, 43.59, 22.32, 21.95 ppm. MS (ESI): *m*/*z* = 403 [M + H]⁺. C₂₀H₂₆N₄O₃S (402.51): calcd. C 59.68, H 6.51, N 13.92; found C 59.46, H 6.46, N 13.81.

1,4-Bis(4-isopropoxy-5-vinylpyrimidin-2-yl)piperazine (8f): By using the same method as for the synthesis of **8a**, compound **8f** was obtained as a white solid (0.96 g, 60% yield). ¹H NMR (300 MHz, CDCl₃): δ = 8.16 (s, 2 H, aromatic H), 6.58 (dd, *J* = 17.7, 11.4 Hz, 2 H, ArCH=CH₂), 5.72 (dd, *J* = 17.7, 0.9 Hz, 2 H, ArCH=CH₂), 5.37 [sept, *J* = 6.0 Hz, 2 H, (CH₃)₂CHO], 5.12 (dd, *J* = 11.4, 0.9 Hz, 2 H, ArCH=CH₂), 3.87 (s, 8 H, piperazinyl H), 1.40 [d, *J* = 6.0 Hz, 12 H, (CH₃)₂CHO] ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 166.26, 160.63, 156.26, 129.18, 112.72, 108.57, 69.21, 44.17, 22.40 ppm. MS (ESI): *m/z* = 411 [M + H]⁺. C₂₂H₃₀N₆O₂·1/2H₂O: calcd. C 62.99, H 7.45, N 20.03; found C 63.27, H 7.31, N 19.47.

[4-OiPr-5-(4,5-dihvdroIMES)Cl2Ru=CH]pvrimidin-2-vlmorpholine (5c): To a solution of 8c (29 mg, 0.117 mmol), CuCl (35 mg, 0.35 mmol, 3.00 equiv.) in CH₂Cl₂ (10 mL), was added (4,5-DihydroIMES)-(PCy₃)Cl₂Ru=CHPh (1, 105 mg, 0.12 mmol, 1.05 equiv.) at 25 °C under a N₂ atmosphere. The reaction mixture was heated to reflux at 40 °C for 1 h. After removal of the solvent, the residue was dissolved in pentane/CH2Cl2 (1:1, 2 mL) and filtered through cotton to remove the copper-phosphane precipitate. Further concentration and purification with SiO₂ afforded 5c as a green solid (58 mg, 69% yield). ¹H NMR (300 MHz, CDCl₃): δ = 15.86 (s, 1 H, Ru=CHAr), 7.80 (s, 1 H, aromatic CH), 7.05 (s, 4 H, mesityl aromatic CH), 5.40-5.32 [m, 1 H, (CH₃)₂CHOAr], 4.17 [s, 4 H, N(CH₂)₂N], 3.76–3.67 (m, 8 H, morpholinyl H) 2.46 (s, 12 H, mesityl *o*-CH₃), 2.37 (s, 6 H, mesityl *p*-CH₃), 1.26 [d, J = 6.0 Hz, 6 H, $(CH_3)_2$ CHOAr] ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 297.06, 211.46, 165.06, 160.20, 149.61, 138.98, 129.90 129.48, 75.98, 66.89, 51.81, 45.22, 21.72, 21.56 ppm. C₃₃H₄₃Cl₂N₅O₂Ru (713.71): calcd. C 55.53, H 6.07, N 9.81; found C 55.23, H 6.08, N 9.59

[4-OiPr-5-(4,5-dihydroIMES)Cl₂Ru=CH]pyrimidin-2-ylpiperidine (5d): By using the same method as for the synthesis of 5c, compound 5d was obtained as a green solid (63 mg, 75% yield). ¹H NMR (300 MHz, CDCl₃): δ = 15.79 (s, 1 H, Ru=CHAr), 7.77 (s, 1 H, aromatic H), 7.04 (s, 4 H, mesityl aromatic H), 5.40–5.32 [m, 1 H, (CH₃)₂CHOAr], 4.17 [s, 4 H, N(CH₂)₂N], 3.73 [s, 4 H, piperidinyl ArN(CH₂)₂] 2.46 (s, 12 H, mesityl *o*-CH₃), 2.36 (s, 6 H, mesityl *p*-CH₃), 1.65–1.52 [m, 6 H, piperidinyl (CH₂)₃], 1.26 [d, *J* = 6.3 Hz, 6 H, $(CH_3)_2$ CHOAr] ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 287.68, 212.44, 165.11, 160.22, 149.99, 138.86, 129.42, 128.95, 75.56, 51.78, 46.09, 26.12, 25.12, 22.37, 21.65, 21.49 ppm. C₃₄H₄₅Cl₂N₅ORu + H₂O: calcd. C 55.96, H 6.49, N 9.60; found C 55.56, H 6.35, N 9.21.

[4-OiPr-5-(4,5-dihydroIMES)Cl₂Ru=CH]pyrimidin-2-y1-4-tosylpiperidine (5e): By using the same method as for the synthesis of **5c**, compound **5e** was obtained as a green solid (75 mg, 74% yield). ¹H NMR (300 MHz, CDCl₃): δ = 15.91 (s, 1 H, Ru=CHAr), 7.73 (s, 1 H, aromatic H), 7.58 (d, *J* = 8.4 Hz, 2 H, Tosyl Aromatic H), 7.31 (d, *J* = 8.4 Hz, 2 H, Tosyl Aromatic H), 7.03 (s, 4 H, mesityl aromatic H), 5.34–5.26 [m, 1 H, (CH₃)₂CHOAr], 4.16 [s, 4 H, N(CH₂)₂N], 3.92–3.86 [s, 4 H, piperazinyl TsN(CH₂)₂], 2.94–2.90 [s, 4 H, piperazinyl ArN(CH₂)₂], 2.43 (s, 12 H, mesityl *o*-CH₃), 2.40 (s, 3 H, CH₃PhSO₂N), 2.35 (s, 6 H, mesityl *p*-CH₃), 1.21 [d, *J* = 6.3 Hz, 6 H, (CH₃)₂CHOAr] ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 296.98, 211.01, 164.99, 160.33, 159.65, 149.42, 144.17, 138.95, 131.84, 129.99, 129.42, 127.87, 127.72, 76.10, 51.75, 45.96, 44.22, 21.99, 21.62, 21.49 ppm. C₄₀H₅₀Cl₂N₆O₃RuS·H₂O: calcd. C 54.29, H 5.92, N 9.50; found C 54.18, H 5.97, N 9.08.

1,4-Bis[4-OiPr-5-(4,5-dihydroIMES)Cl₂Ru=CH]pyrimidin-2-ylpiperazine (5f): By using the same method as for the synthesis of 5c, compound 5f was obtained as a green solid (57 mg, 72% yield). ¹H NMR (300 MHz, CDCl₃): δ = 15.88 (s, 2 H, Ru=CHAr), 7.81 (s, 2 H, aromatic H), 7.05 (s, 8 H, mesityl aromatic H), 5.37 [m, 2 H, (CH₃)₂CHOAr], 4.17 [s, 8 H, N(CH₂)₂N], 3.79 (s, 8 H, piperazinyl CH₂) 2.46 (s, 24 H, mesityl *o*-CH₃), 2.38 (s, 12 H, mesityl *p*-CH₃), 1.26 [d, *J* = 6.3 Hz, 12 H, (CH₃)₂CHOAr] ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 297.04, 211.34, 165.04, 160.05, 149.57, 138.96, 129.49, 129.47, 76.05, 51.86, 44.45, 21.71, 21.55 ppm. C₆₂H₇₈Cl₄N₁₀O₂Ru₂ (1339.32): calcd. C 55.60, H 5.87, N 10.46; found C 55.41, H 5.98, N 10.32.

General Procedure for RCM and Enyne Metathesis Reaction: To a mixture of alkene (0.1 mmol) in CH_2Cl_2 (50 mL, c = 0.02 M) was added a solution of Ru-catalyst (0.1–4 mol-%) in CH_2Cl_2 (1 mL). The resulting mixture was stirred at 0–80 °C for 1–24 h. The solvent was removed under reduced pressure. The crude product was purified by flash chromatography (eluant petroleum ether/ethyl acetate).

1-Tosyl-2,5-dihydro-1*H***-pyrrole (11a):**^[14] White solid. ¹H NMR (300 MHz, CDCl₃): δ = 7.70 (d, *J* = 8.4 Hz, 2 H), 7.30 (d, *J* = 8.4 Hz, 2 H), 5.62 (s, 2 H), 4.09 (s, 4 H), 2.40 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 143.58, 134.21, 129.89, 127.50, 125.56, 55.12, 21.86 ppm. MS (ESI): *m/z* = 224 [M + H]⁺.

1-Tosyl-2,3,6,7-tetrahydro-1*H***-azepine (11d):**^[15] White solid. ¹H NMR (300 MHz, CDCl₃): δ = 7.67 (d, *J* = 8.1 Hz, 2 H), 7.31 (d, *J* = 8.1 Hz, 2 H), 5.76–4.72 (m, 2 H), 3.27 (t, 4 H), 2.42 (s, 3 H), 2.31–2.30 (m, 4 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 143.21, 136.24, 130.32, 129.79, 127.14, 48.53, 30.18, 21.83 ppm. MS (ESI): $m/z = 252 [M + H]^+$.

Dimethyl Cyclopent-3-ene-1,1-dicarboxylate (11f):^[16] Colorless oil. ¹H NMR (300 MHz, CDCl₃): δ = 5.61 (s, 2 H), 3.74 (s, 6 H), 3.02 (s, 4 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 172.33, 128.02, 59.08, 53.28, 41.34 ppm. MS (ESI): m/z = 185 [M + H]⁺.

2,2-Diphenyl-3-vinyl-2,5-dihydrofuran (11g):^[17] Colorless oil. ¹H NMR (300 MHz, CDCl₃): δ = 7.39–7.29 (m, 10 H), 6.30–6.20 (m, 2 H), 5.36 (d, *J* = 17.4 Hz, 1 H), 5.14 (d, *J* = 10.8 Hz, 1 H), 4.81–4.80 (m, 2 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 143.83, 143.50, 129.97, 128.11, 127.67, 125.14, 117.81, 94.83, 73.55 ppm. MS (ESI): *m*/*z* = 249 [M + H]⁺.

1-Tosyl-1,2,3,6-tetrahydropyridine (11b):^[15] White solid. ¹H NMR (300 MHz, CDCl₃): δ = 7.65 (d, J = 8.1 Hz, 2 H), 7.31 (d, J = 8.1 Hz, 2 H), 5.70–5.58 (m, 2 H), 3.54 (d, J = 5.4 Hz, 2 H), 3.17 (t, J = 5.7 Hz, 2 H), 2.40 (s, 3 H), 2.18–2.17 (m, 2 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 143.63, 133.26, 129.75, 127.77, 125.15, 122.83, 45.07, 42.94, 25.56, 21.85 ppm. MS (ESI): m/z = 238 [M + H]⁺.

5-Methyl-1-tosyl-1,2,3,6-tetrahydropyridine (11c):^[18] White solid. ¹H NMR (300 MHz, CDCl₃): δ = 7.70 (d, *J* = 8.1 Hz, 2 H), 7.34 (d, *J* = 8.1 Hz, 2 H), 5.43 (t, *J* = 1.5 Hz, 2 H), 3.42 (s, 2 H), 3.12 (m, 2 H), 2.42 (s, 3 H), 2.18–2.17 (m, 2 H), 1.65 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 143.76, 133.46, 130.18, 129.93, 127.99, 119.55, 48.60, 42.91, 25.56, 21.96, 21.05 ppm. MS (ESI): $m/z = 252 [M + H]^+$.

3,4-Dimethyl-1-tosyl-2,5-dihydro-1*H***-pyrrole (11e):**^[19] White solid. ¹H NMR (300 MHz, CDCl₃): δ = 7.73 (d, *J* = 8.4 Hz, 2 H), 7.33 (d, *J* = 8.4 Hz, 2 H), 3.97 (s, 4 H), 2.43 (s, 3 H), 1.54 (s, 6 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 143.34, 134.20, 129.78, 127.55, 126.26, 59.03, 21.85, 11.47 ppm. MS (ESI): *m*/*z* = 252 [M + H]⁺.

2-Methyl-2-phenyl-3-vinyl-2,5-dihydrofuran (11h):^[18] Colorless oil. ¹H NMR (300 MHz, CDCl₃): δ = 7.46–7.44 (m, 2 H), 7.36–7.34 (m, 2 H), 7.31–7.28 (m, 1 H), 6.25 (dd, *J* = 17.7, 0.9 Hz, 1 H), 6.00 (s, 1 H), 5.12–5.02 (m, 2 H), 4.79–4.77 (m, 2 H), 1.81 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 144.87, 144.60, 129.00, 128.43, 127.62, 125.26, 124.48, 117.23, 90.02, 73.42, 24.80 ppm. MS (ESI): *m*/*z* = 187 [M + H]⁺.

1,1'-Diphenyl-2,2',5,5'-tetrahydro-1H,1'H-3,3'-bipyrrole (11i): White solid. ¹H NMR (300 MHz, CDCl₃): δ = 7.29 (t, J = 7.8 Hz, 4 H), 6.73 (d, J = 7.5 Hz, 2 H), 6.61 (d, J = 7.8 Hz, 4 H), 5.88 (s, 2 H), 4.33-4.25 (m, 8 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 147.01, 133.51, 129.63, 122.86, 116.36, 111.56, 55.68, 54.83 ppm. MS (ESI): m/z = 289 [M + H]. HRMS (ESI): calcd. for C₂₀H₂₁N₂ [M + H]⁺ 289.1705; found 289.1702.

General Procedure for CM Reaction: To a mixture of alkene (0.1 mmol) and cross-metathesis partner (0.2 mmol) in CH₂Cl₂ (5 mL) was added a solution of Ru-catalyst (0.5–4.0 mol-%) in CH₂Cl₂ (1 mL). The resulting mixture was stirred at 25 °C for 1–5 h. The solvent was removed under reduced pressure. The crude product was purified by flash chromatography (eluant petroleum ether/ethyl acetate).

Ethyl 7-[(*tert*-butyldimethylsilyl)oxylhept-2-enoate (13a):^[20] Obtained as a colorless oil (E/Z = 97:3). ¹H NMR (300 MHz, CDCl₃): $\delta = 6.95$ (dt, J = 6.9, 15.6 Hz, 1 H), 5.83 (d, J = 15.6 Hz, 1 H), 4.18 (q, J = 7.2 Hz, 2 H), 3.60 (t, J = 6.0 Hz, 2 H), 2.24–2.17 (m, 2 H), 1.52–1.45 (m, 4 H), 1.27 (t, J = 7.2 Hz, 3 H), 0.88 (s, 9 H), 0.03 (s, 6 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 166.87, 149.34, 121.61, 63.10, 60.50, 32.62, 32.37, 26.39, 24.80, 18.80, 14.75, -4.80 ppm. MS (ESI): <math>m/z = 287$ [M + H]⁺.

7-[*(tert*-Butyldimethylsilyl)oxylhept-2-enenitrile (13b):^[21] Obtained as a colorless oil (E/Z = 24:77). ¹H NMR (300 MHz, CDCl₃): $\delta = 6.72$ (dt, J = 6.9, 16.2 Hz, 1 H, E isomer), 6.48 (dt, J = 7.5, 11.1 Hz, 1 H, Z isomer), 5.32 (d, J = 11.1 Hz, 1 H), 3.64–3.58 (m, 2 H), 2.47–2.41 (m, 2 H, Z isomer), 2.27–2.21 (m, 2 H, E isomer), 1.56–1.50 (m, 4 H), 0.88 (s, 9 H), 0.04 (s, 6 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 155.22$, 116.27, 99.89, 62.87, 32.47, 32.04, 26.37, 25.08, 18.79, -4.82 ppm. MS (ESI): m/z = 240 [M + H]⁺.

7-[*(tert*-**Butyldimethylsilyl)oxy]hept-2-en-1-yl Acetate (13c):**^[22] Obtained as a colorless oil (E/Z = 100:0). ¹H NMR (300 MHz, CDCl₃): $\delta = 5.81-5.71$ (m, 1 H), 5.60–5.51 (m, 1 H), 4.50 (d, J = 6.3 Hz, 2 H), 3.59 (t, J = 6.3 Hz, 2 H), 2.12–2.05 (m, 2 H), 2.05 (s,

FULL PAPER

3 H), 1.53–1.39 (m, 4 H), 0.88 (s, 9 H), 0.03 (s, 6 H) ppm. 13 C NMR (75 MHz, CDCl₃): δ = 172.33, 136.64, 124.10, 65.65, 63.33, 32.69, 32.42, 26.40, 25.55, 21.50, 18.82, -4.78 ppm. MS (ESI): *m*/*z* = 287 [M + H]⁺.

Methyl 2-{[(Benzyloxy)carbonyl]amino}-8-[(*tert*-butyldimethylsilyl)oxyloct-3-enoate (13d): Obtained as a colorless oil (E/Z = 100:0). ¹H NMR (300 MHz, CDCl₃): $\delta = 7.35-7.30$ (m, 5 H), 5.2–5.72 (m, 1 H), 5.50–5.38 (m, 2 H), 5.12 (s, 2 H), 4.85 (t, J = 6.3 Hz, 1 H), 3.75 (s, 3 H), 3.59 (t, J = 6.0 Hz, 2 H), 2.10–2.03 (m, 2 H), 1.52– 1.38 (m, 4 H), 0.89 (s, 9 H), 0.04 (s, 6 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 171.67$, 155.60, 136.38, 135.39, 135.22, 128.73, 128.39, 124.17, 67.38, 63.28, 56.03, 52.99, 32.64, 32.32, 26.40, 25.45, 18.81, -4.78 ppm. MS (ESI): m/z = 436.4 [M + H]⁺, 458.4 [M + Na]⁺. HRMS (FT-ICR): calcd. for C₂₃H₃₈NO₅Si 436.2519 [M + H]⁺; found 436.2512.

tert-Butyldimethyl[(6-phenylhex-5-en-1-yl)oxylsilane (13e):^[23] Obtained as a colorless oil (E/Z = 100:0). ¹H NMR (300 MHz, CDCl₃): $\delta = 7.35-7.16$ (m, 5 H), 6.41 (d, J = 16.2 Hz, 1 H), 6.27-6.19 (m, 1 H), 3.63 (t, J = 6.3 Hz, 2 H), 2.30–2.19 (m, 2 H), 1.57–1.51 (m, 4 H), 0.89 (s, 9 H), 0.05 (s, 6 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 131.15$, 130.25, 130.11, 128.69, 127.02, 126.14, 63.45, 33.25, 32.81, 26.43, 26.07, 18.86, -4.73 ppm. MS (ESI): m/z = 290 [M]⁺.

3-Phenylallyl Acetate (13f):^[24] Obtained as a colorless oil (*E*/*Z* = 100). ¹H NMR (300 MHz, CDCl₃): δ = 7.40–7.25 (m, 5 H), 6.68 (d, *J* = 15.9 Hz, 1 H), 6.28 (dt, *J* = 15.9, 6.3 Hz, 1 H), 4.74 (d, *J* = 6.3 Hz, 2 H), 2.10 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 170.98, 136.37, 134.41, 128.82, 128.29, 126.82, 123.36, 65.44, 21.47 ppm. MS (ESI): *m*/*z* = 177 [M + H]⁺.

ROMP of Norbornene (14):^[11] To a solution of norbornene (47.1 mg, 0.5 mmol) in CDCl₃ (1 mL) in a flame-dried NMR spectrometry tube, was added Ru catalyst (0.0025 mmol) under an argon atmosphere. After 30 min, the reaction mixture was analyzed by ¹H NMR spectroscopy. ¹H NMR (300 MHz, CDCl₃): δ = 5.34–5.16 (m, 2 H), 2.80–2.70 (m, 1 H), 2.50–2.40 (m, 1 H), 1.80–1.76 (m, 3 H), 1.40–1.30 (m, 2 H), 1.10–1.00 (m, 1 H) ppm.

Supporting Information (see footnote on the first page of this article): General reaction conditions and NMR spectra of all compounds are provided.

Acknowledgments

Support of this work by the grant from National Sciences Foundation of China (20972099), and HRMS and elemental analyses by Prof. Yu-Wu Zhong's group are gratefully acknowledged. 42, 1900–1923; d) G. Lesma, A. Colombo, A. Sacchetti, A. Silvani, *J. Org. Chem.* **2009**, *74*, 590–596; e) A. W. van Zijl, A. J. Minnaard, B. L. Feringa, *J. Org. Chem.* **2008**, *73*, 5651–5653; f) S. Hanessian, H. Sailes, A. Munro, E. Therrien, *J. Org. Chem.* **2003**, *68*, 7219–7233.

- [3] a) M. S. Sanford, M. Ulman, R. H. Grubbs, J. Am. Chem. Soc.
 2001, 123, 749–750; b) M. S. Sanford, J. A. Love, R. H. Grubbs, J. Am. Chem. Soc. 2001, 123, 6543–6554.
- [4] a) S. B. Garber, J. S. Kingsbury, B. L. Gray, A. Hoveyda, J. Am. Chem. Soc. 2000, 122, 8168–8179; b) R. Bujok, M. Bieniek, M. Masnyk, A. Michrowska, A. Sarosiek, H. Stepowska, D. Arlt, K. Grela, J. Org. Chem. 2004, 69, 6894–6896.
- [5] a) V. Thiel, M. Hendann, K. Wannowius, H. Plenio, J. Am. Chem. Soc. 2012, 134, 1104–1114; b) M. Bieniek, C. Samojzowicz, V. Sashuk, R. Bujok, P. Sledz, N. Lugan, G. Lavigne, D. Arlt, K. Grela, Organometallics 2011, 30, 4144–4158.
- [6] a) H. Wakamatsu, S. Blechert, Angew. Chem. 2002, 114, 2509–2511; Angew. Chem. Int. Ed. 2002, 41, 2403–2405; b) H. Wakamatsu, S. Blechert, Angew. Chem. 2002, 114, 832–834; Angew. Chem. Int. Ed. 2002, 41, 794–796.
- [7] a) K. Grela, S. Harutyunyan, A. Michrowska, Angew. Chem.
 2002, 114, 4210–4212; Angew. Chem. Int. Ed. 2002, 41, 4038–4040; b) A. Michrowska, R. Bujok, S. Harutyunyan, V. Sashuk, G. Dolgonos, K. Grela, J. Am. Chem. Soc. 2004, 126, 9318–9325.
- [8] a) J. A. Love, J. P. Morgan, T. M. Trnka, R. H. Grubbs, Angew. Chem. 2002, 114, 4207–4209; Angew. Chem. Int. Ed. 2002, 41, 4035–4037; b) A. Szadkowska, X. Gstrein, D. Burtscher, K. Jarzembska, K. Wozniak, C. Slugovc, K. Grela, Organometallics 2010, 29, 117–124.
- [9] M. M. Barbasiewicz, M. Bieniek, A. Michrowska, A. Szadkowska, A. Makal, K. Woz'niak, K. Grela, *Adv. Synth. Catal.* 2007, 349, 193–203.
- [10] During the reaction of 8a and 8b with complex 1, green spots can be observed by TLC monitoring. However, all attempts to isolate these unstable products were unsuccessful.
- [11] G. C. Vougioukalakis, R. H. Grubbs, J. Am. Chem. Soc. 2008, 130, 2234–2245.
- [12] The gel permeation (GP) chromatograms and the number average molecular weight (Mn), molecular weight (Mw) and polydispersity index (PDI) data for the polymer products, which were obtained for catalysts 5c, 5d, 5e, and 5f are provided in the Supporting Information.
- [13] Considering the Grela group's result, we thought that the electro-deficient effect might play a major role in enhancing activity. However, the steric effect might also affect the catalyst's activity, as one referee of this article suggested.
- [14] Y. Terada, M. Mitsuhiro, A. Nishida, Angew. Chem. 2004, 116, 4155–4159; Angew. Chem. Int. Ed. 2004, 43, 4063–4067.
- [15] K. Grela, M. Kim, Eur. J. Org. Chem. 2003, 963–966.
- [16] Q. Yao, Y. Zhang, J. Am. Chem. Soc. 2004, 126, 74–75.
- [17] H. Clavier, S. P. Nolan, *Chem. Eur. J.* **2007**, *13*, 8029–8036.
- [18] J. Verendel, T. Zhou, J. Q. Li, A. Paptchikhine, O. Lebedev, P. G. Andersson, J. Am. Chem. Soc. 2010, 132, 8880–8881.
- [19] A. Fürstner, O. Guth, A. Düffels, G. Seidel, M. Liebl, B. Gabor, R. Mynott, *Chem. Eur. J.* **2001**, *7*, 4811–4820.
- [20] M. E. Jung, J. A. Berliner, L. Koroniak, B. G. Gugiu, A. D. Watson, Org. Lett. 2008, 10, 4207–4209.
- [21] W. E. Crowe, D. R. Goldberg, J. Am. Chem. Soc. 1995, 117, 5162–5163.
- [22] A. Michrowska, R. Bujok, S. Harutyunyan, V. Sashuk, G. Dolgonos, K. Grela, J. Am. Chem. Soc. 2004, 126, 9318–9325.
- [23] G. A. Molander, T. Fumagalli, J. Org. Chem. 2006, 71, 5743– 5747.
- [24] L. T. Pilarski, P. G. Janson, K. J. Szabo, J. Org. Chem. 2011, 76, 1503–1506.

Received: July 25, 2012

Published Online: October 23, 2012

a) T. M. Trnka, R. H. Grubbs, Acc. Chem. Res. 2001, 34, 18–29; b) K. C. Nicolaou, P. G. Bulger, D. Sarlah, Angew. Chem. 2005, 117, 4564–4601; Angew. Chem. Int. Ed. 2005, 44, 4490–4527; c) A. M. Lozano-Vila, S. Monsaert, A. Bajek, F. Verpoort, Chem. Rev. 2010, 110, 4865–4909; d) T. J. Donohoe, A. J. Orr, M. Bingham, Angew. Chem. 2006, 118, 2730–2736; Angew. Chem. Int. Ed. 2006, 45, 2664–2670; e) A. Fürstner, Angew. Chem. Int. Ed. 2000, 39, 3013; f) R. R. Schrock, A. H. Hoveyda, Angew. Chem. 2003, 115, 4740–4782; Angew. Chem. Int. Ed. 2003, 42, 4592–4633.

 ^[2] a) G. C. Vougioukalakis, R. H. Grubbs, *Chem. Rev.* 2010, 110, 1746–1787; b) C. Samojłowicz, M. Bieniek, K. Grela, *Chem. Rev.* 2009, 109, 3708–3742; c) S. G. Connon, S. Blechert, *Angew. Chem.* 2003, 115, 1944–1968; *Angew. Chem. Int. Ed.* 2003,