

Published on Web 08/16/2006

Gold-Catalyzed Intramolecular [3 + 2]-Cycloaddition of Arenyne-Yne Functionalities

Jian-Jou Lian, Po-Chiang Chen, Yau-Ping Lin, Hao-Chun Ting, and Rai-Shung Liu* Department of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan, Republic of China Received June 21, 2006; E-mail: rsliu@mx.nthu.edu.tw

The reactions of enynes (or arenynes) with alkynes were thermally achieved in [4 + 2]-cycloaddition mode, and both theoretic calculation and experimental results support the involvement of a strained cyclic allene as reaction intermediate (eq 1).¹ Such reactions normally require drastic temperatures (>300 °C) for unactivated alkynes (eq 1, $R \neq$ cyano, ester, aldehyde, and ketone)^{1a} unless a metal catalyst is employed.² Yamamoto and Gevorgyan reported the use of Pd(0) catalysts to implement the [4 + 2]-dimerization of envnes at low temperatures (T < 100 °C), and the key step is thought to involve the oxidative dimerization of enynes to form Pd-allyl intermediates (eq 2). To the best of our knowledge, there is no precedent for the efficient [3 + 2]-cycloaddition of enynes (or arenynes) with alkynes in both interand intramolecular processes (eq 3).³ Here, we report realization of an intramolecular [3 + 2]-cycloaddition of unactivated arenyneyne (or enyne-yne) functionalities with gold catalysts (eq 3), which implement most cycloadditions at ambient conditions.

Stimulated by a report by Echavarren that cationic gold species efficiently catalyzed the [4 + 2]-cycloaddition of arenyne-ene functionalities at 23 °C,⁴ we investigated the cyclization of diyne **1** using AuPPh₃SbF₆ and related gold species. Table 1 shows the catalytic results of several active metal complexes. PPh₃AuSbF₆ (2 mol %)⁵ is superior to PtCl₂ (5 mol %, 100 °C) not only in the production of cyclized species **2** with better yield but also under more mild conditions (23 °C, entry 2). The structure of species **2** is confirmed to have a [3 + 2]-cycloadduct framework.⁶ No catalytic activities were observed for AuClPPh₃/AgOTf, AuCl, AuCl₃, and AgSbF₆ (5 mol % each) at 23 °C in toluene or CH₂Cl₂, but these complexes gave a mixture of species **2** and [4 + 2]-cycloadduct **3** in hot toluene or dichloroethane (DCE) with poor efficiencies (entries 3–6).

We examined further the scope of the [3 + 2]-cycloaddition with alternation of the functionalities and skeletal chain of diyne substrates **4–16**; the results are depicted in Table 2. Most reactions were achieved with PPh₃AuSbF₆ (2 mol %) in CH₂Cl₂ (23 °C) except substrates **11** and **13** (entries 8 and 10), for which we used PtCl₂ and PPh₃AuOTf,⁷ respectively. Entries 1–7 show the compatibility of this cycloaddition with diynes **4–10** bearing various functional groups, including tosylamide, ester, ketone, phenylsulfonyl, methylene, and fluorenyl groups; the resulting [4.3.0]-cycloadducts **17–23** were obtained in satisfactory yields (61–90%). The structure of compound **18** has been confirmed by X-ray diffraction study.⁸ The value of this cyclization is demonstrated by

Table 1.	Catalytic [3 +	2]-Cycloaddition	over Various	Catalysts
----------	----------------	------------------	--------------	-----------

OPh 1	catalyst O	3 Ph
catalyst ^a	solvent (conditions)	yield
PtCl ₂	toluene (100 °C, 12 h)	2 (51%)
AuClPPh3/AgSbF6	CH ₂ Cl ₂ (23 °C, 0.5 h)	2 (93%)
AuClPPh ₃ /AgOTf	DCE (50 °C, 6 h)	2 (18%), 3 (2%)
AuCl	toluene (100 °C, 24 h)	2 (3%), 3 (14%)
AuCl ₃	toluene (100 °C, 24 h)	2 (14%), 3 (15%)
AgSbF ₆	toluene (100 °C, 24 h)	2 (6%), 3 (30%)

^{*a*} 5 mol % of PtCl₂, AuClPPh₃/AgOTf, AuCl, AuCl₃, AgSbF₆, and 2 mol % of AuClPPh₃/AgSbF₆, [diyne] = 0.40 M. ^{*b*} Products were separated from a silica column.

Table 2. (Catalytic	Intramolecu	ılar [3	3 + 2]	-C	ycloaddition	of Di	ynes
------------	-----------	-------------	---------	--------	----	--------------	-------	------

diynes	products (yields)	catalyst (temp, time)		
XPh	X			
X = NTs (4)	17 (61%)	[AuL]SbF ₆ (23 ⁰ C, 3 h)		
$X = C(CO_2Me)_2$ (5)	18 (90%)	[AuL]SbF ₆ (23 ⁰ C, 3 h)		
$X = C(COMe)(CO_2Et)$	(6) 19 (81%)	[AuL]SbF ₆ (23 ⁰ C, 3 h)		
$X = C(COPh)(CO_2Et)$ (7) 20 (78%)	[AuL]SbF ₆ (23 ⁰ C, 3 h)		
$X = C(SO_2Ph)_2 (8)$	21 (81%)	[AuL]SbF ₆ (23 ⁰ C, 12 h)		
$X = CH_2(9)$	22 (72%)	[AuL]SbF ₆ (23 ⁰ C, 5 h)		
X = C (10) 23 (80%)	[AuL]SbF ₆ (23 ⁰ C, 0.5 h)		
Ph (11)	Ph 24 (64%)	PtCl ₂ (100 ⁰ C, 5 h)		
	25 (73%)	[AuL]SbF ₆ (23 ⁰ C, 3 h)		
	26 (51%)	[AuL]OTf (100 ⁰ C, 23 h)		
	X = OMe, Y X = R, Y = 1	′ = R (A) OMe (B)		
R = OMe (14)	27 (71%, A=B)	[AuL]SbF ₆ (23 ⁰ C, 12 h)		
R = H (15)	28 A (37%), 28 B (37%)	[AuL]SbF ₆ (23 ⁰ C, 12 h)		
$R = CH_3 (16)$	29 A (47%), 29 B (13%)	[AuL]SbF ₆ (23 ⁰ C, 12 h)		

^{*a*} [Diyne] = 0.4 M. ^{*b*} Product yields are given after separation from a silica column. ^{*c*} L = PPh₃, catalyst loading: 2 mol % of LAuCl/AgSbF₆ (CH₂Cl₂), 5 mol % of PtCl₂ (toluene) and LAuCl/AgOTf (dioxane).

its applicability to construct a strained bicyclic [3.3.0] framework, such as species **24** (64% yield), via PtCl₂-catalyzed cyclization of enediyne **11** in hot toluene (entry 8). This method is further extensible to a [3 + 2]-dimerization of arenyne—enyne and enyne—

Aùl † **A**

enyne functionalities as represented by diynes 12 and 13, which gave bicyclic [4.3.0] products 25 (73%) and 26 (51%) using PPh₃AuSbF₆ (2%) and PPh₃AuOTf (5%), respectively. Structural elucidation of tetracyclic species 24 relies on ¹H NOE spectra.⁸ We examined the cyclization regioselectivity of divnes 14-16bearing two different phenyl groups. The two isomeric products 28A-28B and 29A-29B were separable on a silica column. The C(2) carbons of the 3-methoxyphenyl groups of diynes 15 and 16 are thought to be inactive because of steric hindrance. For diyne 15, the observed product ratio 28A/28B = 1 is indicative of a 2:1 site activity for its 3-methoxyphenyl C(6) carbon versus the phenyl C(2) carbon. The preference for alkenylation at the 3-methoxyphenyl C(6) carbon of diyne 16 is also inferred from the product ratio 29A/29B = 3.6. The structures of compounds 28A-29A were confirmed by ¹H NOE effects.⁸

D

We performed deuterium-labeling experiments to elucidate the cycloaddition mechanism. As shown in Scheme 1, diyne d₁₀-1 bearing C_6D_5 produced cycloadduct 2 with 68% deuterium content at its alkenyl carbon. This deuterium content was decreased to 43% when methanol (1.0 equiv) was present.⁹ For undeuterated d_0-1 , its corresponding product d₀-2 contained 34% deuterium content at its olefin carbon in the presence of CH_3OD (1.0 equiv, entry 3). No deuterium is scrambled into the alkenyl hydrogen of cycloadduct d_4 -2 if divne d_4 -1 was used (entry 4).

Scheme 2 shows our mechanistic speculation to rationalize the preferable [3 + 2]-pathway of this gold-based catalysis. The preference for formation of regioisomer 28A from diyne 15 suggests that this cyclization is initiated by nucleophilic attack of the 3-methoxyphenyl substituent of intermediate A at its Au(I)containing π -alkyne moiety, to produce vinylgold(I) intermediate **B** with loss of a proton. As 2,6-lutidine acts as a inhibitor,¹⁰ we propose that the electron-rich AuL fragment of species B greatly favors protonation at the alkyne functionality to generate vinylcationic intermediate C, which is subsequently stabilized by the adjacent phenyl group and the vinylgold fragment through a pentadiene cationic delocalization. Such a cationic resonance leads to either a 5-exo-dig or Nazazov cyclization of species C to give diphenyl carbocation **D**, ultimately leading to formation of major isomer 28A. This proposed pathway is also supported by the deuterium labeling results depicted in Scheme 2.11,12

In summary, we report a new efficient intramolecular [3 + 2]-cycloaddition of unactivated arenyne (or enyne)-yne functionalities, catalyzed mainly by the AuPPh₃SbF₆ complex (2 mol %) under ambient conditions. The value of this cyclization is reflected by its applicability to a wide range of diyne substrates bearing various functional groups.¹³

Acknowledgment. The authors thank Prof. Wang Sue-Lein for X-ray diffraction study, as well as the National Science Council, Taiwan, for support of this work.

Supporting Information Available: Experimental procedures, X-ray data of [3 + 2]-cycloadduct 18, spectral data, and NMR spectra of key compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) For selected examples, see: (a) Burell, R. C.; Daoust, K. J.; Bradley, A Z.; DiRico, K. J.; Johnson, P. R. J. Am. Chem. Soc. **1996**, *118*, 4218. (b) Dunetz, J. R.; Danheiser, R. L. J. Am. Chem. Soc. **2005**, *127*, 5776 and references therein. (c) Hayes, M. E.; Shinokubo, H.; Danheiser, R. L. Org. Lett. **2005**, *7*, 3917. (d) Rodriguez, D.; Fernanda, M.; Esperon, M.; Navarro-Vázquez, A.; Castedo, L.; Dominguez, D.; Saá, C. J. Org. Chem. 2004, 69, 3842. (e) González, J. J.; Francesch, A.; Cárdenas, D. J.; Echavarren, A. M. J. Org. Chem. 1998, 63, 2854.
- (2) For metal-catalyzed [4 + 2]-cycloadditions of enynes with alkynes, see selected reviews and the most recent paper: (a) Rubin, M.; Sromek, A. W.; Gevorgyan, V. Synlett 2003, 2265. (b) Saito, S.; Yamamoto, Y. Chem. Rev. 2000, 100, 2901. (c) Rubina, M.; Conley, M.; Gevorgyan, V. J. Am. Chem. Soc. 2006, 128, 5828 and references therein.
- (3) Danheiser reported a [4 + 2]-cycloaddition of ynones-ynes, which undergoes thermal rearrangement to form a 3-alkenylfuran species. Wills, M. S. B.; Danheiser, R. L. J. Am. Chem. Soc. 1998, 120, 9378.
 (4) Nieto-Oberhuber, C.; López, S.; Echavarren, A. M. J. Am. Chem. Soc.
- 2005, 127, 6178.
- (5) For recent examples using AuPPh₃SbF₆ as π -alkyne activators, see ref 4 and: (a) Johansson, M. J.; Gorin, D. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 18002. (b) Kennedy-Smith, J. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 4526. (c) Shi, X.; Gorin, D. J.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 5802. (d) Zhao, J.; Hughes, C. O.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 7436. (e) Zhao, J.; Hughes, C. O.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 7436. (f) Yang, C.; He, C. J. Am. Chem. Soc. 2005, 127, 6966. (g) Munoz, M. P.; Adrio, J.; Carretero, C. J. Organometallics 2005, 24, 1293. (h) Zhang, L. J. Am. Chem. Soc. 2005, 127, 16804.
- (6) H₂PtCl₄ (5%) and Aliquat 336 were reported to catalyze the transformation of species 1 into [3 + 2]-cycloadduct 2 in 26% yield. See: Badrieh, Y.; Blum, J.; Vollhardt, K. P. C. J. Mol. Catal. **1990**, 60, 323.
- (7) In contrast with AuPPh₃SbF₆, heating AuPPh₃OTf and diyne 13 in 1,4dioxane (100 °C, 24 h) did not form a gold mirror in this example. (8) ¹H NOE map of key compounds and X-ray data of cycloadduct **18** are
- provided in Supporting Information.
- (9) În this case, the use of methanol (1.0 equiv) led to formation of byproduct via alkyne hydration, and the desired cyclized 2 was obtained in 51% yield. Water acts an inhibitor for this catalytic reaction.
- (10) In the cyclization of diyne 1, 2,6-lutidine (5 mol %) completely inhibits this PPh₃AuSbF₆-based catalysis. The inhibition role of 2,6-lutidine is thought to intercept the proton to avoid the formation of intermediate C.
- As suggested by one reviewer, the present data also support an alternative reaction mechanism as depicted below.

$$(\underbrace{\overline{\overline{A}}}_{AuL}^{Ph} \rightarrow (\underbrace{\overline{A}}_{AuL}^{Ph} \rightarrow (\underbrace{\overline{A}}_{AuL}^{Ph} \rightarrow (\underbrace{\overline{A}}_{uL}^{Ph} \rightarrow (\underbrace{\overline{A}}_{uL}$$

- (12) A proposed mechanism to rationalize formation of a [4 + 2]-cycloadduct by Au(I) species is provided in Supporting Information; see Scheme S-1.
- (13) Shibata reported formation of skeletally rearranged cycloadducts D (85– 89%) from dynes 5 and 9 using AuPPh₃SbF₆ catalyst (0 °C, 5 h). Following their reported procedures, we still obtained [3 + 2]-cycloadducts 18 and 22 in 85 and 67% yields, respectively, from diynes 5 and 9 in addition to [4 + 2]-cycloadducts C (3-5%). The X-ray structure of cycloadduct 18 supports our structural assignment. See: Shibata, T.; Fujiwara, R.; Takano, D. Synlett. 2005, 2062.

JA0643826