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Abstract An [FeFe]-hydrogenase mimic 4 with functional

benzyl moiety covalently linked to the azadithiolate ligand

was synthesized. The structure, protonation, and electro-

chemical properties of 4 and a phenyl substituted analogue

(coded as 3) were simultaneously studied to explore the

influence of the methylene group between the bridgehead

nitrogen atom and functional phenyl moiety on the pro-

tophilic properties of the model complexes. X-ray single

crystal diffraction analysis revealed that the nitrogen atoms

of 3 and 4 possessed sp2 and sp3-hybridization, respec-

tively. Although the light-driven electron transfer was

prevented in the molecule of 4, the sp3-hybridized nitrogen

atom of 4 could be protonated in the presence of the proton

acid to give the [4(NH)]? cation. The generated positive

charge could be reduced at ca. -1.2 V versus Fc/Fc? with

a distinctly electrocatalytic proton reduction activity,

whereas the proton reduction catalysed by 3 occurred at ca.

-1.45 V. The catalytic proton reductions of 3 and 4 fol-

lowed ECCE and CECE mechanisms, respectively. It was

noteworthy that the potential of 4 was remarkably anodic

shifted and closer to that of the proton reduction catalysed

by natural enzymes.

Keywords Hydrogenase � Enzyme mimic � Azadithiolate �
Electrochemistry � Proton reduction

Introduction

Hydrogenases are a series of metalloenzymes that catalyse

the reversible interconversion of protons and molecular

hydrogen (Lubitz et al. 2014). According to the metal ion

composition of their active sites, hydrogenases can be

classified as [Fe]-, [NiFe]-, or [FeFe]-hydrogenase. All of

these enzymes are of high interest in biotechnology while

[FeFe]-hydrogenases are particularly active in both

hydrogen production and oxidation (Birrell et al. 2016;

Sommer et al. 2017). Recently, spectroscopic and crystal-

lographic studies have revealed the organometallic nature

of [FeFe]-hydrogenase active site (so-called H-cluster,

Scheme 1), which consists of a butterfly [2Fe] subunit and

a [4Fe4S] cluster connected via a thiolate of a cysteine

residue (Peters et al. 1998; Nicolet et al. 1999). Both the

[2Fe] and the [4Fe4S] sub-clusters are redox active, and the

two electrons involved in the redox reaction of

2H? ? 2e- $ H2 are accommodated by the changing

oxidation states of the two sub-clusters (Sommer et al.

2017). Possible redox states of the H-cluster such as the

active oxidized state Hox, the active reduced state Hred and

the super-reduced state Hsred have been well characterised

by combined EPR, FTIR and electrochemical studies

(Lubitz et al. 2007; Adamska et al. 2012). The redox and

protonation events that occurred on the [2Fe] subunit and

the [4Fe4S] cluster in the catalytic cycle are also resolved

in detail, demonstrating the essential necessity of the two

sub-clusters (Adams 1990; Pereira et al. 2001; Adamska

et al. 2012; Adamska-Venkatesh et al. 2014; Mulder et al.

2014). Inspired by the structural and functional details of

H-cluster, artificial photocatalytic systems have been con-

structed in view of solar energy conversion (Eckenhoff and

Eisenberg 2012; Wang et al. 2012; Wu et al. 2014; Wang

et al. 2015). From a photochemical point of view, electron
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transfer should be triggered by a preceding absorption of a

photon by a photosensitizer. We have focused on the

construction of inexpensive [FeFe]-hydrogenase mimics

with photocatalytic activity (Gao et al. 2014, 2017). One

successful model was complex 3 (as depicted in

Scheme 1), consisting of a noble-metal-free organic chro-

mophore, a [2Fe2S] proton reduction catalytic centre to

accomplish the photo-induced H2 evolution. The light-

driven intramolecular electron transfer has been eviden-

tially demonstrated, and a remarkably photocatalytic effi-

ciency was achieved. However, the other significant source

of reducing equivalents for converting protons to molecular

hydrogen, that is, electrochemistry, has not been thought-

fully investigated.

On the other hand, the dithiol ligand has been

unequivocally confirmed as an azadithiolate (Silakov et al.

2009; Erdem et al. 2011; Berggren et al. 2013). The

bridging amine group plays an important role for the

heterocyclic cleavage or formation of hydrogen in enzy-

matic process. The amine moiety close to the Fed (‘‘distal’’

to [4Fe4S] cluster) atom with open coordination site would

accept or donate a proton from a transient hydride in

hydrogen production (Berggren et al. 2013; Esselborn et al.

2013; Lubitz et al. 2014), acting as a proton shuttle

between the protein and the H-cluster (Sommer et al.

2017). Studies on the protonation of the amino headgroup

in diiron azadithiolates might contribute to the under-

standing of the mechanism of enzymatic hydrogen pro-

duction and/or uptake. Likewise, after protonation, the

nitrogen-bridged diiron complex exhibited milder reduc-

tion potential (Ott et al. 2004; Wang et al. 2007; Jiang et al.

2007; Capon et al. 2008), which was closer to that (ca.

-1.0 V versus Fc/Fc?) of the proton reduction catalysed

by natural enzymes (Holm et al. 1996; Butt et al. 1997).

Relative to the phenyl species as a substituent on the

azadithiolate nitrogen atom, the benzyl group seemed to

have an influence on the architectural, protonated and

electrochemical properties of the diiron dithiolate complex.

We, therefore, set out to synthesize a new [FeFe]-hydro-

genase active site mimic which contains a functional

benzyl group covalently embedded to the azadithiolate

ligand (coded as 4, Scheme 1). The structure, acid titration

and cyclic voltammetry are explored to give more insights

into the influence of the methylene group between the

azadithiolate nitrogen atom and functional phenyl moiety

on the protophilic properties of [FeFe]-hydrogenase model

complex. Herein, the synthesis, structures, N-protonation

and electrochemical properties of 4 and the phenyl sub-

stituted analogue 3 were discussed in detail.

Experiment

Reagents and instruments

All organometallic reactions and operations were carried

out under a dry, oxygen-free argon atmosphere with stan-

dard Schlenk techniques. All solvents were dried and dis-

tilled prior to use by standard methods. Starting compound

[(l-S)2{Fe(CO)3}2] was prepared according to literature

procedure (Bogan et al. 1983). Other materials were

commercially available and used without further

purification.

IR spectra were recorded on JASCO FT/IR 430 spec-

trophotometer. 1H and 13C spectra were collected on a

Bruker AVANCE II/400 NMR spectrometer. HR-MS

determinations were made on a GCT-MS instrument (Mi-

cromass, England). UV–Vis spectra were measured on a

PerkinElmer Lambda 35 spectrophotometer. Steady-state

emission spectra were determined on JASCO FP-6500

spectrophotometer.

Synthesis and characterization

2-[4-(bromomethyl)phenyl]benzothiazole (coded as 1a,

Scheme 2) was synthesized from 4-methylbenzoic acid and

2-aminothiophenol according to literature procedures

(Palmer et al. 1971; Yoshino et al. 1986). The solution of

1a (4.5 g, 15 mmol) in anhydrous CHCl3 (50 mL) was

added dropwise to a solution (40 mL anhydrous CHCl3) of

hexamethylenetetramine (2.1 g, 15 mmol). The mixture

was refluxed for 5 h with vigorous stirring. The resulting

precipitate was washed several times with deionized water

and added to a mixture of ethanol and concentrated HCl

Scheme 1 Proposed

intermediate in enzymatic

reduction of protons and

oxidation of H2 (middle) and the

synthetic model complexes 3
(left) and 4 (right)

Chem. Pap.

123



(4:1, 100 mL). The resulting solution was kept stirring at

70 �C for 12 h and then allowed to stand at room tem-

perature overnight. An HCl salt was obtained by filtration,

washed with 10% KHCO3 (50 mL) and extracted into

CHCl3 (50 mL). The organic layer was dried over anhy-

drous MgSO4. The solvent was removed in vacuo to give

the primary amine 1b as a yellow solid (3.06 g, 85%). A

mixture of 1b (1.8 g, 7.5 mmol) and paraformaldehyde

(0.6 g, 19.5 mmol) in 20 mL CH2Cl2 was stirred for 5 h

and treated dropwise with 2.25 mL (31 mmol) of SOCl2.

After 1.5 h, the solvent and unreacted SOCl2 were removed

under vacuum to give the product 1c. The generated solid

was added to the THF solution of [(l-LiS)2Fe2(CO)6],
freshly prepared by the reaction of super hydride LiEt3BH

(1 mol L-1 solution in THF, 8 mL) and [(l-S)2-
{Fe(CO)3}2] (2) (1.38 g, 4 mmol in 30 mL THF). The

mixture was stirred for 2 h at -78 �C and then 1 h at room

temperature. The solvent was removed on a rotary evapo-

rator. The crude product was purified by column chro-

matography (silica, 10% dichloromethane in hexane as

eluent) to give complex 4 (1.77 g, 72%) as a red solid.
1H NMR (400 MHz, CDCl3): d = 7.93 (d, 2H, C6H4),

7.52 (s, 2H, NC6H4S), 7.42 (s, 2H, NC6H4S), 7.34 (s, 2H,

C6H4), 3.78 (s, 2H, PhCH2), 3.37 (s, 4H, SCH2) ppm; 13C

NMR (100 MHz, CDCl3): d = 207.9, 167.6, 154.3, 139.2,

135.2, 133.4, 129.4, 128.0, 126.6, 125.5, 123.5, 121.8,

61.7, 52.6 ppm; IR (CH2Cl2): ~m/cm-1 2073, 2030, 1995

(CO); HR-MS (EI): m/z calc. for [M?]: 609.8713; found:

609.8708.

Crystal structure determination

The X-ray diffractions of all single crystals were made on a

SMART APEX II diffractometer. Data were collected at

273 K using graphite monochromatic Mo-Ka radiation

(k = 0.71073 Å) in the x-2h scan mode. Data processing

was accomplished with the SAINT processing program

(Siemens Energy and Automation Inc., 1996). Intensity

data were corrected for absorption by the SADABS

program (Sheldrick 1996). The structures were solved by

direct methods and refined by full-matrix least-squares

techniques on FO
2 using the SHELXTL 97 crystallographic

software package (Sheldrick 1997). All non-hydrogen

atoms were refined anisotropically. All hydrogen atoms

were located using the geometric method, and their posi-

tions and thermal parameters were fixed during the struc-

ture refinement. Details of crystal data, data collections and

structure refinements were summarized in Table 1.

Electrochemistry

Electrochemical measurements were made with a BAS

100B electrochemical workstation at a scan rate of

100 mV s-1. All voltammograms were obtained in a con-

ventional three-electrode cell under argon and at ambient

temperature. The working electrode was a glassy carbon

disc (diameter 3 mm) that was successively polished with

3- and 1 lm diamond pastes and sonicated for 15 min prior

to use. The reference electrode was a non-aqueous Ag/Ag?

electrode (0.01 mol L-1 AgNO3 and 0.1 mol L-1 n-Bu4-
NPF6 in CH3CN) and the counter electrode was a platinum

wire. The potentials were reported versus ferrocene

(Fc)/ferrocenium (Fc?) couple.

Results and discussion

In the present report, commercially available materials

were employed to generate the target product. Bromination

of 2-p-tolylbenzothiazole with N-Bromosuccinimide

(NBS) gave the bromomethyl compound 1a for subsequent

reactions. Then the aminomethyl compound 1b was pre-

pared via a short and high-yielding procedure (Gunn-

laugsson et al. 2004) instead of the classical Gabriel amine

synthesis (Fyles and Suresh 1994). The transformation of

1a with the inexpensive hexamethylenetetramine in dry

chloroform was easy to yield an insoluble amine com-

pound, which could be dissolved in a mixture of ethanol

Scheme 2 Synthetic procedure of the model complex 4
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and concentrated HCl. After the filtration of the HCl salt,

compound 1b was isolated as a product in ca. 85% yield.

The resulting primary amine could react readily with

paraformaldehyde and SOCl2 to generate bis(chlor-

omethyl)amine 1c (Lawrence et al. 2001a, b). The treat-

ment of 1c with [(l-S)2{Fe(CO)3}2]
2- dianion, freshly

derived from [(l-S)2{Fe(CO)3}2] in THF, gave the iron

thiolate carbonyl dimer 4 in a reasonable yield (Scheme 2).

Complex 4 was fully characterized by 1H NMR, 13C

NMR, IR and HR-MS spectroscopies. The molecular

structure was further confirmed by X-ray crystallography.

ORTEP plots of 4 and complex 3 were shown in Fig. 1,

while the selected bond lengths and angles were

summarized in Table 2. Both complexes consisted of a

butterfly architectonic [2Fe] core with distorted square-

pyramidal geometry around each iron atom (Tard and

Pickett 2009; Simmons et al. 2014). The Fe–Fe bond

lengths [3: 2.5036(4) Å, 4: 2.5013(12) Å] were in good

agreement with those of previously reported diiron aza-

dithiolates (2.48–2.52 Å) (Georgakaki et al. 2003; Liu et al.

2005; Tard et al. 2005; Gloaguen and Rauchfuss 2009),

whereas slightly shorter than those in the structures of

enzymes Clostridium pasterianum and Desulfovibrio

desulfuricans (ca. 2.6 Å) (Peters et al. 1998; Nicolet et al.

1999, 2001). Indeed, the models 3 and 4 involved two

fused six-membered rings in which the N-substituted aza-

dithiolate ligands were g2:g2-coordinated to the Fe(CO)3
moieties. One ring (Fe1–S1–C7–N1–C8–S2) adopted a

chair conformation, while the other ring (Fe2–S1–C7–N1–

C8–S2) had a boat conformation. Although the structures

of the Fe2S2(CO)6 subunits of 3 and 4 appeared quite

similar, the tertiary amine moieties featured apparently

distinct conformations. The substituted phenyl group of 3

lay in the axial position relative to above-mentioned met-

alloheterocycle, while the benzyl moiety resided in an

equatorial position in 4. In the light of the C–N–C angles,

the sum of ca. 357� for 3 and 332� for 4 suggested that the

bridgehead azadithiolate nitrogen atoms were sp2 and sp3-

hybridized, respectively. It was noteworthy that N1 atom in

3 possessed a pseudo-triangular conformation, leading to

slightly weakened p-p conjugation between the p-orbital of

Table 1 Crystallographic data

and processing parameters for

complexes 3 and 4

Complex 3 4

Formula C21H12Fe2N2O6S3 C22H14Fe2N2O6S3

Mw 596.21 610.23

Crystal system Monoclinic Orthorhombic

Space group P2(1)/c P2(1)2(1)2(1)

a (Å) 13.8606(12) 6.651(3)

b (Å) 7.6900(7) 14.208(7)

c (Å) 21.5052(19) 25.854(12)

V (Å3) 2290.1(4) 2443.2(19)

Z 4 4

Dcalcd./g cm-3 1.729 1.659

l (mm-1) 1.582 1.485

F(000) 1200 1232

Crystal size (mm) 0.45 9 0.22 9 0.10 0.95 9 0.08 9 0.07

Reflns collected 12,350 11,654

Independent reflections 4509 3991

Rint 0.0204 0.0301

Parameters refined 307 316

GOF on F2 1.035 0.982

R1 [I[ 2r(I)] 0.0231 0.0270

wR2 [I[ 2r(I)] 0.0620 0.0495

Residual electron density (e Å-3) 0.281/-0.232 0.223/-0.162

Fig. 1 Molecular structures of complexes 3 (a) and 4 (b) with 30%

probability level ellipsoids (the hydrogen atoms have been omitted for

clarity)
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nitrogen atom and the phenyl ring. On the other hand, the

sp3-hybridized N1 atom in 4 holds a distorted tetrahedral

conformation with the nitrogen lone-pair pointing towards

Fe2 nucleus. The nonbonding C���N distance between the

azadithiolate nitrogen atom and the nearest carbonyl car-

bon atom was significantly shortened in 4 (ca. 3.18 Å) than

in 3 (ca. 3.49 Å).

Protonation of 4 occurred in the CH3CN solution upon

addition of a strong organic acid such as triflic acid (HOTf,

pKa * 2.6 in CH3CN) (Eilers et al. 2007). Complex 4 in

CH3CN solution exhibited three characteristic ~m(CO) bands
at 2073, 2030 and 1995 cm-1 in IR spectrum (Fig. 2a).

Addition of an excess of HOTf to the CH3CN solution of 4

resulted in a shift of ~m(CO) bands to higher frequencies

with an average value of ca. 18 cm-1 (Fig. 2b), which

represented a protonation of the azadithiolate nitrogen

(Lawrence et al. 2001a, b; Schwartz et al. 2006) and a

generation of N-protonated product 4(NH). Subsequent

titration of an organic base such as triethanolamine

(TEOA) revealed that the protonation and deprotonation

processes of 4 and 4(NH) were reversible. With the addi-

tion of 0.5 equiv. of TEOA to the CH3CN solution of

4(NH), the ~m(CO) bands of 4 recovered while the ~m(CO)
bands of 4(NH) still existed (Fig. 2c), indicative of the

equilibrium between 4 and 4(NH). Further addition of

TEOA up to 1 equiv. resulted in quantitative recovery of 4.

The ~m(CO) absorptions shifted to the frequencies essen-

tially equal to those of 4 (Fig. 2d). Meanwhile, addition of

strong acid to solutions of the related phenyl-substituted

analogue 3 did not result in the changed IR spectra, sug-

gesting that the bridgehead nitrogen atom of 3 could not be

protonated under present conditions.

The UV/Vis spectrum of complex 4 was dominated by

an intense absorption band in the UV region around

315 nm, which could be attributed to the p–p* excitation

within the phenylbenzothiazole chromophore (Fig. 3a). A

low-energy shoulder was visible in the near UV region and

featured r–r* and d–r* character involved with the [2Fe]

unit (Goy et al. 2013). The metal-based band determined

the photophysical and photochemical properties of 4.

Likewise, a broad and featureless absorption reaching up to

550 nm was similar to the characteristic bands of previ-

ously reported [FeFe]-hydrogenase mimics (Eilers et al.

2007) and was responsible for the dark red colour of 4

solution. Excitation of the p–p* absorption of 4 resulted in

a fluorescence emission band around 370 nm, with a much

Table 2 Selected bond lengths (Å) and angles (deg) for complexes 3
and 4

Complex 3 4

Bond lengths

Fe(1)–Fe(2) 2.5036(4) 2.5013(12)

Fe(1)–S(1) 2.2663(5) 2.2485(11)

Fe(1)–S(2) 2.2647(5) 2.2487(11)

Fe(2)–S(1) 2.2717(5) 2.2466(11)

Fe(2)–S(2) 2.2594(5) 2.2534(11)

N(1)–C(7) 1.423(2) 1.448(4)

N(1)–C(8) 1.432(2) 1.445(3)

N(1)–C(9) 1.404(2) 1.472(3)

N(1)���C(6) 3.4891(23) 3.1781(41)

S(1)���S(2) 3.0609(6) 3.0226(17)

Bond angles

Fe(1)–S(1)–Fe(2) 66.969(15) 67.62(3)

Fe(1)–S(2)–Fe(2) 67.201(15) 67.50(4)

S(1)–Fe(1)–Fe(2) 56.619(14) 56.15(3)

S(1)–Fe(2)–Fe(1) 56.412(13) 56.23(3)

S(2)–Fe(1)–Fe(2) 56.300(13) 56.34(3)

S(2)–Fe(2)–Fe(1) 56.499(14) 56.16(3)

C(1)–Fe(1)–Fe(2) 147.69(6) 147.16(11)

C(6)–Fe(2)–Fe(1) 154.19(6) 148.57(11)

C(7)–N(1)–C(8) 113.03(15) 111.8(2)

C(7)–N(1)–C(9) 121.62(15) 109.4(2)

C(8)–N(1)–C(9) 122.20(15) 110.7(2)

Dihedrala 71.7 78.5

a Defined by the intersection of the two SFe2 planes

Fig. 2 FT-IR spectra of (a) 4 in CH3CN, (b) 4 ? 5 equiv. of HOTf in

CH3CN, (c) 4(NH) ? 0.5 equiv. of TEOA in CH3CN, (d) 4(NH) ? 1

equiv. of TEOA in CH3CN
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stronger emission intensity relative to that of 3 (Fig. 3b).

We had demonstrated that the luminescence quenching of

complex 3 was caused by the intramolecular oxidative

process with electron transfer from the excited chro-

mophore to [2Fe] unit in 3 (Gao et al. 2014). Such an

intramolecular electron transfer was recognized as one of

the important steps required for light-driven reduction of

protons to hydrogen performed by [FeFe]-hydrogenase

mimic. The differences in emissions between 3 and 4

suggested that the desirable electron transfer might be

prevented in latter molecule. It could be concluded that the

short rigid architecture of 3 was more favourable for the

light-driven intramolecular electron transfer.

The electrochemical behaviours of 3 and 4 were inves-

tigated by cyclic voltammetry (CV) in CH3CN with n-

Bu4NPF6 (0.05 mol L-1) as supporting electrolyte under

an argon atmosphere (Fig. 4). All potentials were in volts

versus Fc/Fc?. In dry solution, 3 and 4 exhibited similar

reduction processes, with one quasi-reversible (-1.53 V

for 3, -1.60 V for 4) and an irreversible reduction peak

(-1.96 V for 3, -2.03 V for 4). The primary reduction

event might involve the transfer of two electrons occurred

at closely separated potentials (Borg et al. 2004; Capon

et al. 2007, 2009; Felton et al. 2007, 2009a) or the two-

electron processes coupled with chemical reaction (Zeng

et al. 2010; Xiao et al. 2011; Zhao et al. 2012; Qian et al.

2015). In either case, the redox process of [FeIFeI] to

[FeIFe0] undoubtedly occurred around -1.53 V for 3 and

-1.60 V for 4. Likewise, electrochemically irreversible

oxidation events had been established at 0.53 V for 3 and

0.41 V for 4. The ratios of the oxidation peak current of 3

and 4 over the primary reduction peak current were both

ca. 1.5. Hereby, we assumed the oxidations of 3 and 4 to be

combined results of two overlapping processes of [FeIFeI]

to [FeIFeII] and the oxidation of phenylbenzothiazole

moiety. Moreover, the redox potential could be usually

considered as an indicator to detect the electron density

around the iron nuclei in [FeFe]-hydrogenase mimics. The

more negative reduction potentials and less positive oxi-

dation potential of 4 relative to those of 3 indicated that 4

was easier to be oxidized and carried a decreased reduction

capability. The azadithiolate nitrogen atom of 3 was part of

an aniline. The N lone pair could overlap with the two anti-

bonding r*C–S orbitals to form an orbital mixing that

represented the hyperconjugation. The hyperconjugation

effect led to a relatively strong communication between the

azadithiolate nitrogen atom and the [2Fe] site, which was

responsible for the more positive reduction potential of 3.

The electrocatalytic proton reduction of complexes 3

and 4 were studied by CV in the presence of p-toluene-

sulfonic acid (HOTs, pKa *8.0 in CH3CN) (Fujinaga and

Sakamoto 1977) with the concentration of 2–8 mM. Upon

addition of 2 equiv. of HOTs to the CH3CN solution of 3, a

new reduction event was observed at ca. -1.45 V while the

peak of the initial [FeIFeI]/[FeIFe0] reduction process at ca.

-1.53 V still existed. The current intensity of the former

reduction exhibited a well linear increase with sequential

increments of the acid concentration, while the potential

slightly shifted towards a more negative value (Fig. 5).

These electrochemical behaviours featured a catalytic

proton reduction process (Bhugun et al. 1996; Gloaguen

et al. 2001) and demonstrated the electrocatalytic activity

of 3. Moreover, the CVs did not display any largely anodic

shifted peak in the whole process, implying that the pro-

tonation of azadithiolate nitrogen atom of 3 had not taken

place in the catalytic proton reduction (vide infra).

Based on aforementioned electrochemical observations

and other similar cases (Capon et al. 2005, 2009; Felton

et al. 2009b), an ECCE (electrochemical–chemical–chem-

ical–electrochemical) process could be proposed to account

for the proton reduction catalysed by 3 in the presence of

HOTs. Initially, the azadithiolate [FeIFeI] complex 3 was

reduced at ca. -1.53 V to give the [Fe0FeI]- monoanion

(1st E step). In the presence of proton acid, the [Fe0FeI]-

Fig. 3 UV-Vis absorption (left) and emission (right) spectra of

complexes 3, 4, and compound 2-p-tolylbenzothiazole, recorded in

CH3CN

Fig. 4 CVs of complexes 3 and 4 in CH3CN solution (0.05 mol L-1

n-Bu4NPF6). The scan rate is 100 mV s-1
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species accepted a proton (1st C step) and underwent a

subsequent protonation to form the g2-H2 species (2nd C

step), which could be reduced at the potential (-1.45 V)

slightly more positive than -1.53 V (2nd E step) to release

molecular hydrogen and accomplish the electrocatalytic

proton reduction cycle.

In contrast to the electrochemical behaviours of complex

3, addition of HOTs to the solution of 4 in CH3CN resulted

in new reduction peak at ca. -1.2 V being observed

(Fig. 6). The peak was shifted by around 0.4 V towards

more positive potential relative to the primary reduction of

4 and could be ascribed to a one-electron reduction process

of the introduced [4(NH)]? cation. The difference between

the reduction potentials of [4(NH)]? and 4 was consistent

with those found for previously reported azadithiolate

diiron analogues (Ott et al. 2004; Wang et al. 2007; Jiang

et al. 2007; Capon et al. 2008) and implied that the pro-

tonation occurred at the azadithiolate nitrogen atom rather

than at the Fe–Fe bond, which generally resulted in larger

potential shifts (Zhao et al. 2002; Gloaguen et al. 2002;

Eilers et al. 2007). The current of the peak at -1.2 V

increased linearly with the amount of acid added (2–8

equiv.), indicative of the catalytic reduction of protons at

this potential. Likewise, an acid-dependent reduction

around -1.54 V had also been evidenced. The slopes of

the plots of current versus acid concentration showed that

the process observed around -1.54 V exhibited a slightly

greater catalytic activity.

Obviously, the catalytic proton reduction of 4 followed a

distinguishing mechanism relative to that of 3. The pres-

ence of the moderately strong acid (HOTs) resulted in the

protonation of azadithiolate nitrogen atom of 4 (1st C step).

The generated [4(NH)]? was electrochemically reduced to

4(NH) at ca. -1.2 V (1st E step). The metal-centred

reduction likely increased the electron density of the diiron

site significantly so that HOTs was able to protonate 4(NH)

at the electron-rich Fe–Fe bond, producing a cationic

complex with a bridging hydride ligand (2nd C step). The

l-hydride diiron complex underwent a second reduction at

a potential close to that of [4(NH)]? (2nd E step), and then

the catalyst was liberated and made available for another

cycle. The catalytic cycle was proposed to be a CECE

process for the reduction behaviours of 4 at ca. -1.2 V.

However, the mechanism of the proton reduction path

observed around -1.54 V was somewhat complicated, and

the related investigations are now underway.

Conclusions

In summary, a functional benzyl-containing diiron aza-

dithiolate complex (coded as 4) was synthesized as bio-

mimetic model of the active site of [FeFe]-hydrogenase.

The structure of synthetic mimic was fully characterized by

NMR, IR, HRMS spectra and X-ray single crystal

diffraction analysis. Complex 4 exhibited distinct pro-

tophilic property relative to the phenyl substituted analogue

(coded as 3), due to the existence of the methylene group

near the azadithiolate nitrogen atom. IR spectra evidenced

that the sp3-hybridized nitrogen atom of 4 underwent a

protonation in the presence of organic acid, which did not

occur for the case of 3 under same conditions. The redox

behaviours of 3 and 4 in the absence of proton acid were

quite similar. The most remarkable feature of 4 as a cata-

lyst for electrochemical proton reduction was the relatively

mild potential (ca. -1.2 V versus Fc/Fc?). The potential

shifted towards more positive value by ca. 250 mV related

to that of 3, which could be rationalized by considering the

altered catalytic mechanism. The catalytic cycle proposed

Fig. 5 Left CVs of complex 3 in CH3CN/n-Bu4NPF6 solution in the

absence and presence of 2, 4, 6, 8 equiv. of HOTs. The scan rate is

100 mV s-1. Right Dependence of current intensity of the electro-

catalytic reductions on the concentration of HOTs

Fig. 6 Left CVs of complex 4 in CH3CN/n-Bu4NPF6 solution in the

absence and presence of 2, 4, 6, 8 equiv. of HOTs. The scan rate is

100 mV s-1. Right Dependence of current intensity of the electro-

catalytic reductions on the concentration of HOTs
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for 4 commenced with the protonation of the azadithiolate

nitrogen atom, operated at moderately negative potential

and resembled the natural enzymes more closely.
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Reijerse EJ, Lubitz W (2017) Proton coupled electronic

rearrangement within the H-cluster as an essential step in the

catalytic cycle of [FeFe] hydrogenases. J Am Chem Soc

139(4):1440–1443. doi:10.1021/jacs.6b12636

Tard C, Pickett CJ (2009) Structural and functional analogues of the

active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases.

Chem Rev 109(6):2245–2274. doi:10.1021/cr800542q

Tard C, Liu XM, Ibrahim SK, Bruschi M, De Gioia L, Davies SC,

Yang X, Wang LS, Sawers G, Pickett CJ (2005) Synthesis of the

H-cluster framework of iron-only hydrogenase. Nature

433:610–613. doi:10.1038/nature03298

Wang F, Wang M, Liu X, Jin K, Dong W, Sun LC (2007) Protonation,

electrochemical properties and molecular structures of halogen-

functionalized diiron azadithiolate complexes related to the

active site of iron-only hydrogenases. Dalton Trans

2007(34):3812–3819. doi:10.1039/B706178A

Wang F, Wang WG, Wang HY, Si G, Tung CH, Wu LZ (2012)

Artificial photosynthetic systems based on [FeFe]-hydrogenase

mimics: the road to high efficiency for light-driven hydrogen

evolution. ACS Catal 2(3):407–416. doi:10.1021/cs200458b

Wang M, Han K, Zhang S, Sun LC (2015) Integration of

organometallic complexes with semiconductors and other nano-

materials for photocatalytic H2 production. Coord Chem Rev

287:1–14. doi:10.1016/j.ccr.2014.12.005

Wu LZ, Chen B, Li ZJ, Tung CH (2014) Enhancement of the

efficiency of photocatalytic reduction of protons to hydrogen via

molecular assembly. Acc Chem Res 47(7):2177–2185. doi:10.

1021/ar500140r

Xiao ZY, Wei ZH, Long L, Wang YL, Evans DJ, Liu XM (2011)

Diiron carbonyl complexes possessing a Fe(II)Fe(II) core:

Chem. Pap.

123

http://dx.doi.org/10.1039/B801796B
http://dx.doi.org/10.1021/ja016516f
http://dx.doi.org/10.1021/ic025838x
http://dx.doi.org/10.1021/ic025838x
http://dx.doi.org/10.1002/ejic.201300537
http://dx.doi.org/10.1039/B404706K
http://dx.doi.org/10.1021/cr9500390
http://dx.doi.org/10.1039/B615037C
http://dx.doi.org/10.1039/B615037C
http://dx.doi.org/10.1039/B104195A
http://dx.doi.org/10.1002/1521-3773(20010504)40:9%3c1768:AID-ANIE17680%3e3.0.CO;2-E
http://dx.doi.org/10.1002/1521-3773(20010504)40:9%3c1768:AID-ANIE17680%3e3.0.CO;2-E
http://dx.doi.org/10.1016/j.ccr.2005.04.009
http://dx.doi.org/10.1016/j.ccr.2005.04.009
http://dx.doi.org/10.1021/cr050186q
http://dx.doi.org/10.1021/cr4005814
http://dx.doi.org/10.1021/ja508629m
http://dx.doi.org/10.1021/ja508629m
http://dx.doi.org/10.1016/S0969-2126(99)80005-7
http://dx.doi.org/10.1016/S0969-2126(99)80005-7
http://dx.doi.org/10.1021/ja0020963
http://dx.doi.org/10.1021/ja0020963
http://dx.doi.org/10.1002/anie.200353190
http://dx.doi.org/10.1021/jm00294a024
http://dx.doi.org/10.1021/ja003176%2b
http://dx.doi.org/10.1126/science.282.5395.1853
http://dx.doi.org/10.1016/j.electacta.2015.02.163
http://dx.doi.org/10.1039/B514280F
http://dx.doi.org/10.1039/B514280F
http://dx.doi.org/10.1039/b905841a
http://dx.doi.org/10.1016/j.ccr.2013.12.018
http://dx.doi.org/10.1016/j.ccr.2013.12.018
http://dx.doi.org/10.1021/jacs.6b12636
http://dx.doi.org/10.1021/cr800542q
http://dx.doi.org/10.1038/nature03298
http://dx.doi.org/10.1039/B706178A
http://dx.doi.org/10.1021/cs200458b
http://dx.doi.org/10.1016/j.ccr.2014.12.005
http://dx.doi.org/10.1021/ar500140r
http://dx.doi.org/10.1021/ar500140r


synthesis, characterisation, and electrochemical investigation.

Dalton Trans 40(16):4291–4299. doi:10.1039/C0DT01465F

Yoshino K, Kohno T, Uno T, Morita T, Tsukamoto G (1986) Organic

phosphorus compounds. 1. 4-(Benzothiazol-2-yl)benzylphospho-

nate as potent calcium antagonistic vasodilator. J Med Chem

29(5):820–825. doi:10.1021/jm00155a037

Zeng XH, Li ZM, Xiao ZY, Wang YW, Liu XM (2010) Using

pendant ferrocenyl group(s) as an intramolecular standard to

probe the reduction of diiron hexacarbonyl model complexes for

the sub-unit of [FeFe]-hydrogenase. Electrochem Commun

12(3):342–345. doi:10.1016/j.elecom.2009.12.023

Zhao X, Hsiao YM, Reibenspies JH, Darensbourg MY (2002)

Oxidative addition of phosphine-tethered thiols to iron carbonyl:

binuclear phosphinothiolate complexes, (l-
SCH2CH2PPh2)2Fe2(CO)4, and hydride derivatives. Inorg

Chem 41(4):699–708. doi:10.1021/ic010741g

Zhao J, Wei ZH, Zeng XH, Liu XM (2012) Three diiron complexes

bearing an aromatic ring as mimics of the diiron subunit of

[FeFe]-hydrogenase: synthesis, electron transfer and coupled

chemical reactions. Dalton Trans 41(36):11125–11133. doi:10.

1039/C2DT31083J

Chem. Pap.

123

http://dx.doi.org/10.1039/C0DT01465F
http://dx.doi.org/10.1021/jm00155a037
http://dx.doi.org/10.1016/j.elecom.2009.12.023
http://dx.doi.org/10.1021/ic010741g
http://dx.doi.org/10.1039/C2DT31083J
http://dx.doi.org/10.1039/C2DT31083J

	Influence of the methylene group between azadithiolate nitrogen atom and phenyl moiety on the protophilic properties of [FeFe]-hydrogenase model complexes
	Abstract
	Introduction
	Experiment
	Reagents and instruments
	Synthesis and characterization
	Crystal structure determination
	Electrochemistry

	Results and discussion
	Conclusions
	Acknowledgements
	References




