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ABSTRACT: The (polyenoyl)tetramic acid militarinone C (1)
heads a family of seven members. Before our work, the
configuration of C-5 was unknown whereas the configurations of
C-8′ and C-10′ were either (R,R) or (S,S). We synthesized the four
stereoisomers of constitution 1, which conform with these insights.
This included cross-coupling both enantiomers of the western
building block (8) with both enantiomers of the eastern building
block (9). The specific rotations of the resulting 1 isomers
suggested that natural 1 is configured like the coupling partners
(S)-8 and (R,R)-9. This conclusion was corroborated by degrading
natural 1 to alcohol 35 and by proving its configurational identity
with synthetic (R,R)-35.

S even natural products are named after the fungus
Paecilomyces militaris, (−)-militarinones A1,2 (5), B3,1 (2),

C3 (1), D3 (3), E1 (6), and F1 (7) and (+)-N-deoxymilitarinone
A4 [4 (Figure 1)].5 Two of them (B and C) are (polyenoyl)-

tetramic acids,6 and five are (polyenoyl)pyridones.7 Our study
describes stereoselective total syntheses of the (polyenoyl)-
tetramic acid militarinone C3 (1) and three of its diastereomers,
and it establishes the (5S,8′R,10′R)-configuration of natural 18

unambiguously. This attribution was not possible originally,3

although the stereogenic C−CH3 bonds were recognized as syn-
oriented,3,9,10 i.e., (R,R)- or (S,S)-configured. The (R,R)-
configuration now proven in militarinone C (1) should occur

in all compounds depicted in Figure 1 because their structures
are viewed3,1 as biogenetically related.
For the same reason, the (R,R)-configuration of totally

synthetic (−)-militarinone D (1), proven in 2011,11 would have
indicated the generality of such (R,R)-configurations in the
series, had there not been a conflicting observation in the sequel.
(R,R)-configured N-deoxymilitarinone A (4) from total syn-
thesis12 turned out to be levorotatory ([α]D

20 = −19.312) as
opposed to N-deoxymilitarinone A (4) from nature, which was
dextrorotatory ([α]D

20 = +33.34). With the conclusion,
accordingly, that natural 4 is (S,S)-configured, the postulate3,1

of biogenetic configurational homogeneity of all militarinone
side chains is breached.
We took the incertitude about militarinone side-chain

configurations beyond the reported cases of (−)-militarinone
D (1)11 and N-deoxymilitarinone A (4)12 into account when
pursuing the first total syntheses of all four militarinone C
candidates: (5S,8′R,10′R)-1, naturally configured 1, as it turned
out eventually; (5S,8′S,10′S)-1, 5-epimer of the unnatural
enantiomer of 1; (5R,8′R,10′R)-1, 5-epimer of naturally
configured 1; (5R,8′S,10′S)-1, unnatural enantiomer of 1. In
parallel with our effort, the Schobert group took on a total
synthesis of the same target militarinone C (1). They addressed
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Figure 1.Militarinone family of natural products.
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just the (natural) (5S,8′R,10′R)-configuration and disclosed the
respective first total synthesis in mid-2018.13

In 2014, Hofferberth from our group achieved total syntheses
of the (polyenoyl)tetramic acid natural products α-lipomycin
and its aglycon, β-lipomycin.14 His route was very convergent,
not in the least because of the use of the newly developed δ-
bromo-β-ketothioester 1114 and the previously developed all-
trans-hexatriene-1,6-bis(tributylstannane)15 as conjuctive re-
agents.
Conceiving a related retrosynthetic analysis of the four

militarinone C (1) candidates, we identified the δ-bromo-β-
ketothioester 1114 as a conjunctive building block once more
(Figure 2). The western building block (8) was traced back to

diprotected tyrosine esters (R)- or (S)-13 and the eastern
building block [(R,R)- or (S,S)-9] to α-chiral aldehyde (R,R)- or
(S,S)-12. As a late step, we envisaged a Stille coupling of building
blocks (R)- or (S)-8 and (R,R)- or (S,S)-9. Thereupon, a Lacey−
Dieckmann cyclization16 should establish the heterocycle.
Removal of the protecting groups would render the target(s).
The four syntheses based on the retrosynthesis of Figure 2 are

exemplified in Schemes 1−4 by our access to the isomer
(5S,8′R,10′R)-1, which equals naturally configured 1. Our routes
to the unnatural enantiomer of 1, (5R,8′S,10′S)-1, and to
enantiomers (5S,8′S,10′S)- and (5R,8′R,10′R)-1 of a diaster-
eomer of 1 were strictly analogous; their description is available
in the Supporting Information.

Methyl N-DMB-O-TBS tyrosinate [(S)-13], according to
Figure 2 the source of the tyrosine motif of the naturally
configured target 1, was obtained from L-tyrosine [(S)-16] in
three steps (Scheme 1): esterification [→95% (S)-2017], O-
silylation [→84% (S)-2118], and reductive amination of 2,4-
dimethoxybenzaldehyde (22). Although the last transformation
[→(S)-13] had precedent (e.g., ref 19), it eroded the ee
significantly (table in Figure 2, entries 2−9) or entirely (entry 1;
for conditions, see ref 19). Employing lessHOAc (3 to 0.3 vol %)
and shortening the delay between the additions of aldehyde 22
and NaBH3CN (from 120 min to 10 s), we increased the ee of
(S)-13 to 99.5% (entries 2 and 5−9).
Our route to western building block (S)-8 began with three

known steps (Scheme 2): trans-hydrobromination of propiolic

Figure 2. Our retrosynthetic analysis of militarinone C (1). It engages
thioester 11 from our lipomycin work14 anew.

Scheme 1. Synthesis of the N,O-Protected Tyrosine (S)-
13a,20

aReagents and conditions: (a) SOCl2, MeOH, 25 °C, 12 h, 95% (ref
17, 99%); (b) tBuMe2SiCl, imidazole, CH2Cl2, 25 °C, 16 h, 84% (ref
18, 86%); (c) 22, HOAc or NaOAc, MeOH, 25 °C, t1; NaBH3CN or
NaBH(OAc)3, 25 °C, t2. DMB = 2,4-dimethoxybenzyl.

Scheme 2. Synthesis of Western Building Block (S)-8a,20

aReagents and conditions: (a) HBr (concentrated), 100 °C, 1.5 h,
75% (ref 21, 85%); (b) Me(MeO)NH, N-methylmorpholine, T3P,
CH2Cl2, 0 °C, 30 min, 85% (ref 14, 86%); (c) LiHMDS, 24, THF,
−78 °C, 1 h; MgBr2·OEt2, 1 h; 23, 2 h; 75% (ref 14, 83%); (d)
thioester 11, 4 Å molecular sieves (powdered), THF, 25 °C, 30 min;
AgO2CCF3, 25 °C, 24 h;22 65%.
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acid (17)21 (→75% 18), Weinreb amide formation14 (→85%
23), and a crossed Claisen condensation with the Mg enolate of
tert-butyl thioacetate.14 In step 4, the resulting enol 11 (75%
yield) of the desired δ-bromo-β-ketothioester was aminolyzed in
the presence of AgO2CCF3 and powderedmolecular sieves22 (to
prevent any competing hydrolysis) by tyrosinate (S)-13 from
Scheme 1 [→65% (S)-8].
The stereogenic C−CH3 bonds of eastern building block

(R,R)-9 were established by asymmetric Myers alkylations23 of
the Li enolate of the amide (S,S)-18, prepared from
pseudoephedrin [(S,S)-26] and propionic anhydride23 (Scheme
3). Ethylation of its enolate24 [→94% (S,S,R)-26], reduction

with LiBH2·NH3
23 [→76% alcohol (R)-1924], tosylation [→

83% (R)-2725], and a Finkelstein reaction [→58% (R)-2826]
provided an iodide of 99% ee. It was combined with another
equivalent of the Li enolate of the amide (S,S)-18 to amide
(S,S,R,R)-1524,27 (88% yield). Reduction with LiBH2·NH3

23 [→
74% alcohol (R,R)-2924] and oxidation either with TPAP24 or by
the Ireland modification28 of Swern’s method accomplished the
desired aldehyde (R,R)-12 (76−77% yield, 98:2 dr).
Aldehyde (R,R)-12 of Scheme 3 and the azaenolate of α-

silylimine 30 were subjected to a condensation/hydrolysis
sequence,29 providing 86% of the unsaturated aldehyde (R,R)-
10 E-selectively (Scheme 4). Alkyne formation by a Seyferth−
Gilbert reaction30 [→81% (R,R)-32] followed by a
PdCl2(PPh3)2-catalyzed cis-hydrostannylation30 completed
eastern building block (R,R)-9 in situ. It Stille-coupled with 0.7
equiv of western building block (S)-8 (Scheme 2) in the

presence of Pd2(dba)3 and AsPh3.
31 The polyenoyl amide

(S,R,R)-33 resulted in a 51% yield over the two steps. Treatment
with 3.5 equiv of TBAF22 led to a Lacey−Dieckmann cyclization
and desilylation. Purification by flash chromatography on
reversed-phase silica gel32 furnished the DMB-protected
tetramic acid (S,R,R)-34 (61%). Exposure to 50 equiv of
thioanisole as a cation scavenger in a F3CCO2H/CH2Cl2
mixture (1:4) removed the DMB group.33 The crude product
was dissolved in MeOH to separate it from insoluble
impurities.34 Prepurification by reversed-phase flash chromatog-
raphy32 and purification by reversed-phase HPLC32 delivered
target (S,R,R)-1 in 75% yield. Whether it equates to natural
militarinone C (1) could have emerged from the respective
specific rotations had they not differed by as much as
[α]D

20
synthetic (S,R,R)‑1 = −31735 and [α]D20natural 1 = −430.2.3

Scheme 3. Establishing the syn-Configured C−Methyl
Bondsa,20,36

aReagents and conditions: (a) NEt3, propionic anhydride, CH2Cl2, 25
°C, 30 min, 92% (ref 23, 95%); (b) iPr2NH, LiCl, nBuLi, THF, −78
to 0 °C, 5 min; (S,S)-18, −78 °C, 1 h; 0 °C, 15 min; 25 °C, 5 min;
EtI, 25 °C, 15 h; 94% (ref 24, 88%); (c) iPr2NH, nBuLi, THF, −78
°C, 10 min; 0 °C, 10 min; BH3·NH3, 0 °C, 15 min; 25 °C, 15 min;
(S,S,R)-26, 25 °C, 2 h; 76% (ref 24, 85%); (d) TsCl, pyridine, 0 °C,
12 h, 83% (ref 25, 99%); (e) NaI, DMF, 60 °C, 1.5 h, 58% (ref 26,
89%); (f) iPr2NH, LiCl, nBuLi, THF, −78 to 0 °C, 5 min; (S,S)-18,
−78 °C, 1 h; 0 °C, 15 min; 25 °C, 5 min; (R)-28, 25 °C, 24 h; 88%
(ref 23 for the enantiomer, 94%; ref 24, 95%); (g) iPr2NH, nBuLi,
THF, −78 °C, 10 min; 0 °C, 10 min; BH3·NH3, 0 °C, 15 min; 25 °C,
15 min; (S,S,R,R)-15, 25 °C, 2 h; 74% (ref 24, 88%); (h) NMO, 4 Å
molecular sieves, CH2Cl2, 25 °C, 15 min; TPAP (5 mol %), 25 °C, 1
h; 77% (ref 24, 98%); (i) (COCl)2, DMSO, THF, −78 °C, 2 min; 0
°C, 3 min; alcohol (R,R)-29, −78 °C, 2 min; 0 °C, 15 min; NEt3, 0 to
25 °C; 76%. TPAP = Pr4NRuO4.

Scheme 4. Finishing Eastern Building Block (R,R)-9 and
Reaching Militarinone C [(5S,8′R,10′R)-1] and Three
Diastereomers Thereof [(S,S,S)-1, (R,R,R)-1, and
(5R,8′S,10′S)-1]a,37

aReagents and conditions: (a) 30, sBuLi, THF, −78 °C, 30 min;
(R,R)-12, −20 °C, 2.5 h; isolation of the imine; CF3CO2H, THF, 0
°C, 1 h; H2O, 0 °C, 14 h; 86%;29 (b) 31, KOtBu, THF, −78 °C, 15
min; (R,R)-10, −78 °C, 5 min; −30 °C, 1.5 h; NH4Cl, −30 °C, 15
min; −30 to 25 °C; 83%;30 (c) PdCl2(PPh3)2 (catalyst), Bu3SnH,
THF, 25 °C, 30 min;30 (S)-8, Pd2(dba)3 (catalyst), AsPh3 (catalyst),
25 °C, 24 h; 52%; (d) TBAF, THF, 25 °C, 1 h, 61%;22 (e) PhSMe,
CH2Cl2/F3CCO2H, 25 °C, 1 h, 75%.33
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We continued our study by synthesizing another levorotatory
diastereomer {(S,S,S)-1: [α]D

20 = −350} and two dextrorotatory
isomers {(5R,8′S,10′S)-1): [α]D20 = +319; (R,R,R)-1: [α]D

20 =
+353}. Altogether, our specific rotations prove that natural 1 is
(5S)-configured. This is so because the “partial specific rotation”
(absolute value) due to the heterocycle of type 1 compounds
exceeds the “partial specific rotation” (absolute value) of their
side chains by 20-fold. On average, the heterocycle contributes
(−317 + −350)/2 and (319 + 353)/2 to [α]D

20, i.e., ±335, and
the side chain only (−317 − −350)/2 and (319 − 353)/2, i.e.,
±17.38 Or, natural 1 is levorotatory because C-5 is (S)-
configured and despite C-8′ and C-10′ being (R)-configured.
At this stage, we felt obliged to re-isolate militarinone C (1)

from P. militaris39 to elucidate its side-chain configurations
unambiguously: by degrading 1 to a syn-dimethylated entity and
by comparing it, by chiral GLC, with synthetic reference
compounds of known absolute configurations. We cultivated P.
militaris in 8.4 L of nutrient broth for 32 days. Themyceliumwas
dried and extracted with MeOH (3 × 1 L, 3 × 24 h). After the
solvent had been evaporated, a red solid (25.9 g) resulted. It was
triturated withH2O (500mL). Centrifugation gave a precipitate.
After the supernatant was decanted off, this precipitate was
triturated with MeOH. The insoluble fraction was precipated by
centrifugation. The solution was decanted off and evaporated.
This left a red solid (3.52 g). A solution thereof was separated on
a Sephadex LH-20 column to afford three militarinone-
containing fractions (A−C). They were purified by reverse-
phase HPLC. Altogether, this furnished N-deoxymilitarinone A
(4 , 11.5 mg; from fractionA), militarinone A (5, 177.0mg; from
fraction A), militarinone C (1, 63.2 mg; from fraction B),
militarinone B (2, 45.0 mg; from fraction B), and militarinone D
(3, 2.4 mg; from fraction C).
We trained the degradation of 12 mg of natural militarinone C

(1) into an alcohol of constitution 35 (Scheme 5) by subjecting
solutions (aqueous THF) of 3−8 mg slots of synthetic (S,S,S)-1,
(R,R,R)-1, (5S,8′R,10′R)-1, and (5R,8′S,10′S)-1 to a one-pot
room-temperature Lemieux−Johnson cleavage/NaBH4 reduc-
tion. The use of 75 mol % K2OsO4·2H2O, >30 equiv of NaIO4,
and 120 equiv of NaBH4 gave the respective alcohol 35

reproducibly. The “larger”-scale reactions of synthetic 1 isomers
allowed us to record meaningful 1HNMR spectra of 35 even if it
typically contained some residual solvent. The “large”-scale
route to 35, from natural 1, even allowed us to determine the
yield [20% (reaction a of Scheme 5)]. Regardless of the scale, the
configuration of 35 could be identified unambiguously by chiral
GLC. This became clear after we obtained both the (R,R)-
enantiomer and the (S,S)-enantiomer of the same alcohol 35
selectively from LiAlH4 reductions of the aldehydes (R,R)-10
(Scheme 4) and (S,S)-10 (SI), respectively [79−80% yield
(reactions b of Scheme 5)]. The retention time of the synthetic
alcohol (S,S)-35 was 23.4 min, and that of synthetic (R,R)-35
was 24.8 min. The latter value equaled the retention time of the
alcohol 35 prepared from natural 1. This equality proves that the
methylated stereocenters of militarinone C (1) are R,R-
configured.
In conclusion, militarinone C (1) was synthesized first by

Schobert et al.13 and now by us. Our synthesis was slightly
shorter (21 steps vs ∼2213 steps altogether). Our longest linear
sequence comprised 13 steps (vs 18 steps13) and totaled 2.8%
yield (vs 2.5%13). Besides naturally configured militarinone C
(5S,8′R,10′R)-1, we synthesized its enantiomer (5R,8′S,10′S)-1
and the diastereomers (S,S,S)-1 and (R,R,R)-1 analogously (for
details, see the Supporting Information). Moreover, we re-
isolated natural militarinone C (1) and degraded it to an alcohol
that was identical with synthetic (R,R)-35. These supplements to
our total synthesis proved that natural militarinone C (1) is
(5S,8′R,10′R)-configured. If all members of the militarinone
family interrelate biosynthetically (Figure 1),1,3 our configura-
tional assignment of 1 corroborates Gademann’s conclusion11

about the ubiquity of an R,R-configuration in all side chains.
Independent of such inferences, we suggest that pure (R,R)-N-

deoxymilitarinone A (4) is dextrorotatory like the natural
product4 and not levorotatory as reported for a synthetic
specimen12 (see the second paragraph). This is because a 50:50
mixture of militarinone C diastereomers synthesized from rac-8
and (R,R)-(sic!)-9 was dextrorotatory {[α]D

20 = +19 (Scheme
4)}.
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