Tetrahedron 68 (2012) 10114-10121

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

An efficient entry to highly substituted chiral 2-oxopiperazines from α -amino acids via iodocyclization

Amit Kumar Jana, Sanjit Kumar Das, Gautam Panda*

Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226001, UP, India

ARTICLE INFO

Article history Received 19 May 2012 Received in revised form 11 August 2012 Accepted 27 September 2012 Available online 3 October 2012

ABSTRACT

A short and stereoselective route for the synthesis of 2-oxopiperazines is presented starting from different naturally abundant α-amino acids. The key synthetic steps involved amide coupling, Wittig reaction, HWE olefination, aza-Michael reaction, iodocyclization. This new pathway involving first report of iodocyclization to construct chiral substituted 2-oxopiperazines furnished final compounds in good vields.

© 2012 Elsevier Ltd. All rights reserved.

Tetrahedror

1. Introduction

The piperazine moiety is very often found as important pharmacophore in a large number of biologically active molecules, including 5HTanxiolytics,¹ dopamine D3 agents,² Bcl-2 inhibitors,³ cvtochrome c inhibitor,⁴ CNS compounds,⁵ and HIV protease inhibitors,⁶ antiproliferative agents,⁷ quinolone antibiotics⁸ etc.

The nitrogen-containing heterocycles offer a convenient core from which many compounds can be derived through convergent synthesis.⁹ In this respect, piperazine is an important building block for generating libraries of compounds for the study of structure activity relationships (SAR).⁹ Not only piperazine, but their keto analogues (oxopiperazine) also play an important role in drug development and found to be present in the core structure of many important bioactive natural products.^{10–19} Particularly, the existence of substituted chiral 2-oxopiperazine nucleus in the skeleton of numerous natural products, such as pseudotheonamides A_1 and A_2 **1–2**,^{10,11} (–)-A agelastatin A **3**,^{12–14} marcfortine B **4**,¹⁵ the Phakellin group **5–7**,^{16–18} and guadinomine C₂ **8**¹⁹ (Fig. 1) make them attractive targets. In addition, their crucial role in peptidomimetic chemistry for the discovery of novel, bioactive small molecules^{20–24} is well established. Thus, oxopiperazines have gained a lot of importance as conformationally restricted peptidomimetics,²⁵ as fragments of natural products of diverse structural complexity and biological activities,²⁶ and also have been examined as ligands in enantioselective catalysis.²⁷ In case of peptidomimetic drugs, excellent examples, having 2-oxopiperazine template that conformationally mimics the dipeptide moiety, essentially include constrained substance P analogues,²⁸ farnesyltransferase (FTase)²⁹

8: Guadinomine C2

Fig. 1. Some important representatives of 2-oxopiperazines.

^{*} Corresponding author. E-mail addresses: gautam.panda@gmail.com, gautam panda@cdri.res.in (G. Panda).

^{0040-4020/\$ -} see front matter © 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tet.2012.09.109

and protein geranylgeranyltransferase-I (PGGTase-I)³⁰ inhibitors, compounds with dual farnesyltransferase/geranylgeranyltransferase-I inhibitory activity,³¹ elastase,³² factor Xa,³³ renin^{34–36} and BACE1³⁷ inhibitors, melanocortin receptors (MCRs) agonists,²¹ fibrinogen glycoprotein IIb–IIIa,^{22,38} and neuropeptide S (NPS) receptor^{39,40} antagonists.

Furthermore, bioactive drugs used for the treatment of central nervous system diseases are also highly enriched with the substituted oxopiperizines.⁵ Besides; they are equally potential as cancer chemotherapeutic agents,^{20,41} and are promising candidates for the treatment and prevention of numerous diseases, such as rheumatoid arthritis,³² depression,²⁸ sexual disfunctions²¹ or venous and arterial thrombosis.³³

Because of their profound importance, many research groups were engaged in establishing efficient route to synthesize oxopiperazines.^{9a,42} Despite this, there is a challenge to generate an efficient scalable route to substituted chirally pure 2-oxopiperazines. Our group is engaged to develop new synthetic methodology for the synthesis of chiral heterocycles and their bioevolution⁴³ and in continuation of this project, we wish to present here an elegant path to synthesize densely substituted chirally pure 2-oxopiperazines from commercially available α -amino acids utilizing amide coupling, methyl Wittig and iodocyclization⁴⁴ as the key reaction steps.

To further explore our synthetic methodology, we targeted the natural product piperazirum, a novel bioactive alkaloid from *Arum palaestinum* Boiss.⁴⁵ Piperazirum **9** was active against all examined cultured human cell lines using the SRB method,⁴⁶ such as A549 (non-small cell lung, $ED_{50}=4.26\pm0.2 \mu$ M), SK-OV-3 (ovary, $ED_{50}=1.38\pm0.1 \mu$ M), SK-MEL-2 (melanoma, $ED_{50}=0.51\pm0.1 \mu$ M) and HCT-15 (colon, $ED_{50}=2.47\pm0.3 \mu$ M).

2. Results and discussions

2.1. Retrosynthetic analysis

The retrosynthetic analysis suggests that the target 2oxopiperazine derivatives, **10a**–**f** can be accessed via crucial diastereoselective iodocyclization reaction from the olefinic intermediates **11a**–**f**, which in turn can be obtained from the alcohols **12a**–**f** through Swern oxidation followed by methyl Wittig reaction. The intermediate alcohols **12a**–**f** can easily be furnished by amide coupling among different amino acid counter parts (Scheme 1).

Scheme 1. Retrosynthetic analysis of 2-oxopiperazine derivatives.

2.2. Synthesis of 2-oxopiperazine derivatives

To achieve the synthesis of various 2-oxopiperazine derivatives, we have taken different naturally abundant α -amino acids as starting materials. First, a number of amino acid methyl ester hydrochlorides (**14a**-**f**) were coupled with Boc protected amino acids (**13a**-**f**) through peptide coupling in presence of TBTU/Et₃N in dry

CH₂Cl₂ to furnish compounds (**15a**–**f**) in excellent chemical yields (84–95%), which were subjected to LiAlH₄ mediated reduction of the ester functionality to furnish alcohols (**12a**–**f**) with very good yields (78–84%) within 1 h. In the next step, the derived alcohols (**12a**–**f**) were oxidized via Swern oxidation using oxalyl chloride/DMSO/DIPEA to provide aldehydes (**16a**–**f**), which were subsequently transformed into the olefinic compounds **11a**–**f** in good yields (67–72%, over two steps) utilizing methyl Wittig reaction in presence of Ph₃PCH₃I/KHMDS in 2 h. Now the stage was set for the crucial iodocyclization reaction to obtain the 2-oxopiperazine derivative **10a**–**f** in the presence of K₂CO₃ (3 equiv)/I₂ (3 equiv) in CH₃CN delivered the targeted 2-oxopiperazine derivatives **10a**–**f** in satisfactory yields (76–88%) (Scheme 2).

Scheme 2. Synthesis of chiral 2-oxopiperazine derivatives 10a-f.

It is believed that the iodocyclization reaction took place through the favoured six-membered cyclic transition state (TS-2, Fig. 2) compared to the disfavoured TS-1 due to the presence of steric interaction between R₂ and Boc substituents. The regioselective 6-exo-tet cyclization mode provided the desired compounds where the newly generated stereocenter should be in syn fashion with the adjacent one. The other stereoisomers were isolated in very negligible yields via TS-1, which is energetically unfavourable. To further support the stereochemistry in the cyclic compounds, we have done COSY experiment with one of the 2-oxopiperazine derivative **10f** where the coupling constant value (*I* 5.19 Hz) between C-5H and C-6H clearly proved that the two adjacent H's are in syn fashion. Again, the kinetically favoured regioselective six-membered cyclization predominates over the seven-membered cyclization, which is kinetically unfavoured and expectedly sevenmembered cyclic products were not found in any case (Table 1).

Fig. 2. Model for the diastereoselective iodocyclization reaction.

Table T	
Crimthe asimod 3	~

Entry	R ₁	R ₂	Compound no.	2-Oxopiperazine derivatives	Overall yield (%)	$[\alpha]_D^{25}$ in CH ₃ OH	de (%) ^a
1	-CH ₂ CH(CH ₃) ₂	-CH(CH ₃) ₂	10a		39.8	-24.7, (c 0.30)	>99
2		CH(CH ₃) ₂	10b		40.8	-14.2, (c 0.41)	>99
3	-CH ₂ Ph	-CH ₂ Ph	10c	Ph Boc	39.8	-10.8, (c 0.42)	>99
4	-CH ₂ Ph	-CH ₂ CH(CH ₃) ₂	10d		48.4	-14.7, (c 0.35)	>99
5	-CH ₂ CH(CH ₃) ₂	−CH ₂ Ph	10e	N Boc	42.0	-7.2, (c 0.51)	>99
6	-CH ₂ Ph	-CH(CH ₃)CH ₂ CH ₃	10f		42.5	–23.7, (c 0.18)	>99
7	-CH ₂ CH(CH ₃) ₂	-CH(CH ₃) ₂	10g		36.1	+24.6, (<i>c</i> 0.40)	>99

^a Diastereomeric excess.

After successful achievement of the synthesis of 2oxopiperazine derivatives, we turned our attention to achieve the synthesis of another kind of 2-oxopiperazines through aza-Michael cyclization. For the said purpose, we performed a model study on one of the previously prepared aldehyde **16a**.

Thus, aldehyde **16a** was transformed into α , β -unsaturated ester **17a** through Horner–Wadsworth–Emmons olefination in the presence of Ph₃P=CHCO₂Et in dry CH₂Cl₂ in 2 h in excellent yield (86%) and then Boc was removed by the treatment of TFA to furnish free amine. Now the stage was set for the essential aza-Michael cyclization to furnish desired 2-ketopiperazine **18a**. This cyclization was examined in presence of different types of bases (DBU, DABCO, K₂CO₃) and Lewis acids (BF₃–OEt₂, TiCl₄). Unfortunately, the yields are very low (10–25%) except little bit improved in the case of DBU (35%). Nonetheless, we could achieve the chirally pure 2-oxopiperazines **18a** albeit in low yield (Scheme 3).

The synthetic methodology described above was also repeated with the (R)-amino acid in order to synthesize the target molecule piperazirum **9**. Thus (R)-leucine and (R)-valine provided the 2-oxopiperazie derivative **10g**, which could be utilized for total synthesis of the natural product, piperazirum. Efforts in this direction are currently underway (Scheme 4).

Scheme 3. Synthesis of 2-oxopiperazine 18a.

3. Conclusions

In summary, we have developed a scalable synthetic route to 2-oxopiperazine derivatives involving amide coupling, Wittig olefination, aza-Michael reaction and iodocyclization as the key reaction steps. Iodocyclization played a crucial role to the formation of 2-oxopiperazine scaffolds resulting in good yield and this is the first report towards the synthesis of this type of cyclic skeletons.

Scheme 4. Synthesis of 2-oxopiperazine 10g.

4. Experimental

4.1. General methods

Organic solvents were dried by standard methods. All the products were characterized by ¹H, ¹³C, two-dimensional homonuclear COSY (correlation spectroscopy), IR, ESI-MS, HRMS. Analytical TLC was performed using 2.5×5 cm plates coated with a 0.25 mm thickness of silica gel (60F₂₅₄), visualization was accomplished with iodine and under UV lamp. Column chromatography was performed using silica gel (60–120 and 100–200 mesh). NMR spectra were recorded on Bruker Avance DPX 200FT. Bruker Robotics, Bruker DRX 300 and 400 Spectrometers at 200, 300 MHz (1H) and 50, 75 MHz (13 C). Experiments were recorded in CDCl₃ at 25 °C. Chemical shifts are given on the δ scale and are referenced to the TMS at 0.00 ppm for proton. For ¹³C NMR reference CDCl₃ appeared at 77.16 ppm. IR spectra were recorded on Perkin-Elmer 881 and FTIR-8210 PC Shimadzu Spectrophotometers. Mass spectra were recorded on a JEOL JMS-600H high resolution spectrometer using EI mode at 70 eV. Optical rotations were determined on an Autopol III polarimeter using a 1 dm cell at 25 °C in methanol as the solvent; concentrations mentioned are in g/100 ml.

4.1.1. General procedure for amide coupling of amino acids. To an ice cooled solution of N-Boc protected amino acids 13a-g (4.32 mmol) in dry CH₂Cl₂ (25 ml), TBTU (6.48 mmol) and Et₃N (6.26 mmol) were added under N₂ atmosphere. Then the reaction mixture was stirred for 30 min at the same temperature. After that amino acid methyl ester hydrochlorides, 14a-g (6.48 mmol) and Et₃N (6.48 mmol) were added. The whole mixture was stirred for 1 h at room temperature and water was added, the organic layer was separated, and the aqueous phase was extracted thrice with CH₂Cl₂ (3×50 ml). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered and then concentrated under reduced pressure to obtain yellow crude product. The crude product was purified over silica gel column chromatography to furnish corresponding dipeptides 15a-g as colourless solid in 84–95% yield.

4.1.1.1. (*S*)-*Methyl* 2-((*S*)-2-(*tert-butoxycarbonylamino*)-4*methylpentanamido*)-3-*methylbutanoate* (**15a**). Yield 93%; mp 143 °C; *R*_f (20% EtOAc/Hexane) 0.52; $[\alpha]_D^{22}$ –14.5 (*c* 0.50, CH₃OH); IR (KBr) 3338, 2977, 2366, 1759, 1688, 1645, 1551, 1179, 1020 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 6.74 (1H, br, s, NHBoc), 5.10 (1H, br, s, NHCO), 4.49 (1H, dd, *J*₁ 8.76 Hz, *J*₂ 5.04 Hz, CHCH₂), 4.12 (1H, s, CHCO₂Me), 3.69 (3H, s, OMe), 2.13 (1H, dd, *J*₁ 12.09 Hz, *J*₂ 6.63 Hz, CHMe₂), 1.65–1.58 (2H, m, CH₂CHMe₂), 1.49–1.46 (1H, m, CHCMe₂), 1.40 (9H, s, CMe₃), 0.91–0.85 (12H, m, Me₂CH); δ_C (75 MHz, CDCl₃) 173.3, 171.7, 155.9, 80.3, 63.7, 57.2, 53.5, 40.5, 28.8, 28.2, 24.7, 22.8, 19.5; *m/z* (ESI) 289.2 (100%), 345.3 (55%, MH⁺), 367.4 (90%); HRMS (ESI): MH⁺, found 345.2384 C₁₇H₃₃N₂O₅ requires 345.2389. 4.1.1.2. (*S*)-*Methyl* 2-((*S*)-2-(*tert-butoxycarbonylamino*)-3*methylbutanamido*)-3-*methylbutanoate* (**15b**). Yield 84%; mp 140 °C; *R*_f (20% EtOAc/Hexane) 0.53; $[\alpha]_D^{22}$ –10.9 (*c* 0.31, CH₃OH); IR (KBr) 3331, 3077, 2970, 2365, 1751, 1648, 1551, 1177, 1016 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 6.51 (1H, d, *J* 8.13 Hz, NHBoc), 5.14 (1H, d, *J* 8.61 Hz, NHCO), 4.54 (1H, dd, *J*₁ 8.64 Hz, *J*₂ 5.01 Hz, CHNHBoc), 3.96–3.91 (1H, m, CHCO₂Me), 3.73 (3H, s, OMe), 2.22–2.12 (2H, m, CHMe₂), 1.44 (9H, s, CMe₃), 0.98–0.90 (12H, m, Me₂CH); $\delta_{\rm C}$ (75 MHz, CDCl₃) 172.1, 171.6, 155.7, 79.7, 60.0, 57.0, 52.0, 31.1, 30.5, 28.2, 19.1, 18.8; *m/z* (ESI) 275.0 (100%), 331.9 (35%, MH⁺), 353.1 (90%); HRMS (ESI): MH⁺, found 331.2237 C₁₆H₃₁N₂O₅ requires 331.2233.

4.1.1.3. (*S*)-*Methyl* 2-((*S*)-2-(*tert-butoxycarbonylamino*)-3phenylpropanamido)-3-phenylpropanoate (**15c**). Yield 90%; mp 112 °C; *R*_f (20% EtOAc/Hexane) 0.56; $[\alpha]_{D}^{22}$ -4.2 (*c* 0.30, CH₃OH); IR (KBr) 3485, 1743, 1660, 1365, 1170, 763 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.18–7.08 (8H, m, ArH), 6.93–6.90 (2H, m, ArH), 6.39 (1H, d, *J* 7.26 Hz, NHBoc), 4.99 (1H, d, *J* 5.34 Hz, CHNHBoc), 4.70 (1H, d, *J* 7.26 Hz, CHCO₂Me), 4.27 (1H, s, NHCO), 3.56 (3H, s, OMe), 3.01–2.93 (4H, m, CH₂Ph), 1.30 (9H, s, CMe₃); $\delta_{\rm C}$ (50 MHz, CDCl₃) 171.3, 170.7, 155.1, 136.4, 135.5, 129.2, 129.1, 128.5, 128.4, 127.0, 126.8, 80.1, 55.6, 53.2, 52.1, 38.2, 37.8, 28.1; *m/z* (ESI) 370.1 (100%), 427.2 (50%, MH⁺), 449.2 (95%); HRMS (ESI): MH⁺, found 427.2237 C₂₄H₃₁N₂O₅ requires 427.2233.

4.1.1.4. (*S*)-*Methyl* 2-((*S*)-2-(*tert-butoxycarbonylamino*)-3phenylpropanamido)-4-methylpentanoate (**15d**). Yield 95%; mp 105 °C; *R*_f(20% EtOAc/Hexane) 0.50; $[\alpha]_D^{22}$ -10.5 (*c* 0.40, CH₃OH); IR (KBr) 3334, 2971, 2365, 1751, 1683, 1642, 1552, 1178, 1021 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.21–7.11 (5H, m, ArH), 6.45 (1H, d, *J* 7.29 Hz, NHBoc), 5.09 (1H, d, *J* 8.10 Hz, CHNHBoc), 4.47 (1H, dd, *J*₁ 7.86 Hz, *J*₂ 4.80 Hz, CHCO₂Me), 4.30 (1H, br s, NHCO), 3.60 (3H, s, OMe), 3.04–2.95 (2H, m, CH₂Ph), 1.53–1.37 (3H, m, CH₂CHMe₂), 1.32 (9H, s, CMe₃), 0.83–0.80 (6H, m, Me₂CH); $\delta_{\rm C}$ (50 MHz, CDCl₃) 172.7, 170.9, 155.3, 136.5, 129.2, 128.4, 126.7, 80.0, 55.4, 52.1, 50.6, 41.3, 38.0, 28.1, 24.5, 22.6; *m/z* (ESI) 337.2 (100%), 393.3 (30%, MH⁺), 415.4 (90%); HRMS (ESI): MH⁺, found 393.2385 C₂₁H₃₃N₂O₅ requires 393.2389.

4.1.1.5. (*S*)-*Methyl* 2-((*S*)-2-(*tert-butoxycarbonylamino*)-4*methylpentanamido*)-3-*phenylpropanoate* (**15***e*). Yield 89%; mp 87 °C; *R*_f (20% EtOAc/Hexane) 0.51; $[\alpha]_{D}^{22}$ -9.5 (*c* 0.21, CH₃OH); IR (KBr) 3335, 2974, 2366, 1755, 1688, 1644, 1551, 1178, 1025 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.18–7.16 (3H, m, ArH), 7.05–7.02 (2H, m, ArH) 6.47 (1H, d, *J* 6.84 Hz, NHBoc), 4.77 (2H, d, *J* 6.93 Hz, CH), 4.01 (1H, br s, NHCO), 3.63 (3H, s, OMe), 3.11–2.97 (2H, m, CH₂Ph), 1.88 (1H, buried s, CHMe₂), 1.57–1.53 (2H, m, CH₂CH), 1.36 (9H, s, CMe₃), 0.85–0.82 (6H, m, Me₂CH); $\delta_{\rm C}$ (50 MHz, CDCl₃) 172.1, 171.6, 155.4, 135.7, 129.2, 128.4, 127.0, 79.9, 56.8, 52.9, 51.8, 41.1, 37.8, 28.2, 24.6, 22.8; *m/z* (ESI) 337.2 (100%), 393.1 (35%, MH⁺), 415.4 (90%); HRMS (ESI): MH⁺, found 393.2385 C₂₁H₃₃N₂O₅ requires 393.2389.

4.1.1.6. (2S,3R)-Methyl 2-((S)-2-(tert-butoxycarbonylamino)-3phenylpropanamido)-3-methylpentanoate (**15f**). Yield 88%; mp 115 °C; R_f (20% EtOAc/Hexane) 0.58; $[\alpha]_D^{22}$ –15.5 (*c* 0.30, CH₃OH); IR (KBr) 3336, 2981, 2375, 1761, 1693, 1652, 1562, 1179, 1031 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.19–7.11 (5H, m, ArH), 6.47 (1H, d, *J* 7.95 Hz, NHBoc), 5.11 (1H, d, *J* 7.86 Hz, CHNHBoc), 4.43 (1H, dd, *J*₁ 8.34 Hz, *J*₂ 5.16 Hz, CHCO₂Me), 4.30 (1H, d, *J* 4.77 Hz, NHCO), 3.60 (3H, s, OMe), 2.98 (2H, d, *J* 5.94 Hz, CH₂Ph), 1.77–1.72 (1H, m, CHMeEt), 1.33 (9H, s, CMe₃), 1.08–0.98 (2H, m, CH₂Me), 0.82–0.74 (6H, m, CH₃); $\delta_{\rm C}$ (75 MHz, CDCl₃) 171.5, 171.1, 155.2, 136.6, 129.0, 128.0, 126.3, 79.4, 56.2, 55.3, 51.5, 37.8, 37.3, 27.9, 24.7, 14.9, 11.1; *m/z* (ESI) 337.2 (100%), 393.2 (30%, MH⁺), 415.6 (90%); HRMS (ESI): MH⁺, found 393.2384 C₂₁H₃₃N₂O₅ requires 393.2389. 4.1.1.7. (*R*)-*Methyl* 2-((*R*)-2-(*tert-butoxycarbonylamino*)-4*methylpentanamido*)-3-*methylbutanoate* (**15g**). Yield 91%; mp 136 °C; *R*_f(20% EtOAc/Hexane) 0.52; $[\alpha]_D^{22}$ +14.2 (*c* 0.50, CH₃OH); IR (KBr) 3335, 2970, 2368, 1755, 1691, 1647, 1555, 1179, 1018 cm⁻¹; δ_H (300 MHz, CDCl₃) 7.22 (1H, d, *J* 7.53 Hz, NHBoc), 5.71 (1H, d, *J* 7.44 Hz, CHNHBoc), 4.47–4.43 (1H, m, CHCO₂Me), 4.22 (1H, d, *J* 4.38 Hz, NHCO), 3.64 (3H, s, OMe), 2.08 (1H, dd, *J*₁ 11.91 Hz, *J*₂ 6.03 Hz, CHMe₂), 1.58–1.49 (3H, m, CH₂CHMe₂), 1.35 (9H, s, CMe₃),0.85 (12H, d, *J* 5.04 Hz, CH₃); δ_C (50 MHz, CDCl₃) 172.5, 172.0, 155.6, 79.7, 56.8, 52.9, 51.8, 40.6, 31.0, 28.1, 24.5, 22.7, 18.7; *m/z* (ESI) 289.1 (100%), 345.1 (55%, MH⁺), 367.0 (90%); HRMS (ESI): MH⁺, found 345.2386 C₁₇H₃₃N₂O₅ requires 345.2389.

4.1.2. General procedure of ester reduction. To an ice cooled solution of ester **15a**–**f** (2.90 mmol) in dry THF (30 ml), LiAlH₄ (3.19 mmol) was added slowly, and was allowed to stir at room temperature for 1 h. After completion of the reaction, it was quenched by slow addition of ethyl acetate and water. The aqueous layer was extracted with ethyl acetate thrice (3×50 ml), the combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, and solvent was removed under reduced pressure and subjected to silica jel column chromatography to obtain the alcohols **12a**–**g** in 78–84% yield.

4.1.2.1. tert-Butyl (S)-1-((S)-1-hydroxy-3-methylbutan-2ylamino)-4-methyl-1-oxopentan-2-ylcarbamate (**12a**). Yield 79%; mp 122 °C; R_f (30% EtOAc/Hexane) 0.48; $[\alpha]_D^{22}$ -18.9 (*c* 0.30, CH₃OH); IR (KBr) 3327, 2977, 2369, 1685, 1639, 1537, 1397, 1254, 1179, 1024, 644 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 6.62 (1H, d, *J* 6.93 Hz, NHBoc), 5.13 (1H, br s, CHNHBoc), 4.08 (1H, d, *J* 3.27 Hz, NHCO), 3.67 (3H, br s, CHCH₂OH), 3.19 (1H, s, OH), 1.95–1.84 (1H, m, CHMe₂), 1.69–1.62 (2H, m, CH₂CH), 1.56–1.50 (1H, m, CHMe₂), 1.43 (9H, s, CMe₃),0.96–0.90 (12H, m, CH₃); δ_C (50 MHz, CDCl₃) 173.3, 156.0, 80.3, 63.6, 57.1, 53.5, 40.5, 28.2, 24.7, 22.8, 19.5, 18.6; *m/z* (ESI) 261.1 (100%), 317.2 (30%, MH⁺), 339.1 (40%); HRMS (ESI): MH⁺, found 317.2435 C₁₆H₃₃N₂O₄ requires 317.2440.

4.1.2.2. tert-Butyl (*S*)-1-((*S*)-1-hydroxy-3-methylbutan-2ylamino)-3-methyl-1-oxobutan-2-ylcarbamate (**12b**). Yield 83%; mp 145 °C; R_f (30% EtOAc/Hexane) 0.53; $[\alpha]_D^{22}$ –9.8 (*c* 0.15, CH₃OH); IR (KBr) 3323, 2968, 2365, 1686, 1635, 1532, 1369, 1298, 1176, 1020, 647 cm⁻¹; δ_H (300 MHz, CDCl₃) 6.23 (1H, d, *J* 6.06 Hz, NHBoc), 5.00 (1H, d, *J* 4.74 Hz, NHCO), 3.79–3.74 (1H, m, CHNHBoc), 3.64–3.57 (3H, m, CHCH₂OH), 2.17 (1H, buried s, OH), 1.83–1.79 (2H, m, CHMe₂), 1.37 (9H, s, CMe₃),0.92–0.85 (12H, m, CH₃); δ_C (50 MHz, CDCl₃) 172.4, 156.0, 79.8, 63.1, 60.7, 56.9, 30.2, 28.6, 28.1, 19.4, 19.2; *m/z* (ESI) 247.0 (100%), 303.9 (60%, MH⁺), 325.1 (15%); HRMS (ESI): MH⁺, found 303.2287 C₁₅H₃₁N₂O₄ requires 303.2284.

4.1.2.3. tert-Butyl (S)-1-((S)-1-hydroxy-3-phenylpropan-2-ylamino)-1-oxo-3-phenylpropan-2-ylcarbamate (**12c**). Yield 80%; mp 145 °C; R_f (30% EtOAc/Hexane) 0.53; $[\alpha]_D^{22}$ -13.3 (*c* 0.31, CH₃OH); IR (KBr) 3461, 3335, 2963, 2363, 1658, 1532, 1386, 1048, 698 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.21–7.04 (10H, m, ArH), 6.01 (1H, d, *J* 7.23 Hz, NHBoc), 5.02 (1H, d, *J* 7.02 Hz, NHCO), 4.19 (1H, d, *J* 6.78 Hz, CHNHBoc), 4.01–3.99 (1H, m, CHCH₂OH), 3.35 (2H, br s, CH₂OH), 2.91 (2H, d, *J* 7.05 Hz, CH₂Ph), 2.70–2.67 (2H, m, CH₂Ph) 2.38 (1H, buried s, OH) 1.33 (9H, s, CMe₃); $\delta_{\rm C}$ (75 MHz, CDCl₃) 171.2, 155.4, 137.4, 136.7, 129.2, 129.1, 128.6, 128.5, 126.9, 126.5, 80.3, 63.1, 56.2, 52.6, 38.6, 36.7, 28.2; m/z (ESI) 343.0 (50%), 399.0 (80%, MH⁺), 421.2 (95%); HRMS (ESI): MH⁺, found 399.2288 C₂₃H₃₁N₂O₄ requires 399.2284.

4.1.2.4. tert-Butyl (S)-1-((S)-1-hydroxy-4-methylpentan-2-ylamino)-1-oxo-3-phenylpropan-2-ylcarbamate (**12d**). Yield 84%; mp 129 °C; R_f (30% EtOAc/Hexane) 0.52; $[\alpha]_D^{22}$ –15.3 (c 0.34,

CH₃OH); IR (KBr) 3462, 3336, 2966, 2365, 1659, 1535, 1383, 1049, 693 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.33–7.22 (5H, m, ArH), 6.04 (1H, d, *J* 8.04 Hz, NHBoc), 5.26 (1H, d, *J* 7.56 Hz, NHCO), 4.30 (1H, d, *J* 6.69 Hz, CHNHBoc), 3.95 (1H, d, *J* 3.00 Hz, CHCH₂OH), 3.47–3.39 (2H, m, CH₂OH), 3.11–2.98 (2H, m, CH₂Ph), 2.57 (1H, buried s, OH) 1.51 (1H, dd, *J*₁ 13.29 Hz, *J*₂ 6.63 Hz, CHMe₂), 1.41 (9H, s, CMe₃), 1.30–1.27 (2H, m, CH₂CHMe₂), 0.87 (6H, d, *J* 6.45 Hz, CH₃); $\delta_{\rm C}$ (50 MHz, CDCl₃) 171.4, 155.4, 136.7, 129.2, 128.4, 126.7, 80.1, 65.0, 56.0, 49.7, 39.7, 38.3, 28.1, 24.5, 22.9; *m/z* (ESI) 309.2 (60%), 365.1 (70%, MH⁺), 387.2 (90%); HRMS (ESI): MH⁺, found 365.2438 C₂₀H₃₃N₂O₄ requires 365.2440.

4.1.2.5. tert-Butyl (S)-1-((S)-1-hydroxy-3-phenylpropan-2ylamino)-4-methyl-1-oxopentan-2-ylcarbamate (**12e**). Yield 82%; mp 111 °C; R_f (30% EtOAc/Hexane) 0.49; $[\alpha]_D^{22}$ –17.5 (*c* 0.42, CH₃OH); IR (KBr) 3462, 3336, 2966, 2365, 1659, 1535, 1383, 1049, 693 cm⁻¹; δ_H (300 MHz, CDCl₃) 7.19–7.15 (5H, m, ArH), 6.72 (1H, br s, NHBoc), 5.07 (1H, br s, NHCO), 4.04 (2H, s, CHNH), 3.54 (2H, d, *J* 11.25 Hz, CH₂OH), 3.23 (1H, br s, OH), 2.80 (2H, d, *J* 6.63 Hz, CH₂Ph), 1.52 (3H, br s, CH₂CHMe₂), 1.35 (9H, s, CMe₃), 0.82 (6H, s, CH₃); δ_C (50 MHz, CDCl₃) 172.9, 155.8, 137.7, 129.2, 128.4, 126.4, 80.1, 63.1, 53.4, 52.7, 41.0, 36.7, 28.2, 24.6, 22.7; *m*/*z* (ESI) 309.4 (60%), 365.2 (70%, MH⁺), 387.2 (90%); HRMS (ESI): MH⁺, found 365.2443 C₂₀H₃₃N₂O₄ requires 365.2440.

4.1.2.6. tert-Butyl (S)-1-((2S,3R)-1-hydroxy-3-methylpentan-2ylamino)-1-oxo-3-phenylpropan-2-ylcarbamate (**12f**). Yield 81%; mp 124 °C; R_f (30% EtOAc/Hexane) 0.51; $[\alpha]_D^{22}$ -18.5 (*c* 0.40, CH₃OH); IR (KBr) 3466, 3333, 2962, 2365, 1652, 1537, 1384, 1041, 690 cm⁻¹; δ_H (300 MHz, CDCl₃) 7.23–7.15 (5H, m, ArH), 6.06 (1H, d, *J* 8.34 Hz, NHBoc), 5.20 (1H, d, *J* 7.38 Hz, NHCO), 4.24 (1H, d, *J* 6.90 Hz, CHNHBoc), 3.61 (1H, d, *J* 3.57 Hz, CHCHMeEt), 3.42 (2H, s, CH₂OH), 3.05–2.91 (2H, m, CH₂Ph), 2.46 (1H, br s, OH),1.46–1.34 (11H, m), 1.01–0.88 (1H, m, CHMeEt), 0.77–0.75 (6H, m, CH₃); δ_C (50 MHz, CDCl₃) 171.6, 155.5, 136.7, 129.2, 128.6, 126.9, 80.3, 62.9, 56.3, 55.9, 38.3, 35.1, 28.1, 25.2, 15.3, 11.1; *m*/*z* (ESI) 309.3 (60%), 365.2 (70%, MH⁺), 387.4 (90%); HRMS (ESI): MH⁺, found 365.2444 C₂₀H₃₃N₂O₄ requires 365.2440.

4.1.2.7. tert-Butyl (R)-1-((R)-1-hydroxy-3-methylbutan-2ylamino)-4-methyl-1-oxopentan-2-ylcarbamate (**12g**). Yield 78%; mp 120 °C; R_f (30% EtOAc/Hexane) 0.48; $[\alpha]_D^{12}$ +18.8 (*c* 0.26, CH₃OH); IR (KBr) 3325, 2970, 2366, 1688, 1635, 1534, 1392, 1250, 1176, 1027, 649 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 6.60 (1H, d, *J* 6.99 Hz, NHBoc), 5.12 (1H, br s, NHCO), 4.08 (1H, d, *J* 4.05 Hz, CHNHBoc), 3.69–3.60 (3H,m, CHCH₂OH), 3.07 (1H,buried s, OH), 1.89 (1H, dd, *J*₁ 13.2 Hz, *J*₂ 6.6 Hz, CHMe₂), 1.69–1.62 (2H, m, CH₂CH), 1.56–1.50 (1H, m, CHMe₂ (leucine)), 1.43 (9H, s, CMe₃),0.95–0.90 (12H, m, CH₃); $\delta_{\rm C}$ (50 MHz, CDCl₃) 173.3, 155.9, 80.3, 63.6, 57.1, 53.4, 40.5, 28.8, 28.2, 24.7, 22.8, 19.4; *m/z* (ESI) 261.2 (100%), 317.1 (30%, MH⁺), 339.1 (40%); HRMS (ESI): MH⁺, found 317.2436 C₁₆H₃₃N₂O₄ requires 317.2440.

4.1.3. General procedure for Swern oxidation. In an inert atmosphere, $(COCl)_2$ (4.74 mmol) was taken in dry CH_2Cl_2 (10 ml) cooled to -78 °C, dry DMSO (9.48 mmol) was added slowly. After 15 min, previously prepared alcohols 12a-g (3.16 mmol) in dry CH_2Cl_2 (20 ml) was added slowly. The reaction mixture was allowed to stir at the same temperature for 30 min, then DIPEA (12.64 mmol) was added. The reaction was then allowed to stir at the same temperature for 1.5 h. After completion, the reaction was quenched with slow addition of NH_4Cl solution, the aqueous layer was extracted with CH_2Cl_2 (3×30 ml), the combined organic layer was washed with brine, dried over anhydrous Na_2SO_4 , and solvent was removed under reduced pressure to furnish the crude aldehydes **16a–g**, which was used in the next step without further purification.

4.1.4. General procedure for Wittig reaction. To a solution of methyltriphenylphosphonium iodide (4.77 mmol) in dry THF (10 ml) under N₂ atmosphere, KHMDS solution (0.5 M in toluene) (3.97 mmol) was added slowly at -78 °C and stirred for 1 h. After the development of the deep yellow coloured solution, previously prepared aldehydes **16a–g** (1.59 mmol) in dry THF (15 ml) was added slowly to the reaction mixture at the same temperature and was allowed to stir for 2 h. After completion of the reaction, satd solution of ammonium chloride was added, extracted with ethyl acetate (3×20 ml). The combined organic layer was washed with brine solution, dried over anhydrous Na₂SO₄ and then solvent was removed under reduced pressure. The crude product was purified over silica gel column chromatography to furnish corresponding olefin **11a–g** as colourless solid in 67–72% yield.

4.1.4.1. tert-Butyl (S)-4-methyl-1-((S)-4-methylpent-1-en-3ylamino)-1-oxopentan-2-ylcarbamate (**11a**). Yield 67%; mp 126 °C; R_f (15% EtOAc/Hexane) 0.62; $[\alpha]_D^{22}$ –16.8 (c 0.35, CH₃OH); IR (KBr) 3299, 2976, 2367, 1652, 1527, 1293, 1174, 693 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 6.34 (1H, s, NHBoc), 5.78–5.70 (1H, m, CH=CH₂), 5.17–5.03 (3H, m, CH₂=, CHNHBoc), 4.33–4.31 (1H, m, CHCH=CH₂), 4.11 (1H, br s, NHCO), 1.84–1.68 (3H, m, CH₂CHMe₂, CHMe₂), 1.48–1.47 (1H, m, CHMe₂ (leucine)), 1.43 (9H, s, CMe₃), 0.95–0.87 (12H, m, CH₃); $\delta_{\rm C}$ (50 MHz, CDCl₃) 172.0, 155.9, 136.8, 115.4, 80.2, 56.3, 40.8, 32.1, 28.3, 24.8, 22.1, 18.7, 17.9; *m/z* (ESI) 257.3 (100%), 313.1 (25%, MH⁺), 336.2 (40%); HRMS (ESI): MH⁺, found 313.2489 C₁₇H₃₂N₂O₃ requires 313.2491.

4.1.4.2. tert-Butyl (S)-3-methyl-1-((S)-4-methylpent-1-en-3ylamino)-1-oxobutan-2-ylcarbamate (**11b**). Yield 69%; mp 89 °C; R_f (15% EtOAc/Hexane) 0.62; $[\alpha]_D^{22}$ -12.8 (c 0.34, CH₃OH); IR (KBr) 3291, 2982, 2361, 1670, 1536, 1289, 1165, 691 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 6.11 (1H, d, *J* 8.64 Hz, NHBoc), 5.80–5.69 (1H, m, CH=CH₂), 5.18–5.12 (3H, m, CH₂=, CHNHBoc), 4.37–4.32 (1H, m, CH=CH₂), 5.18–1.74 (1H, m, CHMe₂), 2.15 (1H, d, *J* 4.17 Hz, NHCO), 1.85–1.74 (1H, m, CHMe₂), 1.44 (9H, s, CMe₃), 0.97–0.88 (12H, m, CH₃); $\delta_{\rm C}$ (75 MHz, CDCl₃) 171.1, 155.9, 136.6, 115.5, 79.8, 56.4, 32.0, 30.2, 28.2, 19.4, 18.7, 18.0; m/z (ESI) 242.1 (80%), 299.5 (30%, MH⁺), 322.3 (65%); HRMS (ESI): MH⁺, found 299.2337 C₁₆H₃₁N₂O₃ requires 299.2335.

4.1.4.3. tert-Butyl (*S*)-1-oxo-3-phenyl-1-((*S*)-1-phenylbut-3-en-2-ylamino)propan-2-ylcarbamateas (**11c**). Yield 70%; mp 140 °C; R_f (15% EtOAc/Hexane) 0.61; $[\alpha]_D^{22}$ –4.3 (*c* 0.26, CH₃OH); IR (KBr) 3293, 2975, 2363, 1653, 1520, 1290, 1170, 695 cm⁻¹; δ_H (300 MHz, CDCl₃) 7.27–7.01 (10H, m, ArH), 5.82 (1H, d, *J* 7.14 Hz, NHBoc), 5.70–5.59 (1H, m, CH=CH₂), 5.04–4.83 (3H, m, CH₂=, CHNHBoc), 4.69 (1H, s, NHCO), 4.27 (1H, d, *J* 6.9 Hz, CHCH₂Ph), 2.99 (2H, d, *J* 5.97 Hz, CH₂Ph), 2.83–2.70 (2H, m, CH₂Ph), 1.39 (9H, s, CMe₃); δ_C (50 MHz, CDCl₃) 170.3, 155.2, 136.8, 129.4, 128.6, 128.3, 126.9, 126.6, 115.3, 80.2, 56.0, 51.9, 40.9, 38.3, 28.2; *m/z* (ESI) 338.9 (100%), 395.2 (20%, MH⁺), 417.1 (30%); HRMS (ESI): MH⁺, found 395.2332 C₂₄H₃₁N₂O₃ requires 395.2335.

4.1.4.4. tert-Butyl (S)-1-((S)-5-methylhex-1-en-3-ylamino)-1oxo-3-phenylpropan-2-ylcarbamate (**11d**). Yield 69%; mp 115 °C; R_f (15% EtOAc/Hexane) 0.60; $[\alpha]_D^{2^2}$ -7.8 (*c* 0.45, CH₃OH); IR (KBr) 3293, 2971, 2370, 1658, 1523, 1291, 1179, 695 cm⁻¹; δ_H (300 MHz, CDCl₃) 7.30–7.19 (5H, m, ArH), 5.73 (1H, d, *J* 7.74 Hz, NHBoc), 5.62–5.51 (1H, m, CH=CH₂), 5.10–4.88 (3H, m, CH₂=, NHCO), 4.47–4.43 (1H, m, CHNHBoc), 4.29 (1H, dd, *J*₁ 14.7 Hz, *J*₂ 7.2 Hz, CHCH=CH₂), 3.07–3.04 (2H, m, CH₂Ph), 1.56–1.47 (1H, m, CHMe₂), 1.41 (9H, s, CMe₃), 1.30–1.25 (2H, m, CH₂CHMe₂), 0.89–0.86 (6H, m, CH₃); δ_C (50 MHz, CDCl₃) 170.3, 155.4, 138.2, 136.7, 129.4, 128.6, 126.8, 114.4, 80.2, 56.1, 49.5, 43.9, 38.3, 28.2, 24.5, 22.7; *m*/*z* (ESI) 304.1 (80%), 361.2 (40%, MH⁺), 383.2 (40%); HRMS (ESI): MH⁺, found 361.2488 C₂₁H₃₃N₂O₃ requires 361.2491.

4.1.4.5. tert-Butyl (S)-4-methyl-1-oxo-1-((S)-1-phenylbut-3-en-2-ylamino)pentan-2-ylcarbamate (**11e**). Yield 72%; mp 123 °C; R_f (15% EtOAc/Hexane) 0.58; $[\alpha]_D^{22}$ –14.8 (*c* 0.20, CH₃OH); IR (KBr) 3296, 2968, 2375, 1666, 1527, 1292, 1177, 698 cm⁻¹; δ_H (300 MHz, CDCl₃) 7.27–7.16 (5H, m, ArH), 6.16 (1H, d, *J* 7.8 Hz, NHBoc), 5.85–5.76 (1H, m, CH=CH₂), 5.16–5.06 (2H, m, CH₂=), 4.95–4.74 (2H, m, CHNHBoc, NHCO), 4.04–3.99 (1H, m, CHCH=CH₂), 2.91–2.80 (2H, m, CH₂Ph), 1.62–1.54 (2H, m, CH₂CHMe₂), 1.42 (9H, s, CMe₃), 1.34–1.30 (1H, m, CHCH₂Me₂), 0.92–0.83 (6H, m, CH₃); δ_C (50 MHz, CDCl₃) 171.8, 155.6, 137.2, 129.4, 129.3, 128.3, 126.5, 115.0, 80.0, 53.1, 51.9, 41.0, 28.2, 24.5, 22.6, 22.2; *m/z* (ESI) 304.5 (100%), 361.3 (10%, MH⁺), 383.2 (75%); HRMS (ESI): MH⁺, found 361.2494 C₂₁H₃₃N₂O₃ requires 361.2491.

4.1.4.6. tert-Butyl (S)-1-((3R,4R)-4-methylhex-1-en-3-ylamino)-1-oxo-3-phenylpropan-2-ylcarbamate (**11f**). Yield 71%; mp 115 °C; R_f (15% EtOAc/Hexane) 0.62; $[\alpha]_D^{22}$ –15.8 (c 0.60, CH₃OH); IR (KBr) 3297, 2972, 2371, 1660, 1526, 1299, 1175, 696 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.20–7.12 (5H, m, ArH), 5.91 (1H, d, *J* 8.36 Hz, NHBoc), 5.56–5.45 (1H, m, CH=CH₂), 5.13–4.78 (3H, m, CH₂=, NHCO), 4.25 (2H, br s, CHCH=CH₂, CHCH₂), 2.99 (2H, d, *J* 6.66 Hz, CH₂Ph), 1.33 (11H, s, CMe₃, CH₂Me), 0.99–0.87 (1H, m, CHMeEt), 0.81–0.69 (6H, m, CH₃); $\delta_{\rm C}$ (50 MHz, CDCl₃) 170.4, 155.4, 136.7, 135.7, 129.3, 128.5, 126.7, 115.7, 80.1, 56.1, 55.5, 38.4, 38.2, 28.1, 25.0, 14.8, 11.4; *m*/z (ESI) 304.9 (100%), 361.2 (10%, MH⁺), 383.1 (75%); HRMS (ESI): MH⁺, found 361.2496 C₂₁H₃₃N₂O₃ requires 361.2491.

4.1.4.7. tert-Butyl (R)-4-methyl-1-((R)-4-methylpent-1-en-3ylamino)-1-oxopentan-2-ylcarbamate (**11g**). Yield 67%; mp 98 °C; R_f (15% EtOAc/Hexane) 0.63; $[\alpha]_D^{22}$ +16.9 (c 0.31, CH₃OH); IR (KBr) 3295, 2974, 2366, 1655, 1521, 1291, 1175, 698 cm⁻¹; δ_H (300 MHz, CDCl₃) 6.21 (1H, br s, NHBoc), 5.73–5.62 (1H, m, CH=CH₂), 5.09–5.03 (2H, m, CH₂=), 4.90 (1H, br s, NHCO), 4.26–4.23 (1H, m, CHNHBoc), 4.01 (1H, br s, CHCH=CH₂), 1.83 (1H, s, CHMe₂, CHMe₂), 1.76–1.69 (1H, m, CHMe₂), 1.40 (2H, m, CH₂CHMe₂) 1.36 (9H, s, CMe₃), 0.86–0.80 (12H, m, CH₃); δ_C (75 MHz, CDCl₃) 172.1, 156.0, 136.8, 115.5, 80.5, 56.3, 32.1, 29.6, 28.3, 24.8, 22.8, 18.7, 17.8; *m/z* (ESI) 257.1 (100%), 313.2 (25%, MH⁺), 336.1 (40%); HRMS (ESI): MH⁺, found 313.2487 C₁₇H₃₃N₂O₄ requires 313.2491.

4.1.5. General procedure for iodocyclization. To an ice cooled solution of starting olefinic compounds **11a**–**g** (0.59 mmol) in acetonitrile (5 ml), K₂CO₃ (1.77 mmol) was added followed by I₂ (1.77 mmol) in argon atmosphere and keep stirring for 2 h. After the completion of reaction I₂ was quenched by satd Na₂S₂O₃ solution and extracted with ethyl acetate (3×25 ml), the combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, solvent was removed under reduced pressure and the crude product was subjected to column chromatography to furnish the oily cyclic compounds **10a**–**g** in 76–88%.

4.1.5.1. (3S,6S)-tert-Butyl 2-(iodomethyl)-6-isobutyl-3-isopropyl-5-oxopiperazine-1-carboxylate (**10a**). Yield 70%; R_f (10% EtOAc/ Hexane) 0.61; $[\alpha]_D^{22}$ -24.7 (c 0.30, CH₃OH); IR (Neat) 3498, 3242, 2995, 2363, 1649, 1454, 1122, 1029, 672 cm⁻¹; δ_H (300 MHz, CDCl₃) 5.01–4.93 (1H, m, NH), 4.45–4.32 (1H, m, CHCH₂CHMe₂), 4.28–4.23 (1H, m, CHCH₂I), 3.63–3.56 (1H, m, CHCHMe₂), 3.24–3.17 (2H, m, CHC₁I), 1.82–1.50 (4H, m, 2CHMe₂, CH₂CHMe₂), 1.44 (9H, s, CMe₃), 0.96–0.90 (12H, m, CH₃); δ_C (75 MHz, CDCl₃) 166.6, 155.2, 80.5, 80.3, 79.4, 47.4, 42.8, 32.1, 28.2, 24.7, 21.9, 18.2, 8.2; *m*/*z* (ESI) 383.3 (60%), 439.1 (100%, MH⁺), 461.2 (20%); HRMS (ESI): MH⁺, found 439.1454 C₁₇H₃₂IN₂O₃ requires 439.1458.

4.1.5.2. (3S,6S)-tert-Butyl 2-(iodomethyl)-3,6-diisopropyl-5oxopiperazine-1-carboxylate (**10b**). Yield 71%; R_f (10% EtOAc/Hexane) 0.61; $[\alpha]_D^{22}$ -14.2 (c 0.41, CH₃OH); IR (Neat) 3492, 3245, 2999, 2368, 1646, 1452, 1128, 1022, 672 cm⁻¹; δ_H (300 MHz, CDCl₃) 5.05 (1H, d, J 9.09 Hz, NH), 4.31–4.24 (2H, m, CHCH₂CHMe₂, CHCH₂I), 3.61–3.57 (1H, m, CHCHMe₂), 3.22–3.19 (2H, m, CH₂I), 2.18–2.09 (1H, m, CHMe₂), 1.82–1.71 (1H, m, CHMe₂), 1.44 (9H, s, CMe₃), 1.01–0.91 (12H, m, CH₃); δ_C (75 MHz, CDCl₃) 165.3, 155.6, 80.9, 79.4, 53.9, 32.2, 30.9, 28.2, 19.0, 18.3, 17.6, 7.9; m/z (ESI) 369.0 (100%), 425.9 (100%, MH⁺), 447.9 (10%); HRMS (ESI): MH⁺, found 425.1306 C₁₆H₃₀IN₂O₃ requires 425.1301.

4.1.5.3. (2S,5S)-tert-Butyl 2,5-dibenzyl-6-(iodomethyl)-3-oxopiperazine-1-carboxylate (**10c**). Yield 69%; R_f (10% EtOAc/Hexane) 0.60; $[\alpha]_D^{22}$ –10.8 (c 0.42, CH₃OH); IR (Neat) 3492, 3245, 2998, 2365, 1642, 1455, 1119, 1029, 676 cm⁻¹; δ_H (300 MHz, CDCl₃) 7.29–7.15 (10H, m, ArH), 5.14–5.03 (1H, m), 4.65 (1H, br, s), 4.28–4.22 (1H, m), 3.95 (1H, d, J 6.12 Hz), 3.28–2.63 (6H, m, CH₂Ph, CH₂I), 1.42 (9H, s, CMe₃); δ_C (50 MHz, CDCl₃) 165.0, 155.4, 138.1, 136.2, 129.7, 129.5, 128.8, 128.5, 128.3, 126.8, 82.9, 79.8, 72.9, 49.9, 41.7, 29.7, 28.5, 7.1; *m/z* (ESI) 464.1 (60%), 521.1 (80%, MH⁺), 543.3 (70%); HRMS (ESI): MH⁺, found 521.1304 C₂₄H₃₀IN₂O₃ requires 521.1301.

4.1.5.4. (2S,5S)-tert-Butyl 2-benzyl-6-(iodomethyl)-5-isobutyl-3-oxopiperazine-1-carboxylate (**10d**). Yield 67%; R_f (10% EtOAc/Hexane) 0.63; $[\alpha]_D^{12}$ –14.7 (c 0.35, CH₃OH); IR (Neat) 3497, 3246, 2993, 2364, 1642, 1458, 1120, 1022, 679 cm⁻¹; δ_H (300 MHz, CDCl₃) 7.30–7.14 (5H, m, ArH), 5.05 (1H, br s, NH), 4.62–4.60 (1H, m, CHCH₂Ph), 4.19–4.14 (1H, m, CHCH₂I), 3.76–3.72 (1H, m, CHCH₂CHMe₂), 3.22–3.03 (4H, m, CH₂Ph, CH₂I), 1.82–1.72 (2H, m, CH₂CHMe₂), 1.40 (9H, s, CMe₃) 1.28–1.25 (1H, m, CHMe₂), 0.95–0.88 (6H, m, CH₃); δ_C (50 MHz, CDCl₃) 164.4, 155.2, 136.5, 129.6, 128.4, 126.9, 84.4, 79.8, 70.0, 49.9, 45.7, 38.8, 28.3, 24.5, 22.9, 6.86; m/z (ESI) 431.1 (60%), 487.1 (80%, MH⁺), 510.2 (20%); HRMS (ESI): MH⁺, found 487.1455 C₂₁H₃₂IN₂O₃ requires 487.1458.

4.1.5.5. (3S,6S)-tert-Butyl 3-benzyl-2-(iodomethyl)-6-isobutyl-5-oxopiperazine-1-carboxylate (**10e**). Yield 66%; R_f (10% EtOAc/Hexane) 0.62; $[\alpha]_{D}^{22}$ –7.2 (c 0.51, CH₃OH); IR (Neat) 3491, 3242, 2993, 2364, 1648, 1455, 1122, 1021, 675 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.25–7.10 (5H, m, ArH), 4.91–4.88 (1H, m, NH), 4.34–4.32 (1H, m, CHCH₂CHMe₂), 4.16–4.14 (1H, m, CHCH₂Ph), 3.99–3.95 (1H, m, CHCH₂I), 3.01–2.65 (4H, m, CH₂I, CH₂Ph), 1.65–1.43 (3H, m, CH₂CHMe₂), 1.37 (9H, s), 0.90–0.84 (6H, m, CH₃); $\delta_{\rm C}$ (75 MHz, CDCl₃) 166.9, 155.0, 136.5, 129.5, 128.5, 126.7, 82.0, 79.6, 72.6, 42.7, 41.2, 35.3, 28.3, 24.5, 22.7, 7.3; m/z (ESI) 431.1 (50%), 487.9 (100%, MH⁺), 510.1 (10%); HRMS (ESI): MH⁺, found 487.1460 C₂₁H₃₂IN₂O₃ requires 487.1458.

4.1.5.6. (2S,5S)-tert-Butyl 2-benzyl-5-sec-butyl-6-(iodomethyl)-3-oxopiperazine-1-carboxylate (**10f**). Yield 70%; R_f (10% EtOAc/ Hexane) 0.64; $[\alpha]_D^{22}$ -23.7 (c 0.18, CH₃OH); IR (Neat) 3497, 3246, 2993, 2364, 1642, 1458, 1120, 1022, 679 cm⁻¹; δ_H (300 MHz, CDCl₃) 7.19–7.15 (5H, m, ArH), 5.06 (1H, d, J 6.75 Hz, NH), 4.55 (1H, d, J 6.30 Hz, CHCH₂Ph), 4.19 (1H, dd, J₁ 10.89 Hz, J₂ 5.40 Hz, CHCH₂I), 3.52 (1H, d, J 5.19 Hz, CHNH), 3.10–2.89 (4H, m, CH₂I, CH₂Ph), 1.44–1.40 (1H, m, CHMeEt), 1.32 (9H, s, CMe₃), 1.04–0.92 (2H, m, CH₂CH₃), 0.83–0.71 (6H, m); δ_C (75 MHz, CDCl₃) 165.1, 155.0, 136.3, 129.4, 128.3, 126.8, 80.97, 79.7, 76.2, 49.8, 38.9, 38.6, 28.3, 25.1, 14.5, 11.6, 7.9; m/z (ESI) 431.1 (60%), 487.0 (100%, MH⁺), 510.3 (10%); HRMS (ESI): MH⁺, found 487.1465 C₂₁H₃₂IN₂O₃ requires 487.1458. 4.1.5.7. (3R,6R)-tert-Butyl 2-(iodomethyl)-6-isobutyl-3-isopropyl-5-oxopiperazine-1-carboxylate (**10g**). Yield 76%; R_f (10% EtOAc/Hexane) 0.62; $[\alpha]_D^{22}$ +24.6 (c 0.40, CH₃OH); IR (Neat) 3497, 3243, 2994, 2362, 1643, 1451, 1120, 1028, 679 cm⁻¹; δ_H (300 MHz, CDCl₃) 4.87 (1H, s, NH), 4.29 (1H, d, *J* 5.43 Hz, CHNBoc), 4.20–4.16 (1H, m, CHCH₂I), 3.52 (1H, d, *J* 5.25 Hz, CHNH), 3.19–3.08 (2H, m, CH₂I), 1.71–1.67 (2H, m), 1.55–1.45 (2H, m), 1.37 (9H, s, CMe₃), 0.89–0.83 (12H, m, CH₃); δ_C (75 MHz, CDCl₃) 166.7, 155.3, 80.6, 79.5, 47.4, 42.3, 32.1, 29.6, 28.2, 24.7, 21.9, 18.2, 8.2; *m/z* (ESI) 338.1 (60%), 439.9 (100%, MH⁺), 461.3 (20%); HRMS (ESI): MH⁺, found 439.1455 C₁₇H₃₂IN₂O₃ requires 439.1458.

4.1.6. Procedure for Horner–Wadsworth–Emmons olefination. To an ice cooled solution of the aldehyde **16a** (3.18 mmol) in dry CH₂Cl₂ (30 ml), Wittig reagent Ph₃P=CHCO₂Et (4.13 mmol) was added and then allowed to stir at room temperature for 2 h. After completion of the reaction, solvent was removed under reduced pressure to obtain the crude product, which was purified by column chromatography to furnish the desired α , β -unsaturated ester **17a** in 86% yield.

4.1.6.1. (*S*,*E*)-*E*thyl 4-((*S*)-2-(tert-butoxycarbonylamino)-4methylpentanamido)-5-methylhex-2-enoate (**17a**). Yield 86%; *R*_f (25% EtOAc/Hexane) 0.51; $[\alpha]_D^{22}$ –15.9 (*c* 0.51, CH₃OH); IR (KBr) 3113, 2996, 2233, 1656, 1371, 1019, 770 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.02 (1H, d, *J* 7.59 Hz, NH), 6.81 (1H, dd, *J*₁ 15.66 Hz, *J*₂ 5.40 Hz, CH= CHCO₂Et), 5.86 (1H, d, *J* 15.60 Hz, CHCO₂Et), 5.36 (1H, d, *J* 6.60 Hz, NH), 4.48–4.42 (1H, m), 4.15–4.07 (3H, m), 1.85–1.75 (1H, m, CHMe₂), 1.59–1.45 (3H, m, CH₂CHMe₂), 1.36 (9H, s, CMe₃), 1.20 (3H, t, *J* 7.11 Hz, CH₃CH₂O), 0.87–0.81 (12H, m, CH₃); $\delta_{\rm C}$ (75 MHz, CDCl₃) 172.2, 166.1, 156.0, 146.6, 121.6, 79.1, 60.3, 54.9, 40.2, 32.1, 29.6, 28.2, 24.7, 22.8, 18.9, 17.85; *m/z* (ESI) 284.1 (60%), 385.2 (100%, MH⁺), 407.1 (30%); HRMS (ESI): MH⁺, found 385.2698 C₂₀H₃₇N₂O₅ requires 385.2702.

4.1.7. Procedure for aza-Michael reaction. To an ice cooled solution of **17a** (2.34 mmol) in dry CH_2Cl_2 (10 ml), 1:1 TFA in CH_2Cl_2 (10 ml) was added and allowed to stir at room temperature for 30 min. After completion of the reaction, solvent was removed and the crude residue was utilized in the next step without further purification.

The crude product obtained in the previous step was dissolved in CH_3CN (5 ml), cooled to 0 °C and then DBU (0.26 mmol) was added. The reaction mixture was allowed to stir at room temperature for 8 h. Water was added and the aqueous layer was extracted with ethyl acetate thrice, the combined organic layer was washed with brine, dried over anhydrous Na_2SO_4 , solvent was removed under reduced pressure. The crude product was purified by column chromatography to furnish the cyclic product **18a** in 26% over two steps.

4.1.7.1. Ethyl-2-((3S,6S)-6-isobutyl-3-isopropyl-5-oxopiperazin-2-yl)acetate (**18a**). R_f (60% EtOAc/Hexane) 0.42; $[\alpha]_D^{22}$ –26.8 (c 0.61, CH₃OH). IR (Neat) 3305, 3213, 2979, 2119, 1692, 1375, 1223, 1026, 768 cm⁻¹; δ_H (300 MHz, CDCl₃) 6.30 (1H, s), 4.20–4.12 (2H, m), 3.49–3.38 (2H, m), 2.93–2.91 (1H, m), 2.57–2.54 (2H, m), 1.93–1.55 (5H, m), 1.27 (3H, t, *J* 7.14 Hz), 0.99–0.88 (12H, m); δ_C (75 MHz, CDCl₃) 173.6, 171.5, 62.0, 60.7, 52.8, 46.8, 40.6, 36.9, 30.4, 24.1, 23.4, 19.5, 14.1; *m/z* (ESI) 285.2, 20%, MH⁺; HRMS (ESI): MH⁺, found 285.2175 C₁₅H₂₉N₂O₃ requires 285.2178.

Acknowledgements

Financial support from Department of Science and Technology (SR/S1/OC-74/2009), New Delhi, India is highly acknowledged. Amit and Sanjit thank CSIR for providing fellowships (NET-JRF and NET-SRF). Instrumental facilities from SAIF, CDRI, Lucknow is acknowledged. This is CDRI communication no 8327.

Supplementary data

Supplementary data related to this article can be found online at http://dx.doi.org/10.1016/j.tet.2012.09.109.

References and notes

- Ward, S. E.; Harrington, F. P.; Gordon, L. J.; Hopley, S. C.; Scott, C. M.; Watson, J. M. J. Med. Chem. 2005, 48, 3478–3480.
- Leopoldo, M.; Lacivita, E.; Colabufo, N. A.; Contino, M.; Berardi, F.; Perrone, R. J. Med. Chem. 2005, 48, 7919–7922.
 Bruncko, M.; Oost, T. K.; Belli, B. A.; Ding, H.; Joseph, M. K.; Kunzer, A.;
- Bruncko, M.; Oost, T. K.; Belli, B. A.; Ding, H.; Joseph, M. K.; Kunzer, A.; Martineau, D.; McClellan, W. J.; Mitten, M.; Ng, S.-C.; Nimmer, P. M.; Oltersdorf, R.; Park, C.-M.; Petros, A. M.; Shoemaker, A. R.; Song, X.; Wang, X.; Wendt, M. D.; Zhang, H.; Fesik, S. W.; Rosenberg, S. H.; Elmore, S. W. J. Med. Chem. 2007, 50, 641–662.
- Bombrun, A.; Gerber, P.; Casi, G.; Terradillos, O.; Antonsson, B.; Halazy. J. Med. Chem. 2003, 46, 4365–4368.
- Jacobsen, E. J.; Stelzer, L. S.; TenBrink, R. E.; Belonga, K. L.; Carter, D. B.; Im, H. K.; Im, W. B.; Sethy, V. H.; Tang, A. H.; VonVoigtlander, P. F.; Petke, J. D.; Zhong, W.-Z.; Mickelson, J. W. J. Med. Chem. **1999**, 42, 1123–1144.
- Askin, D.; Eng, K. K.; Rossen, K.; Purick, R. M.; Welss, K. M.; Volante, R. P.; Reider, P. J. Tetrahedron Lett. **1994**, 35, 673–676.
- 7. Capdeville, R.; Buchdunger, E.; Zimmermann, J.; Matter, A. *Nat. Rev. Drug. Discov.* 2002, 1, 493–502.
- Miyamoto, T.; Matsumoto, J.; Chiba, K.; Egawa, H.; Shibamori, K.; Minamida, A.; Nishimura, Y.; Okada, H.; Kataoka, M. J. Med. Chem. 1990, 33, 1645–1656.
- (a) Cochran, B. M.; Michael, F. E. Org. Lett. 2008, 10, 329–332; (b) Nakhla, J. S.; Wolfe, J. P. Org. Lett. 2007, 9, 3279–3282.
- Gurjar, M. K.; Karmakar, S.; Mohapatra, D. K.; Phalgune, U. D. *Tetrahedron Lett.* 2002, 43, 1897–1900.
- 11. Shioiri, T.; Irako, N. Chem. Lett. 2002, 130-131.
- 12. Davis, F. A.; Deng, J. Org. Lett. 2005, 7, 621-623.
- 13. Trost, B. M.; Dong, G. J. Am. Chem. Soc. 2006, 128, 6054-6055.
- 14. Dickson, D. P.; Wardrop, D. J. Org. Lett. 2009, 11, 1341–1344.
- Trost, B. M.; Cramer, N.; Bernsmann, H. J. Am. Chem. Soc. 2007, 129, 3086–3087.
 Jacquot, D. E. N.; Hoffmann, H.; Polborn, K.; Lindel, T. Tetrahedron Lett. 2002, 43, 3699–3702.
- 17. Chung, R.; Yu, E.; Incarvito, C. D.; Austin, D. J. Org. Lett. 2004, 6, 3881-3884.
- 18. Wang, S.; Romo, D. Angew. Chem., Int. Ed. 2008, 47, 1284-1286.
- Hirose, T.; Sunazuka, T.; Tsuchiya, S.; Tanaka, T.; Kojima, Y.; Mori, R.; Iwatsuki, M.; Omura, S. Chem.—Eur. J. 2008, 14, 8220–8238.
- Dinsmore, J. C.; Bergman, J. M.; Wei, D. D.; Zartman, C. B.; Davide, J. P.; Greenberg, I. B.; Liu, D.; O'Neill, T. J.; Gibbs, J. B.; Koblan, K. S.; Kohl, N. E.; Lobell, R. B.; Chen, I.-W.; McLoughlin, D. A.; Olah, T. V.; Graham, S. L.; Hartman, G. D.; Williams, T. M. Bioorg. Med. Chem. Lett. 2001, 11, 537–540.
- Tian, X.; Mishra, R. K.; Switzer, A. G.; Hu, X. E.; Kim, N.; Mazur, A. W.; Ebetino, F. H.; Wos, J. A.; Crossdoersen, D.; Pinney, B. B.; Farmer, J. A.; Sheldon, R. J. *Bioorg. Med. Chem. Lett.* **2006**, *16*, 4668–4673.
- 22. Sugihara, H.; Fukushi, H.; Miyawaki, T.; Imai, Y.; Terashita, Z.-I.; Kawamura, M.; Fujisawa, Y.; Kita, S. J. Med. Chem. **1998**, *41*, 489–502.
- Pohlmann, A. R.; Guillaume, D.; Quirion, J.-C.; Husson, H.-P.J. Pept. Res. 1997, 51, 116–120.
 Herrero, S.; Garcia-Lopez, M. T.; Latorre, M.; Cenarruzabeitia, E.; Rio, J. D.; Herranz, R. J. Org. Chem. 2002, 67, 3866–3873.
- (a) Gonzalez-Vera, J. A.; Garcia-Lopez, M. T.; Herranz, R. J. Org. Chem. 2005, 70, 3660–3666; (b) Rübsam, F.; Mazitschek, R.; Giannis, A. Tetrahedron 2000, 56, 8481–8487; (c) Nefzi, A.; Giulianotti, M. A.; Houghten, R. A. Tetrahedron 2000, 56, 3319–3326.
- (a) Govek, S. P.; Overman, L. E. J. Am. Chem. Soc. 2001, 123, 9468–9469; (b) Jacquot, D. E. N.; Zöllinger, M.; Lindel, T. Angew. Chem., Int. Ed. 2005, 44, 2295–2298; (c) Williams, R. M.; Cao, J.; Tsujishima, H. Angew. Chem., Int. Ed. 2000, 39, 2540–2544.
- (a) Eriksson, J.; Arvidsson, P. I.; Davidsson, O. Chem.—Eur. J. 1999, 5, 2356–2361;
 (b) Nakamura, D.; Kakiuchi, K.; Koga, K.; Shirai, R. Org. Lett. 2006, 8, 6139–6142;
 (c) Itsuno, S.; Matsumoto, T.; Sato, D.; Inoue, T. J. Org. Chem. 2000, 65, 5879–5881;
 (d) Wang, Z.; Cheng, M.; Wu, P.; Wei, S.; Sun, J. Org. Lett. 2006, 8, 3045–3048.
- Tong, Y.; Fobian, Y. M.; Wu, M.; Boyd, N. D.; Moeller, K. D. J. Org. Chem. 2000, 65, 2484–2493.
- Dinsmore, C. J.; Bergman, J. M.; Bogusky, M. J.; Culberson, J. C.; Hamilton, K. A.; Graham, S. L. Org. Lett. 2001, 3, 865–868.
- Peng, H.; Carrico, D.; Thai, V.; Blaskovich, M.; Bucher, C.; Pusateri, E. E.; Sebti, S. M.; Hamilton, A. D. Org. Biomol. Chem. 2006, 4, 1768–1784.

- Dinsmore, C. J.; Zartman, C. B.; Bergman, J. M.; Abrams, M. T.; Buser, C. A.; Culberson, J. C.; Davide, J. P.; Ellis-Hutchings, M.; Fernandes, C.; Graham, S. L.; Hartman, G. D.; Huber, H. E.; Lobell, R. B.; Mosser, S. D.; Robinson, R. G.; Williams, T. M. Bioorg. Med. Chem. Lett. 2004, 14, 639–643.
- Seibel, J.; Brown, D.; Amour, A.; Macdonald, S. J.; Oldham, N. J.; Schofield, C. J. Bioorg. Med. Chem. Lett. 2003, 13, 387–389.
- Su, T.; Yang, H.; Volkots, D.; Woolfrey, J.; Dam, S.; Wong, P.; Sinha, U.;
 Scarborough, R. M.; Zhu, B.-Y. Bioorg. Med. Chem. Lett. 2003, 13, 729–732.
- Holsworth, D. D.; Powell, N. A.; Downing, D. M.; Cai, C.; Cody, W. L.; Ryan, J. M.; Ostroski, R.; Jalaie, M.; Bryant, J. W.; Edmunds, J. J. *Bioorg. Med. Chem.* 2005, 13, 2657–2664.
- Powell, N. A.; Clay, E. H.; Holsworth, D. D.; Bryant, J. W.; Ryan, J. M.; Jalaie, M.; Zhang, E.; Edmunds, J. J. *Bioorg. Med. Chem. Lett.* **2005**, *15*, 2371–2374.
 Holsworth, D. D.; Cai, C.; Cheng, X.-M.; Cody, W. L.; Downing, D. M.; Erasga, N.;
- Holsworth, D. D.; Cai, C.; Cheng, X.-M.; Cody, W. L.; Downing, D. M.; Erasga, N.; Lee, C.; Powell, N. A.; Edmunds, J. J.; Stier, M.; Jalaie, M.; Zhang, E.; McConnell, P.; Ryan, J. M.; Bryant, J.; Li, T.; Kasani, A.; Hall, E.; Subedi, R.; Rahim, M.; Maiti, S. *Bioorg. Med. Chem. Lett.* **2006**, *16*, 2500–2504.
- Cumming, J. N.; Le, T. X.; Babu, S.; Carroll, C.; Chen, X.; Favreau, L.; Gaspari, P.; Guo, T.; Hobbs, D. W.; Huang, Y.; Iserloh, U.; Kennedy, M. E.; Kuvelkar, R.; Li, G.; Lowrie, J.; McHugh, N. A.; Ozgur, L.; Pan, J.; Parker, E. M.; Saionz, K.; Stamford, A. W.; Strickland, C.; Tadesse, D.; Voigt, J.; Wang, L.; Wu, Y.; Zhang, L.; Zhang, Q. *Bioorg. Med. Chem. Lett.* **2008**, *18*, 3236–3241.
- Kitamura, S.; Fukushi, H.; Miyawaki, T.; Kawamura, M.; Konishi, N.; Terashita, Z.-I.; Naka, T. J. Med. Chem. 2001, 44, 2438–2450.
- Okamura, N.; Habay, S. A.; Zeng, J.; Chamberlin, A. R.; Reinscheid, R. K. J. Pharmacol. Exp. Ther. 2008, 325, 893–901.
- Zhang, Y.; Gilmour, B. P.; Navarro, H. A.; Runyon, S. P. Bioorg. Med. Chem. Lett. 2008, 18, 4064–4067.
- Bergman, J. M.; Abrams, M. T.; Davide, J. P.; Greenberg, I. B.; Robinson, R. G.; Buser, C. A.; Huber, H. E.; Koblan, K. S.; Kohl, N. E.; Lobell, R. B.; Graham, S. L.; Hartman, G. D.; Williams, T. M.; Dinsmore, C. J. *Bioorg. Med. Chem. Lett.* **2001**, *11*, 1411–1415.
- (a) Reginato, G.; Credico, B. D.; Andreotti, D.; Mingardi, A.; Paiob, A.; Donatib, D. *Tetrahedron: Asymmetry* **2007**, *18*, 2680–2688; (b) Lencina, C. L.; Klimpt, A. D.; Sonnet, P. *Tetrahedron: Asymmetry* **2008**, *19*, 1689–1697; (c) Mohamed, N.; Bhatt, U.; Just, G. *Tetrahedron Lett.* **1998**, *39*, 8213–8216; (d) Risi, C. D.; Pelà, M.; Pollini, G. P.; Trapella, C.; Zanirato, V. *Tetrahedron: Asymmetry* **2010**, *21*, 255–274; (e) Mohamed, N.; Bhatt, U.; Just, G. *Tetrahedron: Asymmetry* **2010**, *21*, 255–274; (e) Mohamed, N.; Bhatt, U.; Just, G. *Tetrahedron: Asymmetry* **2010**, *21*, 243–243; (g) Viso, A.; Pradill, R. F.; Flores, A.; García, A. *Tetrahedron* **2007**, *63*, 8017–8026; (h) Viso, A.; Pradilla, R. F.; Flores, A.; García, A.; Tortos, M.; López-Rodríguez, M. L. J. Org. Chem. **2006**, *71*, 1442–1448.
- (a) Mishra, J. K.; Panda, G. Synthesis 2005, 1881–1887; (b) Mishra, J. K.; Rao, J. S.; 43. Sastry, G. N.; Panda, G. Tetrahedron Lett. 2006, 47, 3357-3360; (c) Shagufta; Panda, G. Org. Biomol. Chem. 2007, 5, 360-366; (d) Mishra, J. K.; Panda, G. J. Comb. Chem. 2007, 9, 321-338; (e) Mishra, J. K.; Garg, P.; Dohare, P.; Kumar, A.; Siddiqi, M. I.; Ray, M.; Panda, G. Bioorg. Med. Chem. Lett. 2007, 17, 1326-1331; (f) Srivastava, A. K.; Panda, G. Chem.-Eur. J. 2008, 14, 4675-4688; (g) Srivastava, A. K.; Das, S. K.; Panda, G. Tetrahedron 2009, 65, 5322-5327; (h) Parai, M. K.; Panda, G. Tetrahedron Lett. 2009, 50, 4703-4705; (i) Samanta, K.; Chakravarti, B.; Mishra, J. K.; Dwivedi, S. K. D.; Nayak, L. V.; Choudhry, P.; Bid, H. K.; Konwar, R.; Chattopadhyay, N.; Panda, G. Bioorg. Med. Chem. Lett. 2010, 20, 283-287; (j) Mishra, J. K.; Samanta, K.; Jain, M.; Dikshit, M.; Panda, G. Bioorg. Med. Chem. Lett. 2010, 20, 244–247; (k) Das, S. K.; Srivastava, A. K.; Panda, G. Tetrahedron Lett. 2010, 51, 1483-1485; (1) Samanta, K.; Panda, G. Org. Biomol. Chem. 2010, 8, 2823-2828; (m) Samanta, K.; Panda, G. Chem-Asian J. 2011, 189-197; (n) Samanta, K.; Srivastava, N.; Saha, S.; Panda, G. Org. Biomol. Chem. 2012, 10, 1553-1564.
- 44. (a) Bruni, E.; Cardillo, G.; Orena, M.; Sandri, S.; Tomasini, C. Tetrahedron Lett. 1989, 30, 1679–1682; (b) Balko, T. W.; Brinkmeyer, R. S.; Terando, N. H. Tetrahedron Lett. 1989, 30, 2045–2048; (c) Creeke, P. I.; Mellor, J. M. Tetrahedron Lett. 1989, 30, 4435–4438; (d) Noguchi, M.; Okada, H.; Watanabe, M.; Moriyama, H.; Nakamura, O.; Kakehi, A. Heterocycl. Commun. 1996, 2, 361–370; (e) Watanabe, M.; Okada, H.; Teshima, T.; Noguchi, M.; Kakehi, A. Tetrahedron 1996, 52, 2827–2838; (f) Kitagawa, O.; Fujita, M.; Li, H.; Taguchi, T. Tetrahedron Lett. 1997, 38, 615–618; (g) Yanada, R.; Kaieda, A.; Yanada, K.; Takemoto, Y. Heterocycles 2005, 66, 101–106; (h) Arnold, M. A.; Duron, S. G.; Gin, D. Y. J. Am. Chem. Soc. 2005, 127, 6924–6925; (i) Dennis, M.; Hall, L. M.; Murphy, P. J.; Thornhill, A. J.; Nash, R.; Winters, A. L.; Hursthouse, M. B.; Light, M. E.; Horton, P. Tetrahedron Lett. 2003, 44, 3075–3080; (j) Bera, S.; Panda, G. ACS Comb Sci. 2012, 14, 1–4.
- 45. Desouky, S. K. E.; Ryu, S. Y.; Kim, Y. K. Tetrahedron Lett. 2007, 48, 4015–4017.
- Skehan, P.; Streng, R.; Scudiero, D.; Monks, A.; Mc-Mahon, J.; Visitica, D. J. Natl. Cancer Inst. 1990, 82, 1107–1112.