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Abs t rac t  A study has been conducted on the algorithm of solving generalized optimal 
set of discriminant vectors in this paper. This paper proposes an analytical algorithm of 
solving generalized optimal set of discriminant vectors theoretically for the first time. A lot 
of computation time can be saved because all the generalized optimal sets of discriminant 
vectors can be obtained simultaneously with ~he proposed algorithm, while it needs no iterative 
operations. The proposed algorithm can yield a much higher recognition rate. Furthermore, 
the proposed algorithm overcomes the shortcomings of conventional human face recognition 
algorithms which were effective for small sample size problems only. These statements are 
supported by the numerical simulation experiments on facial database of ORL. 

Keywords  pattern recognition, feature extraction, discriminant analysis, generalized 
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1 I n t r o d u c t i o n  

Feature extraction is one of the most popular and fundamental problems in pattern recognition. For 
a specific problem in pattern recognition, extracting efficient features is always the key to solving the 
problem. A well-known problem in pattern recognition is called "the curse of dimensionality" - -  more 
features do not necessarily imply a better classification success rate. Up to now, some existing image 
features include visual features, moments, Fourier descriptors, and algebraic features. Visual features 
include edges, contours, textures and regions of an image. The algebraic features of the image are very 
suitable for describing the inner information of the closed boundaries. Algebraic features represent 
intrinsic attributions of an image. Turk and Pentland used 'eigenfaces' as the features for human 
face recognition. The eigenfaces are obtained by the principal component analysis technique. Z.Q. 
Hong and J.Y. Yang proposed an algebraic feature method in which the singular value vector was 
used as image features. Cheng presented an efficient recognition approach to human faces based on 
projective images and feature images were used for classification. Foley-Sammon transform (FST) 
has been considered as one of the best methods in terms of discriminant problem for linear feature 
extraction. FST has been applied to image classification and human facial image recognition, and 
the solving methods of FST under various conditions have been developed. Liu Ke proposed a new 
criterion of generalized optimal set of discriminant vectors for linear feature extraction, and a unified 
solving method is derived to solve the vectors of the generalized optimal set. The authors claim that 
their method is superior to several other methods, such as the Foley-Sammon method, the positive 
pseudoinverse method, the perturbation method, and the matrix rank decomposition method in terms 

This work was supported in part by the National Natural Science Foundation of China (Grant No.60072034), 
Foundation of Robotics Laboratory, The Chinese Academy of Sciences (Grant No.RL200108), and University's Natural 
Science Research Program of Jiangsu Province, P.R. China (Grant No.01KJB520002). 



No.3 A New Algorithm for Generalized Optimal Discriminant Vectors 325 

of classification rate through numerical experiments. Recently, Guo proposed an iterative algorithm to 
solve the generalized optimal  set of discriminant vectors for linear feature extract ion in face recognition, 
and the performance of the algorithm is superior to the algorithm suggested by Liu Ke in terms of 
classification rate and speed. However, it is not an analytical solution of the generalized optimal set 
of discriminant vectors. In this paper, a s tudy has been conducted on the essence of the generalized 
optimal set of discriminant vectors. We propose an analytical algorithm of solving the generalized 
optimal set of discriminant vectors theoretically for the first time. All the generalized optimal sets 
of discriminant vectors can be obtained simultaneously with the proposed algorithm. The proposed 
algorithm can yield a much higher recognition rate. Furthermore,  the proposed algorithm overcomes 
the shortcomings of conventional human face recognition algorithms which were effective for small 
sample size problems only. A lot of experimental results have confirmed these statements.  

2 F - S  T r a n s f o r m  a n d  t h e  O p t i m a l  D i s c r i m i n a n t  C r i t e r i o n  

Let w t , w 2 , . . .  , w i n  be m known pat tern  classes, and X = {xi}, i = 1 ,2 , . . .  ,N ,  be the set of n- 
dimensional samples. Each zi in X belongs to a class w j ,  i.e., z i  E w j ,  i -- 1, 2 , . . . ,  N,  j = 1, 2 , . . . ,  m. 

The Fisher criterion can be defined as follows: 

- 9)T Sbg) (1) 
%0TSw%0 

where T is an arbi trary n-dimensional vector, Sb and Sw are the between-class scatter matr ix  and 
the within-class scatter matr ix  respectively. Let %ol be the unit vector which maximizes Jr(%0), then 
9)1 is the first vector of Foley-Sammon optimal set of discriminant vectors (the between-class distance 
in the direction of %01 will be maximum while the within-class distance will be minimum), the i-th 
vector of Foley-Sammon optimal discriminant vectors will be calculated by optimizing the following 
problem: 

J : i , 2 , . . . , i -  i (2) 
~,]"~,=0,11~, II =i 

Let S = {%0i}, i = 1, 2 . . . .  , r ,  then the following linear t ransform is called FST: 

y = ~ T x  (3) 

where ~ : (%01,9)2,--., %0~). 
Let Y be the transformed version of X by (3), then the optimal  discriminant criterion can be 

defined as follows: 
_ E[=i %01s %0  

J ( ~ )  -- t r ( ~ t S , ~ )  E{~ 1 9)Tsw%0, (4) 

3 T h e o r y  o f  t h e  A n a l y t i c a l  A l g o r i t h m  o f  G e n e r a l i z e d  O p t i m a l  S e t  o f  D i s -  

c r i m i n a n t  V e c t o r s  

D e f i n i t i o n  1. L e t  

J(~')  = max J ( ~ )  (5) 
g~ 

w h e r e  ~ : (%01, 9)2, . . . , %0~), ~ = (~1 , ' ~2 ,  . . . , ~ ) ,  9)1, 9)2, . . . , %0~ a n d  ~ l ,  ~2 ,  . . . , ~ are u n i t  o r t h o g o n a l  

c o l u m n  v e c t o r s  i n  a n  n - d i m e n s i o n a l  space.  T h e n  J ( ~ )  is cal led the  g e n e r a l i z e d  F i s h e r  d i s c r i m i n a n t  

f u n c t i o n ,  a n d  W 1 , 9 ) 2 , . . .  , ~ are the  g e n e r a l i z e d  o p t i m a l  d i s c r i m i n a n t  v ec t o r s .  

Liu(19] provided a solution to the generalized opt imal  discriminant vectors: 
(1) ~St is the unit vector in the n-dimensional space which maximizes Jr(%0), i.e., ~1 is the first 

vector of the Foley-Sammon optimal set of discriminant vectors. 
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(2) The i-th generalized optimal discriminant vector can be obtained by solving the following 
problem: 

max {Ji(@i)}, j =  1 , 2 , . . . , i - 1  (6) 
,b~,b, =O,ll~i II=z 

where 
i--1 E~=~ q~Sb'#~ + ~orS~ / l l ~ l l  * 

&(~,) = ~_~ 
E ~ = ,  ~S,,,SZ~ + ~TS,,,~/I I~II  ~ 

T h e o r e m  1. J(@) in Definition 1 may be replaced by the following: 

(7) 

y ( ~ )  _ t r ( ~ ' S ~  '~) _ E l = ,  ~ T s ~ ,  (8) 

The proof procedure is omitted since it is the same as that of the corollary in [19]. 
T h e o r e m  2 [~4]. Suppose A is a real symmetric matrix of n order, B is a positive-definite matrix 

of n order, then: 

}_~4=I~TB~ l , .  '~r~.~ =~ ~l---~B~l ] , i , j = l , . . . , r ,  i r  (9) 
I ) ~ i l ] = z  

/2' 

/: (s ) ~ T ( A - A o B ) , ~ t =  max ~ T ( A - A o B ) ~ t  =0 ,  i , j = l , . . . , r ,  i r  (10) 
/=1  ~T~'J =~ /=I 

!1.,.,, tl = 1 

T h e o r e m  3 [24]. Under the assumption of Theorem 2, it holds that: 

(1) A < Ao iff max ( 
~a T ,~, . /=0 

11~' , l=Z.  

(2) A> A0 iff max ( 
~T~j=O 
I ~ ' d -  

s ~T(A - AB)~z) > 0. 
l = l  

s ~T(A - AB)~,t) < 0. 
l = l  

T h e o r e m  4 [24j. Let 

r r 

m a x  

l=1 ~'T~J =~ /=1 
I 1 ~ i : 1 = 1  

then 
lira ELI ~T(A)A~t(A) = A0, 

~ o  E, \I  ~T(A)B~(A) 
where Ao, A, B are the same as those in Theorem 3, A is a variable and ~(A) is the i-th vector 
corresponding to A. 

Corollary. I r [=z ~r(A)A~t(A)- Ao < (1 + -~)IA-Ao[, 
E L I  ~T(A)B'~,(A) - 

where ,', = ,~,,_,+, + - . .  + ,X,,, u = max{ l~ , l ,  IA,,I}, .X, >_ ,~ _> -.- _> ,~,, are the eigenval,.,es 4 mat , '=  
B. 

Guo designed an iterative algorithm to solve the generalized optimal discriminant vectors based 
on the above theorems. 
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T h e o r e m  5 [~6] . 

m a x  

where A1 _> A2 >_ " "  
And suppose qb~, 

7" 

then EI= I  ~3TAqbI = 

T h e o r e m  6 [~6]. 

Suppose A is a real symmetr ic  matrix, then it holds that: 

~ T A q z t = A i + . . . + ) % ,  rain ~ T A p t  = A ~ _ . + ~ + . - . + A ~ ,  
~T~ 'J  =0 l m l  / = 1  [wl !=z 

> A,~ are the n eigenvalues of  matr ix  A. 
~32,..., #,~ are the or thogonal  unit  eigenvectors corresponding to At, A2 , . . . ,  A,~, 
A1 + '" + At, \-,n - T  A : �9 ~-M:n- -r - t -1  Wl u : ~ n - r + l  "~- " ' "  -b A n .  

Let A, E be Hermite  matrices of  n order respectively, fit : A + E ,  ai , f l i ,&i ,  
i = t, 2 , . . . ,  n, are the eigenvalues of A, E,  7t in decreasing order, then ai + fl~ <_ ai <_ ai +/31. 

D e f i n i t i o n  2 [la]. Let A be a matrix of n order, then the summat ion  of  the diagonal elements of 
matrix  A is called the trace of matrix A, which is represented by trA. 

r~ 

So, we have trA = ~ i = 1  aii. 
T h e o r e m  7 it6]. Let A be a matr iz  of n order, A1, A2 , . . . ,  AN are all the eigenvalues of  A respec- 

tively, then 

t r ( a  ) = A, 
i = l  

ll~i;l=1 l = l  

1, 2 , . . . ,  n, are the eigenvalues of  A - AB in descending order respectively, then 

el = ~ ~i and lira r  
A-+A o 

i = 1  

where Ao, A, B are the same as those in Theorem 3. 
Proof. Let A = A0 + r then we have A - AB = A - AoB + ( - e ) B .  And let a i , a i ,  i = 1 , 2 , . . .  ,n,  

be the eigenvalues of A - AoB, A - AB in decreasing order respectively, then,  according to Theorem 
2, we have el = Y]i=l ai. 

Let e > 0, according to Theorem 6, a i +  (-~)A1 _< ~i _<. a i +  (-e)A,~ holds. So y]i~_l c r i + r ( - e ) A 1  _< 
T ~ r el = E~=~ ~ -< E , = I  z~ + r(-~)A~.  From the definition of A0, we haveE~=l  ai = 0. And because 

limx-~Xo r ( - e ) A i  = l im , -~or ( - s )Ai  = 0, i = 1,2 . . . .  ,n,  so limx-~Xo el = 0. In the case of e < 0, 
7" W 7" 

E , : t  or, + ' r ( - r  ~ r : Ei=~  &i _< E i=~  (r, + r ( - s ) A t ,  l im:~:~ o el : 0 also holds. 
T h e o r e m  9. Suppose A is a real symmetr ic  matr ix  of  n order, B is a positive-definite matrix  of  

n order, then: 

A 0 -  E~=t  qbTBqbl'~ -- ~=omaX \E?=I  TBw ,7 , i , j  = 1 , . . . , n ,  i # j  (11) 

trA 
Ao -= 

trB 

Proof. Let ~i, i = 1, 2 , . . . ,  n, be the eigenvalues of A -  AB in decreasing order,  then, according to 
Theorem 8, we have r = Y]i=l ~i- On the other  hand, according to Theorem 7, we have t r ( A -  AB) = 

n - ~ i = 1  cq. According to Theorem 8, the opt imal  value of A, i.e., A0, can be obta ined when El -- 0. 
trA 

Therefore,  from el = t r (A  - AB)  = trA - AtrB = 0, we can solve the opt imal  value of A = A0 - trB" 

T h e o r e m  10. For a classification problem with c classes, there are c - 1 effective optimal dis- 
cr iminant  vectors at most. 

According to  Theorem 10, we usually choose c - 1 opt imal  discriminant  vectors for a classificatkm 
problem with c classes. We have found the eigenvalues of A - A B  are decreasing exponentially, so we 
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can choose some eigenvectors corresponding to the biggest eigenvalues of A - AB, while still keeping 
high accuracy. That  is to say, even a few eigenvectors corresponding to the biggest eigenvalues of 

t~A with high accuracy. A - AB are adopted, we still have ~ = A0 ~ 

4 T h e  P r o p o s e d  A l g o r i t h m  o f  G e n e r a l i z e d  O p t i m a l  Se t  o f  D i s c r i m i n a n t  
V e c t o r s  

The following algorithm is designed to solve the generalized optimal discriminant vectors based on 
the above theorems. 

4.1 C a s e  i: St is N o n s i n g u l a r  

In this case, S/-t(0) = {alSta = 0} = r S t t ( 0 )  = R '~, and St is a positive-definite matrix. 
(1) Compute  the optimal  value of A, i.e., ~0- According to Theorem 9, k0 = e~& trSt " 

(2) Compute  %5t(I),. . .  ,93,(A), which are the eigenvectors of Sb --AoSt corresponding to the n 
eigenvalues of it. Then ~5t(I) , . . .  ,~?,~(A) are the generalized optimal discriminant vectors exactly 
according to the above analysis. 

4.2 C a s e  2: St is S i n g u l a r  

Suppose St-l(O) = span { a t , . . . , a k } ,  St-l(O) = span {/31,. -- ,/3,~-k}, where a l , . . . , a k  and/31, . . . ,  
/3,~-k are both  orthogonal unit vectors. 

Because Va E S71(0), aTsba = cer&a = O, so, the vectors in S?~(O) contribute nothing to 

classifying, hence the generalized optimal discriminant vectors should be selected from St-t (0). 

V/3 E s t t ( o ) ,  /3 = al~t + a2/32 + "" + a,~-k/3n-t: = P~, where P = (flt,/32 . . . .  ,~,~-k), /~ = 
(at, a2 , . . . ,  a,~-k) r,  and in the equation of J((I)), let Tl = P~l ,  I = 1, 2 , . . . ,  n, then in the subspace 

of S/ ' t (0) ,  we have ,J(~) = }--]~=~r = ,1(~), where ~ = (~1,---  ~5,~), and it is obvious 
E; '=~ 'eY( PTs ,P )+ ,  - 

that  p T s t p  is a positive-definite matrix. Analogous to the case of 4.1, ~) = (q51,952,... ,~),~) can be 
calculated. It  is easy to prove the following two relations: 

II~ziI = IIP~II = 1 iff II~zlf = z, 
~T~j = o  i # j i f f ~ 7 " ~ j  =o,  i # 2 .  

So the generalized optimal  discriminant vectors are ~5l = P~)l, l = 1, 2 . . . .  , n. 

5 E x p e r i m e n t a l  R e s u l t s  

In order to test the performance of the proposed algorithm in this paper, numerical simulation 
experiments have been done on the facial database of ORL. The sample set is t ransformed into an 
r-dimensional space (r < n) by the proposed methods, Liu's method and Guo's method respectively. 
Each transformed sample set is tested by the minimum distance classifier designed on the subspace 
spanned by the discriminant vectors calculated with the relevant method. In each experiment,  we first 
take a part  of the sample set as training samples to calculate the optimal discriminant vectors and 
to design the minimum distance classifier, then use all samples of the sample set to test the classifier. 
We did our experiments on the ORL face database (ht tp: / /www.cam-orl .co.uk/facedatabase.html)  
which can be used freely for academic research. The Cambridge ORL database contains 40 distinct 
persons, each person having ten different images, taken at different times, varying lighting slightly, 
facial expressions (open/closed eyes, smiling/nousmiling), and facial details (glasses/no glasses). All 
the images are taken against a dark homogeneous background and the persons are in the upright, 
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frontal  posi t ion (with tolerence for some side movement) .  Some of the ORL face images are shown 
in Fig.1. A subset of the ORL images is used as the t ra in ing  d a t a  for c ompu t i ng  the opt imal  set of 
d iscr iminant  vectors. All the 400 images are taken as test  data .  The  n u m b e r  of features is c - 1 in all 
the experiments ,  where c is the number  of classes. Table 1 shows the exper imenta l  results with three 
methods.  A lot of exper imenta l  results show tha t  the present  m e t h o d  is more efficient than  other 
methods  ment ioned  above in terms of bo th  classification rate  and  t ime of computa t ion .  

Fig. 1. Some faces in our experiments from ORL face database. 

Table 1. Classification Results of Ituman Faces (ORL Face Database) 
Number of 

classes 
Number of optimal 

discriminant vectors 
Number of 

training samples 

8 7 4 
19 18 4 
30 29 4 
39 38 4 

Number of erroneous classification samples 
and computation time in seconds 

Liu's method Ouo's method Presented method 

2 132.43 0 53.38 0 47.73 
16 517.23 24 71.29 8 42.24 

49 636.76 29 98.76 18 41.03 
I00 856.68 69 72.51 32 15.66 
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