Allylation Reactions of N,O-Heterocycles

Roderick W. Bates,* Chi H. Tang, Yuting Tan, Siti Nurhayati binte Buang

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore

Fax +6567911961; E-mail: roderick@ntu.edu.sg

Received: 31.05.2012; Accepted after revision: 01.07.2012

Abstract: Iminium ions generated from isoxazolidines and tetrahydro-1,2-oxazines undergo allylation under Sakurai conditions. Allylated isoxazolidines are formed predominantly as the *trans* isomer, while oxazines are formed exclusively as the *cis* isomer.

Key words: heterocycles, allylation, stereoselectivity

We have had a longstanding interest in the synthesis of heterocycles containing an N-O bond, namely cyclic hydroxylamines, by methods that do not involve the wellknown cycloaddition reactions, and the use of these heterocycles for the synthesis of alkaloids through cleavage of the N–O bond to reveal an amino alcohol.^{1,2} In the fivemembered-ring series - isoxazolidines - we have employed both cyclocarbonylation³ and the Claesson allene cyclisation.^{4,5} Both processes favour the formation of the 3,5-cis isomer.⁶ We have also employed the intramolecular aza-Michael addition of a hydroxylamine.⁷ Again, in the five-membered-ring series, the 3,5-cis isomers are favoured, while in the six-membered ring series - tetrahydro-1,2-oxazines - the 3,6-trans products are formed exclusively. We reasoned that, if one substituent were added after ring formation, rather than before, we might be able to access the alternative stereochemical series, that is, 3,5-trans isoxazolidines and 3,6-cis-tetrahydro-1,2-oxazines. Given our interest in iminium ion chemistry,^{4b,c,8} the use of a Sakurai reaction suggested itself (Scheme 1). Zhao has reported the allylation of isoxazolidines at C5 with modest stereoselectivity,9 while Jenkins has reported the stereoselective addition of allyl zinc reagents to 4,5-dihydroisoxazoles.¹⁰

Scheme 1 N,O-Heterocycle allylation

SYNLETT 2012, 23, 2266–2268 Advanced online publication: 17.08.2012 DOI: 10.1055/s-0031-1290458; Art ID: ST-2012-D0469-L © Georg Thieme Verlag Stuttgart · New York The 3-methoxy-substituted heterocycles,¹¹ intended as iminium ion precursors, were prepared by adapting the chemistry that we had used for the preparation of earlier starting materials (Scheme 2).³ N-Alkoxyphthalimides 2 were prepared by the Mitsunobu reaction between unsaturated secondary alcohols 1 and N-hydroxyphthalimide.¹² The phthaloyl group was then removed by hydrazinolysis, and the nitrogen was reprotected as a carbamate. Initially, using the five-membered ring series, ozonolysis in dichloromethane yielded the 3-hydroxyisoxazolidines,¹³ which were converted into the 3-methoxy derivatives 6ac by treatment with methanol in the presence of polymersupported PPTS.¹⁴ We subsequently found that it was more efficient to carry out the ozonolysis in methanol in the presence of the acidic polymer to give the 3-methoxy derivatives after Me₂S work-up in a one-pot process. The 3-methoxyisoxazolidines 6a-c were obtained as diastereoisomeric mixtures; the 3-methoxytetrahydrooxazines 7a-c were obtained exclusively as the *cis* isomers, as demonstrated by X-ray crystallographic analysis of compound 7b (Figure 1).^{15,16}

Scheme 2 Synthesis of 3-methoxy heterocycles

Allylation of the 3-methoxy derivatives was achieved by treatment with allyl trimethylsilane and BF₃·OEt₂ at -60 °C in anhydrous dichloromethane (Scheme 3). Good yields were obtained in all cases (Table 1) except for those compounds with a *t*-Boc protecting group, due to acid sensitivity. The isoxazolidines **8a**–c were formed as an inseparable mixture of isomers.¹⁷ The stereochemistry was demonstrated by cleavage¹⁸ of the N–O bond of isoxazolidine **8a** to give the diastereoisomeric amino alcohol derivatives which were separable. The major isomer **9** proved to be crystalline. X-ray crystallographic analysis

Figure 1 X-ray crystal structure of compound 7b

(Figure 2)¹⁵ revealed it to be the *anti* isomer, indicating that the major isoxazolidine was the trans isomer. In contrast, the tetrahydro-1,2-oxazines **10a-d** were formed as single isomers. Attempts to determine the stereochemistry by either coupling constant analysis or NOE experiments were frustrated by line broadening in the ¹H NMR spectra for protons at the 3- and 6-positions.¹⁹ Corresponding broadening was also observed in the ¹³C NMR spectra. Removal of the Boc group from compound **10a**, however, gave compound 11 with a sharply defined ¹H NMR spectrum. The proton at C6 showed coupling constants of 3.2 and 9.6 Hz, indicating an equatorial disposition of the phenyl group. Through homonuclear decoupling experiments, coupling constants between the proton at C3 and the protons at C4 were revealed to be 3.3 and 2.2 Hz, indicating an axial disposition of the allyl group and, therefore, cis stereochemistry for the heterocycle. Axial allylation is consistent with the reaction being under stereoelectronic control.20

Figure 2 X-ray crystal structure of amino alcohol derivative 9

Allylation of these N,O-heterocycles provides a useful route to derivatives of amino alcohols with useful 1,3-stereo-

Scheme 3 Allylation reactions

Table 1 N,O-Heterocycle Formation and Allylation

Entry	R	PG	n	Heterocycle, yield (%)	Allylation, yield (%)	Allylation dr
1	Ph	t-Boc	1	6a 54 ^a	8a 44	3.8:1
2	Ph	Cbz	1	6b 41 ^a	8b 70	3.3:1
3	Ph	CO ₂ Me	1	6c 56 ^a	8c 73	4.8:1
4	Ph	t-Boc	2	7a 57 ^b	10a 55	_c
5	Ph	Cbz	2	7b 85 ^b	10b 74	_c
6	Ph	CO ₂ Me	2	7c 73 ^b	10c 68	_c
7	Me	CO ₂ Me	2	7d 63 ^b	10d 65	_c

^a Two-step procedure.

^b One-pot procedure.

^c Single isomer observed in the ¹H NMR (300 MHz) spectrum of the crude product.

control and excellent 1,4-stereocontrol which should prove to be valuable in organic synthesis.

General Procedure for Allyation²¹

Boron trifluoride etherate (1.2 equiv) was added dropwise to a solution of the 3-methoxyheterocycle and allyltrimethylsilane (2 equiv) in CH₂Cl₂ under nitrogen at -60 °C. The mixture was stirred overnight at -60 °C, then quenched by addition of Et₃N (0.5 equiv) at that temperature. The mixture was allowed to warm to r.t., then diluted with H₂O. The mixture was extracted with CH₂Cl₂ (3×). The combined organic layers were dried (MgSO₄) and concentrated under reduced pressure. The product was purified by chromatography on silica gel.

Acknowledgment

We thank the Singapore Ministry of Education Academic Research Fund Tier 2 (grant T206B1220RS) and Nanyang Technological University for generous support of this work.

References and Notes

- Bates, R. W.; Boonsombat, J.; Lu, Y.; Nemeth, J. A.; Sa-Ei, K.; Song, P.; Cai, M. P.; Cranwell, P. B.; Winbush, S. A. *Pure Appl. Chem.* **2008**, *80*, 681.
- (2) For the use of isoxazolidines for β-amino acid synthesis, see:
 (a) Fuller, A. A.; Chen, B.; Minter, A. R.; Mapp, A. K. *Synlett* 2004, 1409. (b) Examples in sedum alkaloid synthesis may be found in: Bates, R. W.; Sa-Ei, K. *Tetrahedron* 2002, *58*, 5957.
- (3) Bates, R. W.; Sa-Ei, K. Org. Lett. 2002, 4, 4225.
- (4) (a) Bates, R. W.; Nemeth, J.; Snell, R. Synthesis 2008, 1033.
 (b) Bates, R. W.; Lu, Y. J. Org. Chem. 2009, 74, 9460.
 (c) Bates, R. W.; Lu, Y. Org. Lett. 2010, 12, 3938.
- (5) For another noncycloaddition route to isoxazolidines, see: Lemen, G. S.; Giampietro, N. C.; Hay, M. B.; Wolfe, J. P. J. Org. Chem. 2009, 74, 2533.
- (6) Also, 3,4-*trans* is favoured: Bates, R. W.; Lim, C. J. *Synlett* 2010, 866.
- (7) Bates, R. W.; Snell, R. H.; Winbush, S. A. Synlett 2008, 1042.
- (8) For recent reviews of *N*-acyliminium ion chemistry, see:
 (a) Speckamp, N.; Moolenaar, M. J. *Tetrahedron* 2000, *56*, 3817.
 (b) Yazici, A.; Pyne, S. G. *Synthesis* 2009, 339.
 (c) Yazici, A.; Pyne, S. G. *Synthesis* 2009, 513.
- (9) Niu, D.; Zhao, H.; Doshi, A.; Zhao, K. Synlett 1998, 979.
- (10) Freire Castro, F. J.; Vila, M. M.; Jenkins, P. R.; Sharma, M. L.; Tustin, G.; Fawcett, J.; Russell, D. R. Synlett 1999, 798.
- (11) Certain 3-methoxyisoxazolidines and derivatives, prepared by 1,3-dipolar cycloaddition, have been claimed as anti-acne agents: (a) Castelhano, A. L.; DeYoung, L. M.; Krantz, A.; Pliura, D. H.; Venuti, M. C. US 4912120 A1, 1990.
 (b) Castelhano, A. L.; Krantz, A.; Pliura, D. H.; Venuti, M. C.; DeYoung, L. M. EP 237082 B1, 1991.
- (12) Grochowski, E.; Jurczak, J. Synthesis 1976, 682.

- (13) 5-Hydroxyisoxazolidines have also been prepared by the reaction between hydroxylamines and α,β-unsaturated aldehydes: Zelenin, K. N.; Motorina, I. A.; Sviridova, L. A.; Bezhan, I. P.; Ershov, A. Y.; Golubeva, G. A.; Bundel, Y. G. *Chem. Heterocycl. Compd.* **1988**, *23*, 1018.
- (14) Acid-catalysed exchange in 3-hydroxyisoxazolidines has been reported: Motorina, I. A.; Sviridova, L. A.; Golubeva, G. A.; Zelenin, K. N.; Bezhan, I. P.; Ershov, A. Y.; Bundel, Y. G. Chem. Heterocycl. Compd. 1989, 24, 1373.
- (15) Details have been deposited with the Cambridge Crystallographic Data Centre and may be obtained at http://www.cedc.cam.ac.uk. CCDC deposition numbers: 7b: 878055 and 9: 877996.
- (16) Characterisation Data for Compound 7b Mp 69–71 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.25–7.50 (10 H, m), 5.35 (1 H, br), 5.33 (br d *J* = 12.0 Hz), 5.19 (d, *J* = 12.0 Hz), 4.72 (br s, 1 H), 3.35 (3 H, br s), 2.35 (1 H, app dq, *J* = 5.0, 12.0 Hz), 2.05–2.10 (1 H, m), 1.88–2.00 (1 H, m), 1.79–1.84 (1 H, m), 1.80–2.40 (4 H, m).
- (17) Spectroscopic Data for Compound *trans*-8a ¹H NMR (400 MHz, CDCl₃): δ = 7.37–7.28 (5 H, m), 5.85 (1 H, ddt, *J* = 17.3, 10.2, 7.1 Hz), 5.27 (1 H, t, *J* = 6.6 Hz), 5.21–5.14 (2 H, m), 4.39 (1 H, tt, *J* = 8.0, 5.0 Hz); 3.68 (3 H, s), 2.65–2.38 (4 H, m). ¹³C NMR (100 MHz, CDCl₃): δ = 157.5, 138.5, 134.0, 128.8, 118.4, 81.7, 59.0, 53.2, 40.0, 39.1.
- (18) (a) Cicchi, S.; Goti, A.; Brandi, A.; Guarna, A.; Sarlos, F. D. *Tetrahedron Lett.* **1990**, *31*, 3351. (b) Mulvihill, M. J.; Gage, J. L.; Miller, M. J. J. Org. Chem. **1998**, *63*, 3357.
- (19) Spectroscopic Data for Compound 10c
 ¹H NMR (400 MHz, CDCl₃): δ = 5.67–5.78 (m, 1 H), 5.15
 (1 H, ddd, J = 17.0, 3.0, 1.5 Hz), 5.08 (1 H, dt, J = 10.0, 1.0 Hz), 4.73 (1 H, br d), 4.35 (1 H, br), 3.78 (3 H, s), 2.70
 (1 H, app quin, J = 7.0 Hz), 2.44 (1 H, app quin, J = 7.0 Hz), 2.10–2.20 (1 H, m), 1.9.0–2.05 (1 H, m), 1.8.0–1.90 (2 H, m). ¹³C NMR (400 MHz, CDCl₃): δ = 25.6, 26.6, 34.3, 53.2, 83.3 (br), 117.6, 126.6, 128.5, 128.6, 134.8, 139.4, 156.1.
- (20) Stereoelectronic Effects in Organic Chemistry; Deslongchamps, P., Ed.; Pergamon Press: Oxford, 1983, 211–221.
- (21) All compounds used in this study were racemic.

Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.