energy for which the ion distribution function has its maximum value and that for k_{λ} . Furthermore, since k^*_E is different for $C_4H_3^+$ and $C_4H_4^+$, it is expected that the value of E^* for which k_{λ} is maximum for these two fragment ions will be slightly different when a laser of wavelength λ is used. However, both shifts are expected to be small since the distribution function $\psi_{E_i}^{\lambda}$ is expected to have a width which is small compared to the total energy of the parent ion (which is determined mostly by the third photon energy).

In light of the above discussion, the b value in eq 1 must then represent the energy difference between the value of the onset and that of the maximum of the $\psi_{E_i}{}^{\lambda}k_{E_i}$ function (occurring at E^*_{λ}). The nearly constant value of b, when S_2 is an intermediate state in the ionization process, might result from the following: (1) as discussed above, the distribution function $\psi_{E_i}^{\lambda}$ might be independent of λ if the photoionization probability from S₂ is much higher than that for energy redistribution in that state or is not very sensitive to small changes in λ if the energy redistribution is very rapid in the S₂ state, and (2) the slope of k_E vs. E is such that it does not shift greatly the maximum of the $\psi_{E_i}^{\lambda}$ function when the energy of the third photon changes over the range used (0.7 eV as seen in Table I).

Acknowledgment. The support of the National Science Foundation (Grant No. CHE84-12265) is gratefully acknowledged.

SO₂ Fluorescence from Vacuum Ultraviolet Dissociative Excitation of SO₃

Masako Suto,* Chao Ye, R. S. Ram, and L. C. Lee[†]

Department of Electrical & Computer Engineering, San Diego State University, San Diego, California 92182 (Received: November 19, 1986; In Final Form: February 10, 1987)

The absorption and fluorescence excitation spectra of SO₃ were measured in the 145-160-nm region with synchrotron radiation as a light source. The fluorescence spectra produced by excitation of SO₃ at 147 and 157 nm were dispersed and compared with the laser-induced fluorescence spectrum of SO_2 , from which the emitter is identified to be the excited SO_2^* . The photodissociation process of SO3 is discussed in accord with the fluorescence observed.

Introduction

There is a great concern about the oxidation processes of sulfur compounds because of their important roles in the formation of acid rain. SO_3 , an important oxidation product of SO_2 and other simple sulfur compounds,¹ reacts with ambient water to produce H_2SO_4 . The reaction kinetics and spectroscopy of SO_3 are of interest in the study of atmospheric photochemistry.

Since SO₃ is a strong oxidizer, there are experimental difficulties in the study of its gas-phase reaction kinetics and spectroscopy. For example, SO₃ reacts with optical windows to cause permanent window damage. SO₃ will react with H₂O on walls and grease in joints to form acidic products that will attack O-ring material and metal. SO₃ also forms a surface polymer at room temperature. Because of these difficulties, the reaction kinetics and spectroscopy of SO₃ have not been extensively investigated.

While spectroscopic data for SO₃ have been reported in the infrared region,²⁻⁵ very little is known about the ultraviolet (UV) and vacuum ultraviolet (vacuum-UV) regions. The absorption spectrum of SO₃ in the UV region was studied a long time ago;^{6,7} however, the results were not certain. Aerosol formation from the SO₃ + H_2O reaction was observed in an early study,⁸ but the kinetic measurement of the $SO_3 + H_2O$ reaction in the gas phase was made only once.9

In this work, the photoexcitation process of SO_3 is studied in the vacuum-UV region. Absorption and fluorescence excitation spectra are investigated with synchrotron radiation as a light source. Fluorescence produced by 147- and 157-nm excitation of SO₃ was dispersed and compared with the laser-induced fluorescence spectrum of SO₂, from which the fluorescence is identified to be from the excited SO_2^* . This SO_2 fluorescence is currently used as a means for the detection of SO₃ in our measurement of the reaction rate constant of $SO_3 + H_2O$.

Experimental Section

Sample Preparation. Stabilized SO3 with a purity of 99% was supplied by Aldrich Chemical Co. in a sealed glass bottle. At

[†]Also, Department of Chemistry, San Diego State University.

room temperature, SO_3 is a liquid with a portion of needlelike polymer. In this experiment, the glass bottle was placed inside a stainless steel container. Both the container and the glass bottle were baked under vacuum, and the H₂O on walls was pumped out. The SO_3 bottle was opened in a vacuum, and the sample was degassed at liquid N_2 temperature. The gas handling system consisted of stainless steel tubing and Teflon valves without O-rings or grease. The gas cells used in the experiments were all made of stainless steel. The gas handling system and the gas cell were baked under vacuum for a few hours prior to performing the experiment. This treatment ensures that H_2O on walls is minimal, and SO_3 does not convert to H_2SO_4 .

SO₃ may decompose on stainless steel surfaces. Noticeable absorption and fluorescence from SO₂ were observed in the synchrotron radiation experiment. However, after the gas handling system and the gas cell were passivated with a flow of SO₃ gas, the decomposition was greatly reduced. All measurements were carried out in flow systems in order to reduce the buildup of decomposition products. In the synchrotron radiation experiment, pure SO3 was continuously introduced to the gas cell and pumped by a sorption pump. For the dispersion experiment, SO₃ diluted in He was continuously admitted to the gas cell and pumped by a mechanical pump with a liquid nitrogen cold trap. Pressures of SO₃ and SO₃/He were monitored by Baratron capacitance manometers (MKS Instruments).

Synchrotron Radiation Experiment. The experimental setup for the synchrotron radiation measurement was described in a

(9) Castleman, A. W. Jr.; Davis, R. E.; Munkelwitz, H. R.; Tang, I. N.; Wood, W. P. Int. J. Chem. Kinet. 1975, 7 (Symp. No. 1), 629.

⁽¹⁾ Calvert, J. G.; Stockwell, W. R. In SO2, NO and NO2 Oxidation Mechanisms; Calvert, J. G., Ed.; Butterworths: London, 1984. (2) Lovejoy, R. W.; Colwell, J. H.; Eggers, D. F. Jr.; Halsy, G. D. Jr. J.

Chem. Phys. 1962, 36, 612. (3) Kaldor, A.; Maki, A. G. J. Mol. Spectrosc. 1973, 45, 247.
 (4) Dorney, A. J.; Hoy, A. R.; Mills, I. M. J. Mol. Spectrosc. 1973, 45,

²⁵³

⁽⁵⁾ Bodybey, V. E.; English, J. H. J. Mol. Spectrosc. 1985, 109, 221.
(6) Dutt, A. K. Proc. R. Soc. London, A 1932, 137, 366.
(7) Fajans, E.; Goodeve, C. F. Trans. Faraday Soc. 1936, 32, 511.

⁽⁸⁾ Goodeve, C. F.; Eastman, A. S.; Dooley, A. Trans. Faraday Soc. 1934, 30, 1127

previous paper.¹⁰ In brief, synchrotron radiation produced from the electron storage ring at the University of Wisconsin was dispersed by a 1-m vacuum monochromator (Seya type, grating blazed at 120 nm). The dispersed photon beam entered the gas cell through a sapphire window. LiF and MgF₂ windows were also used in the experiment. The optical path length of the absorption cell was 39.7 cm. The vacuum-UV light source was converted to UV light by sodium salicylate coated outside the exit sapphire window. The UV light was detected by a photomultiplier tube (PMT). The UV-visible fluorescence was monitored by a cooled PMT (EMI 9558QB) sensitive in the 180-800-nm region. The fluorescence intensity was observed in a direction perpendicular to the incident photon beam. The signal from the PMT was processed by an ORTEC photon counting system and then simultaneously recorded by an X-Y recorder and an IBM XT microcomputer. The data were later analyzed by the computer.

Fluorescence Dispersion. Fluorescence from dissociative excitation of SO₃ with a sealed Xe resonance lamp (147 nm) and a F_2 excimer laser (157 nm, Lumonics) was dispersed by a 0.5-m monochromator (Acton, Inc.). The fluorescence was observed through a quartz window in a direction perpendicular to the light source beam.

The gas cell was a stainless steel six-way cross. Sapphire and CaF_2 windows on the gas cell were used for the F_2 laser and Xe lamp experiments, respectively. The section between the windows of the light source and the gas cell was flushed by pure N_2 gas flow that allowed the vacuum-UV light transmission. Helium was used to flush the windows inside the gas cell to prevent SO₃ from reaching them.

The F_2 laser was typically operated at 20 Hz with a pulse duration of 6 ns. The signal from the PMT was processed by a gated photon counting system with a sampling gate of about 35 μ s after each laser pulse. The F_2 laser intensity was monitored by a copper diode with a sapphire window. The fluorescence signal detected in the Xe resonance lamp experiment was not gated.

Laser-Induced Fluorescence of SO_2 . The laser-induced fluorescence of SO_2 was observed in the excitation wavelength region of 275–285 nm, which was used to compare with the fluorescence observed from photodissociation excitation of SO_3 . A Nd:YAG laser pumped dye laser (Quantel, YG581-30) was used as the light source. Output from rhodamine 590 was frequency-doubled into the UV light. The laser was operated at a repetition rate of 30 Hz with a pulse duration of 12 ns. The bandwidth of the laser light was about 1.6 cm⁻¹.

A stainless steel gas cell with quartz windows was used for this experiment. Both pure SO_2 and diluted SO_2 in Ar were used in the flow system. The detection system (monochromator, PMT, and the gated photon counting system) was the same as for the F_2 laser experiment.

Results and Discussion

Absorption and Fluorescence Excitation Spectra. The absorption spectrum was measured by attenuation of light source intensity by SO₃ at several pressures lower than 5 mTorr. The measurement was done with a sapphire window. As shown in Figure 1a, the spectrum in the 145–160-nm region is a continuum with broad discrete bands superimposed on it. Measurements with LiF windows were also carried out in this experiment. However, since the window transmission deteriorated with time due to a reaction with SO₃ during the measurements, the data were not considered to be reliable and are not presented in this paper. Nevertheless, it is worth noting that several sharp bands appeared in the 105-130-nm region similar to the absorption spectrum of SO_2 .¹¹ These bands may be partly caused by SO_2 produced from the decomposition of SO_3 by walls. The broad bands shown in Figure 1a may also be partly due to SO_2 , because SO_2 also shows absorption structure in this wavelength region.¹² The photoab-

(11) Suto, M.; Day, R. L.; Lee, L. C. J. Phys. B 1982, 15, 4165.
 (12) Golomb, D.; Watanabe, K.; Marmo, F. F. J. Chem. Phys. 1962, 36,

Figure 1. (a) "Apparent" absorption cross section and (b) fluorescence excitation spectrum of SO₃. The monochromator resolution was 0.2 nm. The cross section is measured in a unit of Mb (10^{-18} cm^2) . The fluorescence excitation is a relative value. The lower limit of the fluorescence cross section at 147 nm is 0.15 Mb.

sorption cross section of SO_2 was also measured in this experiment, and the result agrees with the published data.¹² Because of the possible interference by SO_2 , the uncertainty for the measured absorption cross section is quite large, and the cross section shown in Figure 1a is therefore defined as an "apparent" one.

The absorption cross section¹² of SO₂ in the 145–160-nm region is about 5 Mb (1 Mb = 10^{-18} cm²). O₂, which is the other possible decomposition product, has a broad absorption band in the 135-155-nm region with a maximum absorption cross section of 14 Mb.¹³ The "apparent" absorption cross section shown in Figure 1 has a peak cross section of about 26 Mb, which is much larger than the values of possible decomposition products. Thus, the measured absorption cross section in the 145-150-nm region is mostly due to SO_3 . The "apparent" cross section represents the lower limit of the true absorption cross section of SO_3 . By a detailed comparison between the absorption bands shown in Figure 1a with those¹² of SO_2 , it is estimated that the concentration of SO₂ was not higher than 20% of the total gas pressure, and the O_2 concentration should be about one-half of $[SO_2]$. The possible interference from these decomposition products may make the measured "apparent" absorption cross section of SO3 appear to be lower than the true value by about 25%.

Fluorescence was observed in the excitation wavelength region of 145–160 nm. The ratio of fluorescence intensity to light source intensity is shown in Figure 1b. The ratio represents the relative fluorescence cross section, which can be converted to absolute value by calibration at 147 nm (see discussion in the next section). The fluorescence excitation spectrum is a smooth function of excitation wavelength that increases with decreasing excitation wavelength. The fluorescence was observed with a LiF window down to 130 nm with a peak around 140 nm. However, because the transmission efficiency of the LiF window changed with time, the data were only qualitative.

The possible impurities of SO₂ and O₂ did not contribute to the fluorescence observed. The SO(A,B \rightarrow X) fluorescence can be produced from photodissociation excitation of SO₂ at excitation wavelengths shorter than 134 nm, but not at the longer wavelengths.¹¹ Photoexcitation of O₂ in the 145–160-nm region will dissociate¹⁴ into O(¹D) + O(³P)...

dissociate¹⁴ into $O(^{1}D) + O(^{3}P)$. *Fluorescence Spectra*. The fluorescence spectrum produced from photoexcitation of SO₃ at 157 nm (F₂ laser) is shown in Figure 2, where the monochromator resolution was set at 0.85

⁽¹⁰⁾ Lee, L. C. J. Chem. Phys. 1980, 72, 4334.

⁽¹³⁾ Hudson, R. D. Rev. Geophys. Space Phys. 1971, 9, 305.

⁽¹⁴⁾ Lee, L. C.; Slanger, T. G.; Black, G.; Sharpless, R. L. J. Chem. Phys. 1977, 67, 5602.

⁽¹⁵⁾ Nee, J. B.; Wang, X.; Suto, M.; Lee, L. C. Chem. Phys., in press.

Figure 2. Fluorescence spectrum produced from photodissociative excitation of SO_3 at 157 nm (F₂ laser). The monochromator resolution was set at 0.85 nm. The SO3 pressure was about 10 mTorr mixed in 4.9 Torr of He.

Figure 3. Fluorescence spectrum produced from photodissociative excitation of SO₃ at 147 nm (Xe resonance lamp). The monochromator resolution was set at 0.85 nm. The SO₃ pressure was 15 mTorr in 1.6 Torr of He.

nm and SO₃ pressure was about 10 mTorr. The sapphire window on the gas cell was flushed by He so that the total pressure in the gas cell was about 4.9 Torr. The fluorescence was observed within 35 μ s after each laser pulse. No fluorescence was detected when SO_2 at 55 mTorr was irradiated by F_2 laser photons under the same experimental condition.

The fluorescence spectrum produced from photoexcitation of SO₃ at 147 nm is shown in Figure 3a where the monochromator resolution was set at 0.85 nm, and the partial pressure of SO3 was about 15 mTorr. The background signal caused by the scattered light from the Xe lamp is shown in Figure 3b. The scattered light is included in Figure 3a. A CaF_2 window on the gas cell was used in this experiment and was flushed by He. The total pressure in the gas cell was 1.6 Torr. Pure N_2 gas was used to flush the section outside the gas cell between the CaF2 window on the gas cell and the MgF_2 window on the Xe lamp. Both spectra produced at 147 and 157 nm show several vibrational bands in the 380-480-nm region superimposed on an unresolved broad continuum from 270 to 500 nm. They are very similar to both the fluorescence spectra produced from optical excitation of SO_2^{16-19} and the chemiluminescence spectra produced from reactions of O_3 with various sulfur compounds.²⁰⁻²³ This similarity suggests that the observed

(21) (a) Halstead, C. J.; Thrush, B. A. Proc. R. Soc. London, A 1966, 295, 363. (b) McKenzie, A.; Thrush, B. A. Proc. R. Soc. London, A 1968, 308, 133

Figure 4. Laser-induced fluorescence spectrum of SO₂ excited at 281.1 nm (frequency-doubled dye laser). The monochromator resolution was set at 0.43 nm. The SO₂ pressure was about 200 mTorr.

fluorescence is likely due to the excited SO₂* produced from photodissociative excitation of SO₃. For a further identification of the fluorescence spectrum, the laser-induced fluorescence of SO_2 was studied by using the same detection system for which the result is described in the next section. Comparing these spectra, it is conclusive that the fluorescence observed from vacuum-UV excitation of SO_3 is indeed due to the excited SO_2^* .

The observed fluorescence is mainly produced from the direct photodissociation process of SO₃. Optical emissions from other processes such as reactions among the chemical species SO_3 , SO_2 , and O_2 existing in either excited states or their ground states are believed to have a negligible contribution to the observed fluorescence. This assertion is based on the observation that the fluorescence is linearly dependent on the SO₃ concentration.

The fluorescence cross section at 147 nm was estimated by comparing its fluorescence intensity with that of C₂F₃Cl under the same experimental conditions. At 147 nm, C₂F₃Cl is dissociated into $CF_2(\tilde{X}) + CFCl(\tilde{A})$ with a fluorescence cross section of about 0.25 Mb.¹⁵ The CFCl($\tilde{A}-\tilde{X}$) emission wavelength is in the 350-550-nm region, and the SO₂ fluorescence produced from dissociative excitation of SO₃ is in the 270-500-nm region. Since both the CFCl and SO₂ emissions are in the same wavelength region, the PMT response for the detection of both emissions was assumed to be the same. The fluorescence cross section of SO₃ at 147 nm, determined from the fluorescence intensity, is 0.15 Mb with an uncertainty factor of 2. This value is only a lower limit of the true fluorescence cross section, because the SO₂* fluorescence is subject to quenching¹⁶ by He which was not corrected.

Laser-Induced Fluorescence of SO2. The laser-induced fluorescence (LIF) of SO₂ was observed in the excitation wavelength regions of 275–285 nm. Both pure SO_2 and diluted SO_2 in Ar were used in the experiment. It was observed that the LIF spectra were not dependent on SO₂ pressure. The fluorescence spectrum excited at 281.1 nm is shown in Figure 4. The LIF spectra at other excitation wavelengths in the 270-290-nm region are similar to this spectrum. The LIF spectrum is very similar to the spectra shown in Figures 2 and 3, except for the vibrational bands in the 380-470-nm region that do not appear in the LIF spectrum.

The excitation process of SO₂ fluorescence has been extensively studied and reviewed by Heicklen et al.¹⁶ as well as by Lee and Loper.¹⁷ Low-resolution fluorescence spectra were reported by Mettee¹⁸ and Strickler and Howell,¹⁹ wherein SO₂ was excited at several wavelengths between 265 and 313 nm. The broad semicontinuum is attributed to the $\tilde{B}^1B_1 \rightarrow \tilde{X}^1A_1$ transition (fluorescence), and the vibrational structure in the 380-470-nm

⁽¹⁶⁾ Heicklen, J.; Kelley, N.; Partymiller, K. Rev. Chem. Intermed. 1980, 3, 315 and references therein.

⁽¹⁷⁾ Lee, E. K. C.; Loper, G. L. In Radiationless Transitions; Lin, S. H., Ed.; Academic: New York, 1980. (18) Mettee, H. D. J. Chem. Phys. **1968**, 49, 1784.

 ⁽¹⁹⁾ Strickler, S. J.; Howell, D. B. J. Chem. Phys. 1968, 49, 1947.
 (20) (a) Halstead, C. J.; Thrush, B. A. Proc. R. Soc. London, A 1966, 295,

^{380. (}b) Thrush, B. A.; Halstead, C. J.; McKenzie, A. J. Phys. Chem. 1968, 72, 3711.

⁽²²⁾ Akimoto, H.; Finlayson, B. J.; Pitts, J. N. Jr. Chem. Phys. Lett. 1971, 12, 199.

^{(23) (}a) Glinski, R. J.; Sedarski, J. A.; Dixon, D. A. J. Phys. Chem. 1981, 85, 2440. (b) Glinski, R. J.; Dixon, D. A. J. Phys. Chem. **1985**, 89, 33. (c) Glinski, R. J.; Dixon, D. A. J. Phys. Chem. **1986**, 90, 3346.

⁽²⁴⁾ Stull, D. R.; Prophet, H. JANAF Thermochemical Tables, 2nd ed.; National Bureau of Standards: Washington, DC, 1971; NSRDS-NBS 37.

region is the $\tilde{b}^3 B_1 \rightarrow \tilde{X}^1 A_1$ transition (phosphorescence).^{16,17} The \tilde{b} state is not produced by a direct optical excitation of SO₂ but by collisional-induced intersystem crossing, SO₂(\tilde{B}) + SO₂ \rightarrow SO₂(\tilde{b}) + SO₂. The intensity ratio of phosphorescence to fluorescence increases with increasing pressure and excitation wavelength.

The LIF spectrum of SO₂ shown in Figure 4 does not contain the $\tilde{b}-\tilde{X}$ bands. This lack of triplet transition may be mainly caused by the detection method in which only the emission within 35 μ s after each laser pulse was detected. The time constant¹⁶ for the collisional-induced crossing is estimated to be longer than 0.1 ms, which is much longer than the fluorescence observation time. On the other hand, the fluorescence spectrum produced from photodissociative excitation of SO₃ as shown in Figure 2, which was also detected within 35 μ s, clearly shows the $\tilde{b}-\tilde{X}$ bands. This result indicates that the $\tilde{b}-\tilde{X}$ bands are produced from a direct photodissociation of SO₃ into SO₂(\tilde{b}) + O, but not from the collisional-induced crossing.

The yield for the production of $SO_2(\tilde{b})$ is apparently larger than that of $SO_2(\tilde{B})$, because their emission intensities are of the same order of magnitude, but the radiative lifetimes of \tilde{b} (~8 ms) is much longer than that of \tilde{B} (~40 μ s). The quenching rate constants for $SO_2(\tilde{b} \text{ and } \tilde{B})$ by SO_3 are not known; however, it may be reasonable to assume that they are roughly equal to the quenching of SO₂* by SO₂, which are¹⁶ about 10^{-12} and 10^{-9} cm³/s, respectively. For the SO₃ partial pressure of 10 mTorr used in the experiment, the quenching rates of $SO_2(\bar{b} \text{ and } \bar{B})$ by SO_3 are about 3×10^2 and 3×10^5 s⁻¹, respectively. For the quenching by He (4.9 Torr), the quenching rate for $SO_2(\tilde{b})$ is at most equal to that by SO₃, and for SO₂(\tilde{B}) the quenching rate is negligible when compared with that of SO_3 . The fluorescence intensity detected in a gated period, t, is proportional to nqE, where n is the population of the excited species, q is the PMT quantum yield which decreases systematically with increasing wavelength, E = $[1 - \exp(-t/\tau)]\tau/\tau_0$ is the fluorescence efficiency, $\tau = \tau_0/(1 + \tau_0)$ $\sum_i \tau_0 k_i[\mathbf{M}_i]$ is the fluorescence decay time, τ_0 is the radiative lifetime, k_i is the quenching rate constant, and $[M_i]$ is the concentration of a quenching species. In the current experimental conditions, E is about 2×10^{-3} for SO₂(\tilde{b}) and 7×10^{-2} for SO₂(\tilde{B}); namely, the fluorescence detection efficiency for the \tilde{b} state is much lower than that of the \tilde{B} state. The relative production yield for $SO_2(\tilde{b})$ to $SO_2(\tilde{B})$ is thus larger than that appearing in the spectra shown in Figures 2 and 3. The large production yield for $SO_2(\tilde{b})$ may be due to the fact that the photodissociation of SO_3 into $SO_2({}^{3}B_1) + O({}^{3}P)$ is a spin-allowed process.

In the reactions of SO + O_3^{20} and SO + O + M,²¹ the SO₂ emission was observed. In the SO-O₃ system, both the SO₂($\tilde{B}-\tilde{X}$ and $\tilde{b}-\tilde{X}$) systems were observed. From the pressure dependence, it was estimated that about 30% of the \tilde{b} state is directly populated from the reaction.²⁰ In the SO-O system, SO₂ is mainly populated to high vibrational levels of the \tilde{B} state, because of its high exothermicity (132.1 kcal/mol). An emission band in the 230-400-nm region was observed from the recombination process of SO + O when the gas mixture of SO₂ in Ar was irradiated by intense F₂ laser pulse and the photon detection system was not gated. When the detection system was gated (35 μ s), the emission intensity was quite small.

Photodissociation Process of SO_3 . From the above results, it is conclusive that the observed fluorescence is produced from photodissociative excitation of SO_3 . The photodissociation processes that produce the observed emission are

$$SO_{3}(\tilde{X}) + h\nu \rightarrow SO_{2}^{*}(S) + O(^{3}P)$$
$$\rightarrow SO_{2}^{*}(T) + O(^{3}P)$$

where S and T represent the singlet and triplet states of SO₂, respectively. The enthalpy change in the process SO₃ \rightarrow SO₂ + O is 83.3 kcal/mol (3.61 eV), where the heats of formation²³ $\Delta H_f^{\circ}(SO_3) = -94.6 \text{ kcal/mol}, \Delta H_f^{\circ}(SO_2) = -70.9 \text{ kcal/mol}, \text{ and } \Delta H_f^{\circ}(O) = 59.6 \text{ kcal/mol} \text{ were used for the calculation}.$

The absorption spectrum of SO₂ in the UV region is assigned to four electronically excited states, namely, three singlet states $(\tilde{A}^{1}A_{1}, \tilde{B}^{1}B_{1}, \text{and } \tilde{C}^{1}B_{2})$ and a triplet state $(\tilde{b}^{3}B_{1})$. The absorption spectrum in the 240–340-nm region is complicated by the overlapping between \tilde{A} and \tilde{B} . The origins of \tilde{A} and \tilde{B} are at 27 930 cm⁻¹ (3.46 eV) and 31 950 \pm 300 cm⁻¹ (3.96 \pm 0.04 eV), respectively.^{16,17} The absorption to the \tilde{b} triplet state is in the 340–400-nm region with the origin at 25 766 cm⁻¹ (3.19 eV). Combining these excitation energies and the enthalpy change for the SO₃ dissociation, the threshold wavelengths for the production of SO₂(\tilde{A}) and SO₂(\tilde{b}) from photodissociative excitation of SO₃ are calculated to be at 175.3 and 182.3 nm, respectively. As shown in Figure 1, the threshold for the observed fluorescence is at 159 nm, which is about 0.7 eV higher than the calculated threshold for the production of SO₂(\tilde{A}).

When SO₃ is irradiated at 157 nm, the excess energy above the SO₂(\tilde{X}) + O dissociation limit is 4.28 eV. If all this excess energy is transferred to SO₂, the shortest possible wavelength for the observed SO₂ emission is 290 nm, which does, in fact, correspond to the short limit of the spectrum shown in Figure 2. For the excitation at 147 nm, the excess energy is 4.82 eV. This excess energy could make the shortest emission wavelength to be 257 nm; however, the fluorescence actually starts around 270 nm, as shown in Figure 3.

SO₃ may also dissociate into SO + O₂, for which the enthalpy change is 96.2 kcal/mol (4.17 eV). The photolysis of SO₃ in the near-UV region was studied by Norrish and Oldershaw,²⁵ in which the transient absorption of UV light by SO radical was observed. The photodissociation of SO₃ into SO(A and B) + O₂ is possible at wavelengths shorter than 139 and 133 nm, respectively. These processes are not included in the present study.

Conclusion

The "apparent" photoabsorption cross section and fluorescence excitation spectrum of SO₃ were measured in the 145-160-nm region. The fluorescence spectra produced by 147- and 157-nm excitation of SO₃ were dispersed and compared with the laserinduced fluorescence spectrum of SO₂. The fluorescence is attributed to the SO₂ ($\tilde{B}, \tilde{b} \rightarrow \tilde{X}$) transitions. The lower limit for the absolute fluorescence cross section at 147 nm is determined to be 0.15 Mb. The observed fluorescence is currently used as a means for the detection of SO₃ in the measurements of reaction kinetics of SO₃ with various atmospheric species.

Acknowledgment. The authors thank J. R. Barker at the University of Michigan and N. Washida and S. Hatakeyama at the National Institute of Environmental Studies in Japan for helpful suggestions on SO_3 preparation. They also thank M. J. Mitchell, Y. Ni, W. C. Wang, and X. Wang in our laboratory for useful discussion and suggestions. The synchrotron radiation facility of the University of Wisconsin is supported by the NSF under Grant No. DMR-44-21888. The YAG pumped dye laser system is supported by the DOD Equipment Program under Grant No. N00014-85-0021. This work is based on the work supported by the NSF under Grant Nos. ATM-8417647 and ATM-8412618.

Registry No. SO₃, 7446-11-9; SO₂, 7446-09-5.

⁽²⁵⁾ Norrish, R. G. W.; Oldershaw, G. A., Proc. R. Soc. London, A 1959, 249, 498.